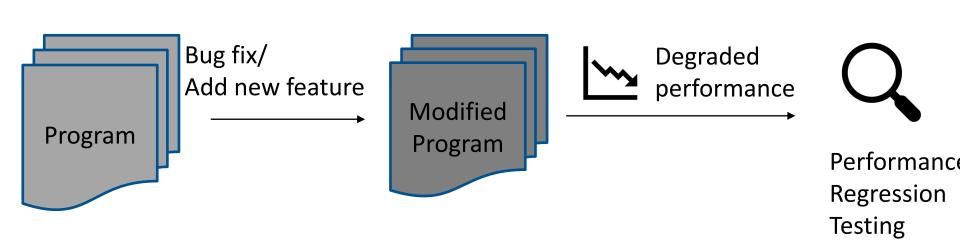


PROBLEM

Automatic Performance Regression Testing



Detecting **performance anomaly** introduced by a change in software

Diagnosis of Parallel Software Performance Anomalies is Challenging

Real-world performance regressions are **diverse** and **complex**

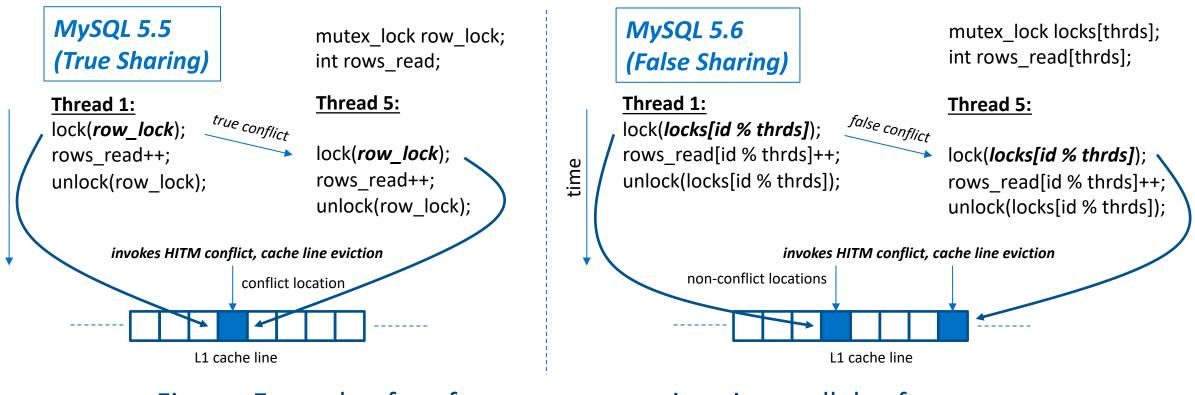


Figure: Example of performance regressions in parallel software

Key Challenges in Existing Tools:

1. Generality:

Detect root cause of diverse types software performance issues.

2. Scalability:

- Fine-grained diagnosis of program execution with reduced perturbation.

Program ----commits

General Anomaly Detection Challenges:

Learning from "normal" programs:

