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PROBLEM SOLUTION RESULTS

More Information
Watch: https://www.youtube.com/watch?v=FkT1aNoKbG4&feature=youtu.be

Read: https://arxiv.org/abs/1709.07536 Use: https://github.com/mejbah/AutoPerf

Automatic Performance Regression Testing
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§ Key Challenges in Existing Tools:

1.  Generality:
- Detect root cause of diverse types 

software performance issues.

2.  Scalability:
- Fine-grained diagnosis of 

program execution with reduced 
perturbation.
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Diagnosis of Parallel Software Performance 
Anomalies is Challenging

Detecting performance anomaly introduced by a change in software

§ General Anomaly Detection Challenges:

Real-world performance regressions are diverse and complex

Learning from “normal” programs:
- Anomalies are rare
- Leverage non-anomalous programs to 

detect anomalous ones.

Zero-Positive Learning + Auotencoders + Hardware Telemetry
AutoPerf

Zero-Positive Learning (ZPL)
§ Train only on non-anomalous data
§ Why ZPL for performance 

regressions?
- Does not rely on training data that 

includes performance regressions
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Zero-Positive Dataset

ZPL of Performance Regressions
§ Autoencoder to learn HWPC data distribution of normal (non-

anomalous) program executions 

Reconstruction error threshold: 𝛾 𝑡 = 𝜇% + 𝑡𝜎% 𝜇% ∶ 𝑚𝑒𝑎𝑛 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟
𝜎% ∶ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑡 ∶ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑙𝑒𝑣𝑒𝑙

Hardware Telemetry for Perf Regressions
§ Hardware Performance Counters (HWPCs):  
- Special purpose registers in modern CPUs
- Store counts of wide-range of hardware-related activities

üLow overhead
üReduced perturbation

Program
Profile HWPCs

𝛾 𝑡 ∶ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑜𝑓 𝐴𝑢𝑡𝑜𝑃𝑒𝑟𝑓
𝑈𝐵𝐿 ∶ State-of-the-art [1]
𝛼 𝑡 ∶ 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 threshold
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Generality

Thread 1:
lock(row_lock);
rows_read++;
unlock(row_lock);

Thread 5:

lock(row_lock);
rows_read++;
unlock(row_lock);

mutex_lock row_lock;
int rows_read;

L1 cache line

true conflict

conflict location

Thread 1:
lock(locks[id % thrds]);
rows_read[id % thrds]++;
unlock(locks[id % thrds]);

Thread 5:

lock(locks[id % thrds]);
rows_read[id % thrds]++;
unlock(locks[id % thrds]);

mutex_lock locks[thrds];
int rows_read[thrds];

tim
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Figure: Example of performance regressions in parallel software 

Figure: Overview of AutoPerf

- Detects 10 real perf bugs in 7 benchmark and open-source programs
- Different types of bugs in parallel software: True Sharing (TS),  False 

Sharing (FS),  NUMA Latency (NL) 
- Better accuracy than state-of-the-art approaches DT[1] and UBL[2]

No false negatives found in our tests
(no missed performance bugs)

Figure: Diagnosis ability of AutoPerf vs DT[1] and UBL[2] in candidate programs.  K, L, M are # of 
executions used for experiments ( K=6, L=10,  M=20).

Scalability

Profiling overhead (< 4%) Reduced training time using clustering

k: number of cluster

Conclusion & Future Work
§ AutoPerf makes software performance analysis with hardware 

telemetry more general and scalable with zero-positive learning.
§ Limitations:

- Diagnoses performance defects if explainable by HWPC
- Availability of clean data, effective test cases for execution profiles  
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