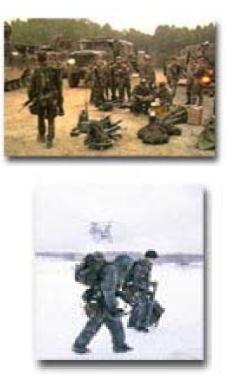
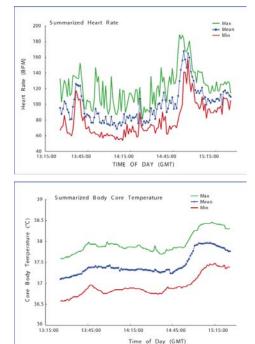
Confidence-based Data Management for Personal Area Sensor Nets


Nesime Tatbul, Stan Zdonik Brown University

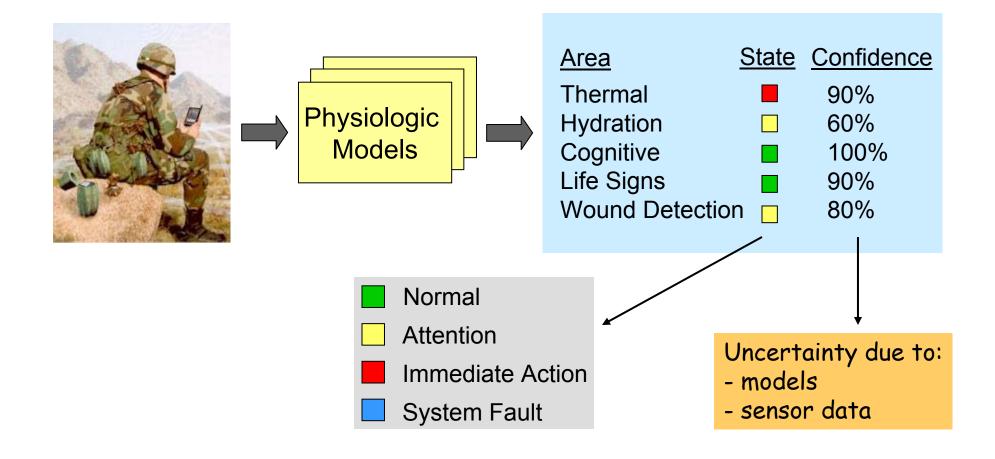

Mark Buller, Reed Hoyt, Steve Mullen USARIEM

Talk Outline

- Warfighter Physiologic Status Monitoring (WPSM)
- Confidence-based Data Management for WPSM
- Related Work
- Future Directions

Warfighter Physiologic Status Monitoring (WPSM)

Prevent casualties. Improve soldier's health. Manage resources.


Soldier's life is hard.

Watch status remotely.

WPSM: The Wearable Sensor System

WPSM: Determining Physiologic Status

WPSM: Estimating Thermal State

Physiologic models and sensors required:

Model	Skin Temp	HRate	Actigraphy	Geo-Loc	Resp Rate	Pill	# Sensors
TSkin	✓						1
Threshold	✓	✓					2
Model1			✓				1
Model2			✓	✓			2
Model3		\checkmark	\checkmark	✓	\checkmark		4
TCore						\checkmark	1

WPSM: Confidence in State Estimation

Confidence = F (Model, Latency, State, Environment)

Some models provide higher confidence.

Tskin	Threshold	Model1	Model2	Model3	TCore
50	70	80	90	95	100

Confidence decays due to latency (L) of a reading.

$$2^{-(\left\lceil L/15 \right\rceil - 1)}$$

Some states can be determined with higher certainty.

G	Y	R

50

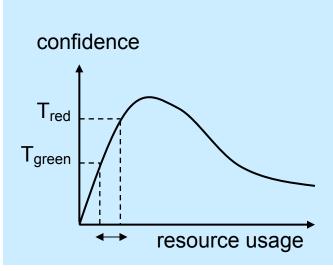
47.5

Env	Work	TSkin
cool	high	40
warm	high	20
hot	high	5

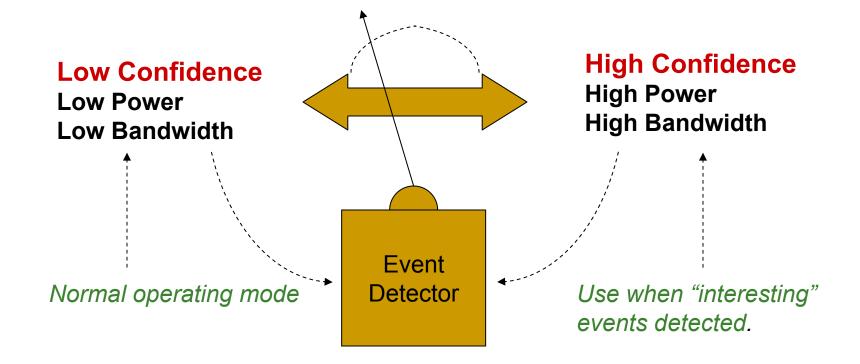
45

Environmental conditions affect confidence of a model.

WPSM: Confidence Requirements


 Higher confidence is required for more important events:

State	Threshold
Green	\geq 50
Yellow	≥ 7 0
Red	≥ 80


<u>Goal</u>: to deliver state estimations with sufficient confidence at all times.

The Confidence Paradox

- Higher confidence requires higher network traffic
 - use more sensors
 - sample more
- Higher network traffic may cause
 - shorter battery lifetime
 - collisions and drops
 - higher latency
 - .. and therefore, lower confidence

Confidence-based Data Management (CDM)

Only consume more resources when you need to increase confidence.

CDM: Exploiting Redundancy

- Sensors push at factory-set sampling rates
- Run models concurrently and pick the highest confidence estimation

Model	Avg. Confidence	% Drop
Model 1	64.92	0
Model 2	72.73	1.98
Model 3	77.75	5.79
All	79.22	5.71

 Responds to dynamic changes in confidence factors, but not resource-efficient

CDM: Adjusting Sampling Rates

- Sensors push at adjustable sampling rates
- Sensors sampled at different rates based on
 - Model sharing
 - Physiologic area importance
 - Latency decay functions
- Readjustment required when confidence factors change

CDM: Two-way Data Communication

- Sensors push at dynamically adjustable sampling rates
- Dynamic switch between estimation models
- Improved battery lifetime:

Model3	Model1 \rightarrow Model2 \rightarrow Model3
9 hours	14 hours

Related Work

- Query Processing in Sensor Networks
 - e.g., TinyDB, Cougar
- Quality- and Model-driven approaches
 - e.g., TiNA, QUASAR, BBQ
- Data Management for Personal Area Sensor Nets
 - e.g., T2, CodeBlue
- Wireless Sensor Networks
 - MAC protocols like S-MAC

Future Directions

- The big picture: remote triage beyond the warfighter
- Pushing model computation into the sensor network
- Confidence modeling for unreliable devices
- More robust statistical models (e.g., Bayesian Networks)
- Failure handling

More Information

- WPSM web page:
 - http://www.usariem.army.mil/wpsm/
- My e-mail:
 - tatbul@cs.brown.edu