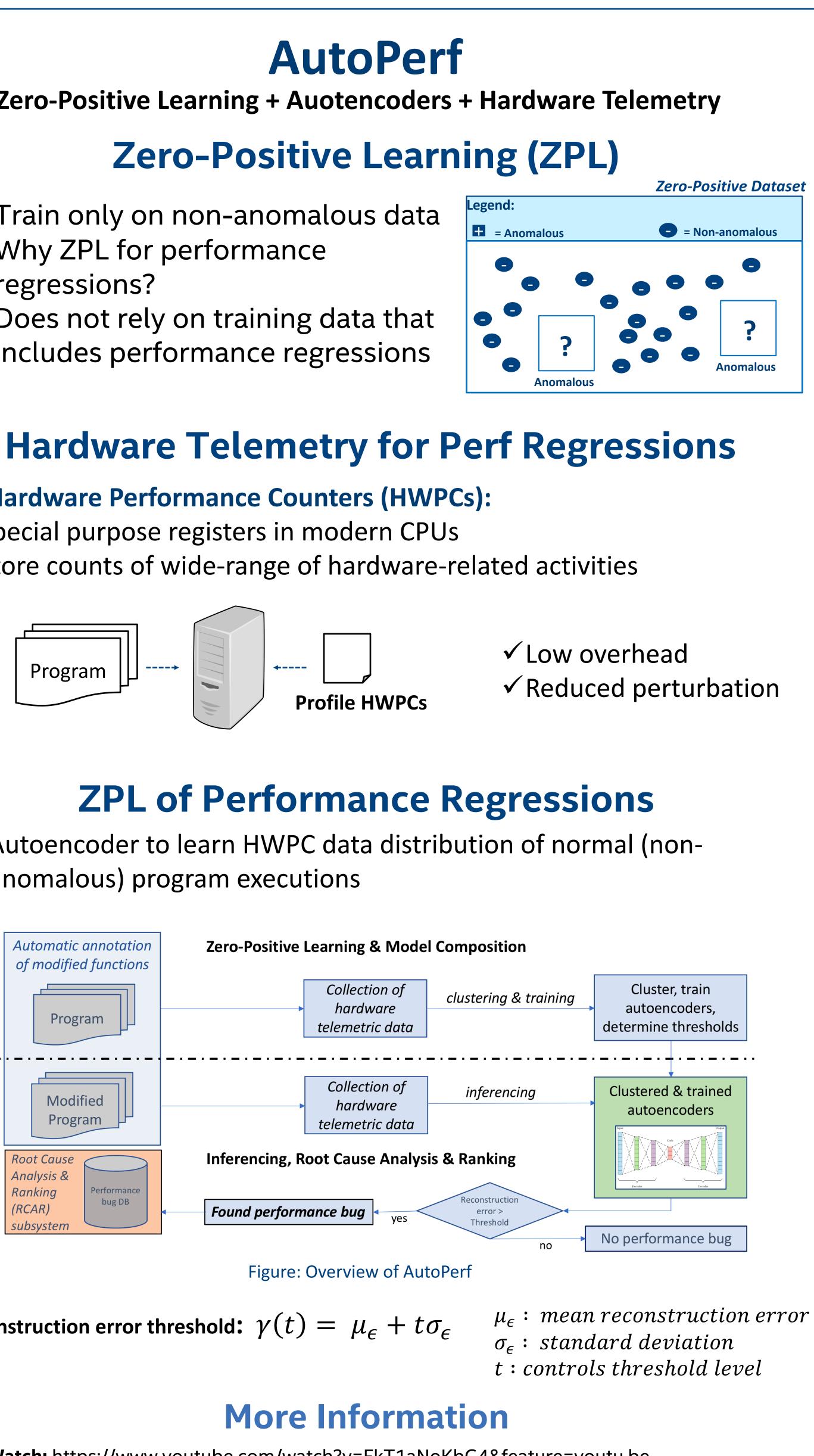
- Anomalies are rare
- Leverage non-anomalous programs to detect anomalous ones.

A ZERO-POSITIVE LEARNING APPROACH FOR **DIAGNOSING SOFTWARE PERFORMANCE REGRESSIONS** Mejbah Alam, Justin Gottschlich, Nesime Tatbul, Javier Turek, Timothy Mattson, Abdullah Muzahid

