
The Design of the Borealis
Stream Processing Engine

Brandeis University, Brown University, MIT

Magdalena Balazinska Nesime Tatbul
MIT Brown

Distributed Stream Processing

Distributed Stream Processing

Data
Sources

Client
Apps

U Σ µ

Σ

Node 1 Node 2

Node 3 Node 4

U µ

Data sources push tuples continuously
Operators process windows of tuples

Where are we today?
Data models, operators, query languages
Efficient single-site processing
Single-site resource management
[STREAM, TelegraphCQ, NiagaraCQ, Gigascope, Aurora]

Basic distributed systems
Servers [TelegraphCQ, Medusa/Aurora]
or sensor networks [TinyDB, Cougar]
Tolerance to node failures
Simple load management

Challenges
Tuple revisions

Revisions on input streams
Fault-tolerance

Dynamic & distributed query optimization
...

Causes for Tuple Revisions
Data sources revise input streams:
“On occasion, data feeds put out a faulty price
[...] and send a correction within a few hours”
[MarketBrowser]
Temporary overloads cause tuple drops
Temporary failures cause tuple drops

Average
price1 hour

(1pm,$10)(2pm,$12)(3pm,$11)(4:05,$11)(4:15,$10)(2:25,$9)

Current Data Model

time: tuple timestamp

header data

(time,a1,...,an)

New Data Model for Revisions

time: tuple timestamp
type: tuple type

insertion, deletion, replacement
id: unique identifier of tuple on stream

header data

(time,type,id,a1,...,an)

Revisions: Design Options
Restart query network from a checkpoint
Let operators deal with revisions

Operators must keep their own history
(Some) streams can keep history

Revision Processing in Borealis
Closed model: revisions produce revisions

Average
price1 hour

(1pm,$10)(2pm,$12)(3pm,$11)(2:25,$9)

Average
price1 hour

(2pm,$12)(3pm,$11)(2pm,$11)

Revision Processing in Borealis
Connection points (CPs) store history
Operators pull the history they need

Σ

Operator

CP

Oldest tuple
in history

Most recent
tuple in history

Revision

Input queue
Stream

Fault-Tolerance through Replication
Goal: Tolerate node and network failures

U Σ

Node 1’

µ

Node 2’

Node 3’

µU

s1

s2

Node 1

U Σ

Node 3

U µ
Node 2

µ

s3

s4

s3’

Reconciliation
State reconciliation alternatives

Propagate tuples as revisions
Restart query network from a checkpoint
Propagate UNDO tuple

Output stream revision alternatives
Correct individual tuples
Stream of deletions followed by insertions
Single UNDO tuple followed by insertions

Fault-Tolerance Approach
If an input stream fails, find another replica
No replica available, produce tentative tuples
Correct tentative results after failures

STABLE UPSTREAM
FAILURE

STABILIZING

Missing or tentative inputs

Fa
ilu

re
he

als
Ano

the
r u

ps
tre

am

fai
lur

e i
n p

rog
res

s
Reconcile state

Corrected output

Challenges
Tuple revisions

Revisions on input streams
Fault-tolerance

Dynamic & distributed query optimization
...

Optimization in a Distributed SPE
Goal: Optimized resource allocation
Challenges:

Wide variation in resources
High-end servers vs. tiny sensors

Multiple resources involved
CPU, memory, I/O, bandwidth, power

Dynamic environment
Changing input load and resource availability

Scalability
Query network size, number of nodes

Quality of Service
A mechanism to drive resource allocation
Aurora model

QoS functions at query end-points
Problem: need to infer QoS at upstream nodes

An alternative model
Vector of Metrics (VM) carried in tuples
Operators can change VM
A Score Function to rank tuples based on VM
Optimizers can keep and use statistics on VM

Example Application:
Warfighter Physiologic Status Monitoring (WPSM)

Area State Confidence
Thermal
Hydration
Cognitive
Life Signs
Wound Detection

90%
60%
100%
90%
80%

Physiologic
Models

Σ

Σ
Σ

Ranking Tuples in WPSM

SF(VM) = VM.confidence x ADF(VM.age)

age decay function

Score Function

Sensors

Model1

Model2

([age, confidence], value)

VM

Merge

Models may change confidence.

HRate

RRate

Temp

Borealis Optimizer Hierarchy

End-point Monitor(s) Global Optimizer

Local Monitor

Local Optimizer

Neighborhood Optimizer

Borealis Node

Optimization Tactics

Priority scheduling
Modification of query plans

Commuting operators
Using alternate operator implementations

Allocation of query fragments to nodes
Load shedding

Correlation-based Load Distribution
Goal: Minimize end-to-end latency
Key ideas:

Balance load across nodes to avoid overload
Group boxes with small load correlation together
Maximize load correlation among nodes

Connected Plan

A BS1

C DS2

r

2r

2cr

4cr

Cut Plan

S1

S2

A B

C D

r

2r

3cr 3cr

Load Shedding

Goal: Remove excess load at all nodes and links
Shedding at node A relieves its descendants
Distributed load shedding

Neighbors exchange load statistics
Parent nodes shed load on behalf of children
Uniform treatment of CPU and bandwidth problem

Load balancing or Load shedding?

Local Load Shedding

App1: 25% App2: 58%Local

LossPlan

CPU Load = 5Cr1, Cap = 4Cr1 CPU Load = 4Cr2, Cap = 2Cr2

A must shed 20% B must shed 50%

4C C

C 3C

r1

r1

r2

r2

App1

App2

Node A Node B

Goal:
Minimize
total loss

25%

58%

CPU Load = 3.75Cr2, Cap = 2Cr2

B must shed 47%
No overload No overload

A must shed 20% A must shed 20%

r2
’

Distributed Load Shedding

CPU Load = 5Cr1, Cap = 4Cr1 CPU Load = 4Cr2, Cap = 2Cr2

A must shed 20% B must shed 50%

4C C

C 3C

r1

r1

r2

r2

App1

App2

Node A Node B

9%

64%

App1: 25% App2: 58%Local
App1: 9% App2: 64%Distributed

LossPlan

smaller
total loss!

No overload No overload
A must shed 20% A must shed 20%

r2
’

r2
’’

Goal:
Minimize
total loss

Extending Optimization to Sensor Nets
Sensor proxy as an interface
Moving operators in and out of the sensor net
Adjusting sensor sampling rates

The WPSM Example:

Proxy

data

control

Merge

S
en

so
rs

Models

control message from the optimizer

Conclusions
Next generation streaming applications require a
flexible processing model

Distributed operation
Dynamic result and query modification
Dynamic and scalable optimization
Server and sensor network integration
Tolerance to node and network failures

Borealis has been iteratively designed, driven by
real applications
First prototype release planned for Spring’05
http://nms.lcs.mit.edu/projects/borealis

