Dealing with Overload in Distributed Stream Processing Systems

Nesime Tatbul Stan Zdonik
Distributed Stream Processing

At each server node:
- Continuous Queries
- Stream Processing Engine

End-point Applications

Push-based Data Sources
The Overload Problem

- Bursty data arrival
- Insufficient resources (e.g., CPU, bandwidth)
- Bottlenecks along the server chain
- Delayed query results

- Given a load distribution, how can we best shed load that minimizes degradation in result quality?
Server nodes must coordinate in their load shedding decisions to achieve high-quality results.
Design Goals

- Fast reactivity to load
- Global control on output quality
- Scalability
 - Number of server nodes
 - Number of input streams
 - Amount of query branching

Centralized or Distributed?
Distributed Coordination by Metadata Exchange

- Feasible Input Table (FIT): \((r_1, \ldots, r_m, \text{quality-score})\)

- FIT
 - Initial generation
 - Aggregation
 - Propagation
 - Load shedding
At each leaf node:

- Spread can be adjusted based on:
 - a fixed maximum error from the optimal, or
 - based on a fixed FIT size.
- If splits in the local query plan:
 - use an additional local plan that complements a FIT entry.

Generating FIT

Cost = 3
Selectivity = 0.5

Cost = 1
Selectivity = 1.0

FIT: (0, 1, 1.0)
Aggregating and Propagating FIT

- When parent A receives FIT from child B:
 - Maps FIT entries from A’s output to A’s input.
 - Eliminates entries that are infeasible for A.
 - If splits along a path, propagates the maximum rate and keeps the rest as an additional local plan.

- If parent A has multiple child nodes:
 - Merges FIT entries pairwise.
 - Adds the quality scores.
FIT-based Load Shedding

- A node observes input rates \((r_1, \ldots, r_m)\).
- If there exists \(F\) in FIT where for all \(i\), \(F.r_i \geq r_i\) with no local plan:
 - Do nothing.
- Else:
 - Find \(F\) in FIT with the highest quality-score such that for all \(i\), \(F.r_i \leq r_i\).
 - Reduce \(r_i\) by \(1 - F.r_i/r_i\).
 - Apply the associated local plan if any.
Open Challenges

- Metadata (FIT) maintenance
- Fairness and Priorities
- Server topology
- Bandwidth bottlenecks
- Centralized vs. Distributed tradeoffs
Summary

- There is **load dependency** among the nodes of a distributed stream processing system.
- Distributed load shedding requires **global coordination** among nodes to ensure optimality.
- We can provide this coordination by **upstream metadata aggregation and propagation**.
- Results can be improved by using **additional local plans** that complement the metadata.
Questions?