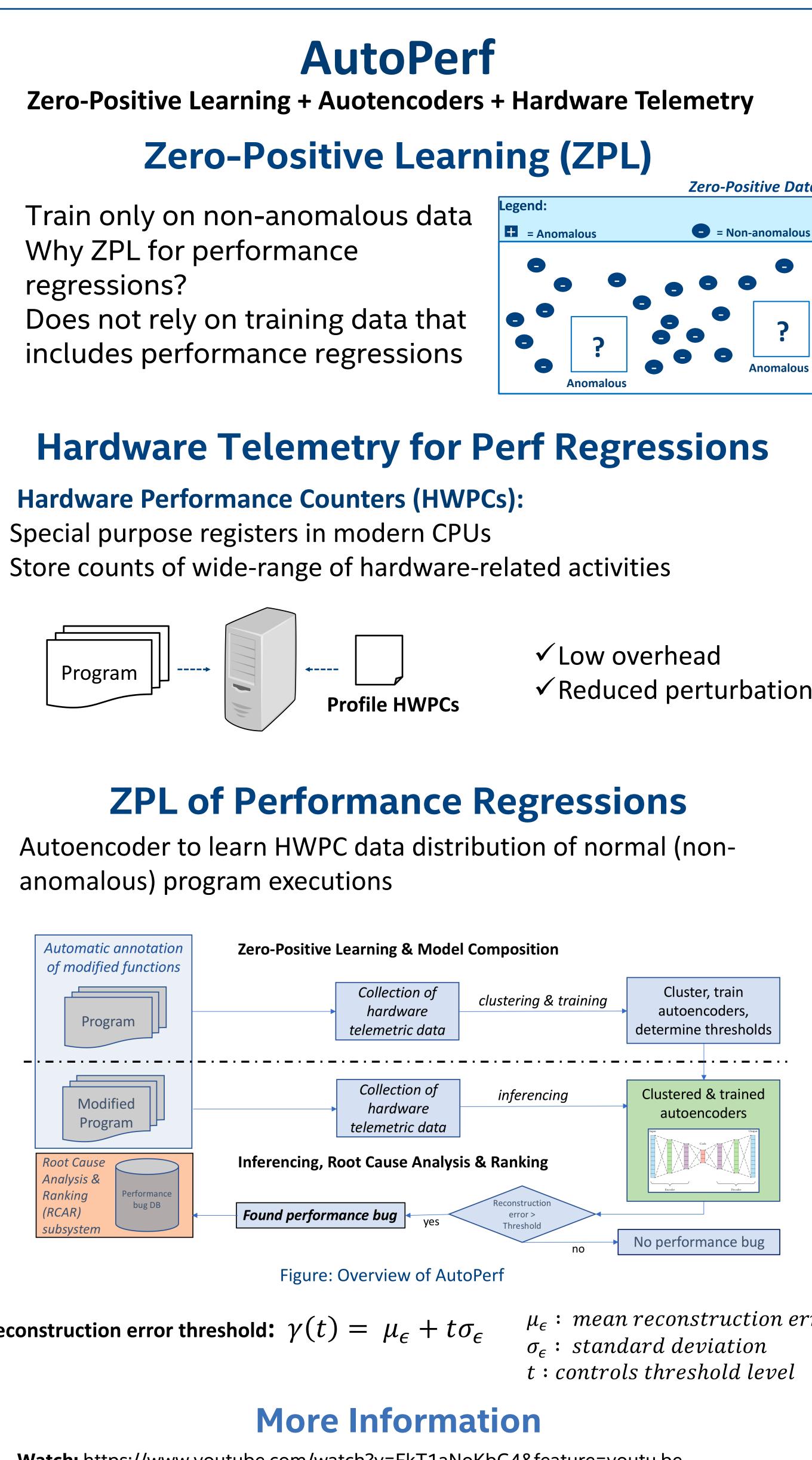
[Intel Labs + Texas A&M]

SOLUTION

- Why ZPL for performance regressions?
- Does not rely on training data that



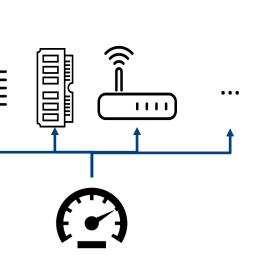
anomalous) program executions

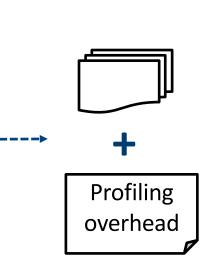


Reconstruction error threshold: $\gamma(t) = \mu_{\epsilon} + t\sigma_{\epsilon}$

Watch: https://www.youtube.com/watch?v=FkT1aNoKbG4&feature=youtu.be **Read:** https://arxiv.org/abs/1709.07536

© 2019 Intel Corporation. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others



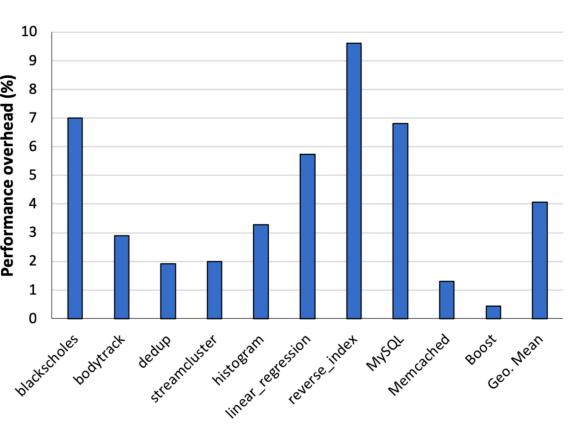


- **Use:** https://github.com/mejbah/AutoPerf

- Sharing (FS), NUMA Latency (NL)
- False Positi Normal Program AutoPerf blackscholes_L 0.0 bodytrack_L $dedup_L$ $histogram_M$ linear_regression_M reverse_index_M 0.0 streamcluster_L 0.3 $Boost_L$ 0.0 Memcached_L 0.2 $MySQL_L$

Figure: Diagnosis ability of AutoPerf vs DT[1] and UBL[2] in candidate programs. K, L, M are # of executions used for experiments (K=6, L=10, M=20).

(no missed performance bugs)



Profiling overhead (< 4%)

Conclusion & Future Work

- Limitations:
- Networking, Storage and Analysis(SC)

RESULTS

Generality

Detects **10** real perf bugs in **7** benchmark and open-source programs Different types of bugs in parallel software: True Sharing (TS), False

Better accuracy than state-of-the-art approaches DT[1] and UBL[2]

tive Rate		Anomalous	Defect	False Negative Rate		
DT	UBL	Program	Туре	AutoPerf	DT	UBL
N/A	0.2	$blackscholes_K$	NL	0.0	N/A	0.0
0.7	0.8	$bodytrack_K$	TS	0.0	0.17	0.1
1.0	0.2	dedup_K	TS	0.0	0.0	0.0
0.0	0.0	$histogram_M$	FS	0.0	0.1	1.0
0.3	0.0	linear_regression $_M$	FS	0.0	0.4	0.35
0.4	0.15	reverse_index $_M$	FS	0.0	0.1	0.05
N/A	0.6	streamcluster $_K$	NL	0.0	N/A	0.1
1.0	0.4	$Boost_L$	FS	0.0	0.2	0.2
1.0	0.4	$Memcached_L$	TS	0.0	0.4	0.3
1.0	0.1	$MySQL_L$	FS	0.0	0.5	0.8

 $\gamma(t)$: Threshold of AutoPerf UBL : State-of-the-art [1] $\alpha(t)$: Arbitrary threshold

Scalability

■Before clustering k: number of cluster After clusterin

Reduced training time using clustering

AutoPerf makes software performance analysis with hardware telemetry more **general** and **scalable** with zero-positive learning.

- Diagnoses performance defects if explainable by HWPC - Availability of clean data, effective test cases for execution profiles

References

S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe, H. D. Silva, S. Rathnayake, X. Meng, and Y. Liu. Detection of False Sharing Using Machine Learning. In 2013 SC -International Conference for High Performance Computing,

D. J. Dean, H. Nguyen, and X. Gu. UBL: Unsupervised Behavior Learning for PredictingPerformance Anomalies in Virtualized Cloud Systems. In Proceedings of the 9th InternationalConference on Autonomic Computing, ICAC '12

