
● Goals:
○ Maintain interactive latency (e.g. 60 fps) 

or keep user informed of system activity
○ Understand challenges and 

requirements posed by workload
● Constraints:

○ Cannot assume user access patterns in 
their data (e.g. arbitrary granularities / 
windows)

○ Data sources come from legacy/3rd 
party data systems

○ Users should not wait to see results
○ Cannot rely on client-side data 

management
● Approach:

○ UI-DB co-design: APIs that access 
system information

○ Architecture prioritizes user interaction 
over background tasks

Philipp Eichmann (Brown University); Franco Solleza (Brown University);
Junjay Tan (Brown University); Nesime Tatbul (Intel Labs and MIT); Stan Zdonik (Brown University)

Visual Exploration of Time Series Anomalies with Metro-Viz

Motivation and Core Principles

Architectural Overview

Implementation Details

● Anomalies are patterns that do not conform 
to expected behavior.

● Time Series Anomaly Detection is 
particularly challenging because:

○ Anomalies are domain and context 
specific

○ There is typically little or no available 
ground-truth

● This requires domain experts to explore and 
compare the results of black-box detectors so 
that they:

○ understand the characteristics of 
different detectors on their data and,

○ are able to better infer their behavior in 
hypothetical scenarios not present in 
the data

The Problem
● Metro-Viz helps domain experts visually 

analyze time series data and detector 
performance through four key features:

○ browsing and inspecting anomalies 
(regardless of the size of the data)

○ filter anomalies using key properties
○ probe detector behavior through 

counter-factuals
○ evaluate detectors using interactively built 

ground truth
● This presents a unique workload to a data 

management system:

Our Solution

Aggregate Explore

Detect Compare

Goals, Constraints,
and Approach

Metronome Project:
http://metronome.cs.brown.edu/

● Chunk time to discrete fixed sized chunks from 
Unix Epoch

● Windows are a collection of these chunks
● Query underlying data storage for chunks in time

1970-01-01 00:00 ... 2015-01-01 08:00 ...

Chunk granularity: 1h
Chunk size: 10

2015-02-03 13:00

Chunk id: 39,526
2015-02-03 04:00

select sum(value) from data
where 2015-02-03 04:00 <= time
and time < 2015-02-06 22:00
group by 1h

2015-02-06 21:00

80 hour window

Chunk id: 39,535
2015-02-06 22:00

Granularity: 1 hour
Aggregation: Sum
First Time Stamp: 2015-02-03 13:00
Number of observations: 80

39,526

Key-Value 
Store (B-Tree)

Chunks in
Secondary

Storage

Chunks in
Main-Memory

MRU LRU

● Prefetching data and detections in the 
background

● Synchronized with user behavior in the 
UI (e.g. scrub/jump in the Time Series)

● Store or cache materialized 
aggregates

D1: 10000111100000001111110101111
D2: 11000001111000000000111111000
D3: 00001100001111100011111110000

A Only: 11000011110000001100000001111
B Only: 00001000000111100000000000000
A and B: 00000100001000000000111110000

Consensus: 21001202212111101122332322111 

● Detect anomalies only on the windows of interest, 
background detections on other windows

● Detections are first-class data citizens: prefetch 
and store them as data, not metadata

● Detections stored as bit-vectors for efficient set and 
comparison operations

Take-Aways
● Interactive latency: Throughput matters 

less than latency. Response in the order of 
< 30ms required - any slower leads to poor 
interactive interface.

● Aggregation bottleneck: Time-series AD 
requires arbitrary granularity. Most 
databases assume granularities a-priori.

● Ratio of chunk-size and base 
granularity: determines how much data 
is touched and directly affects latency.

● Bit-vectors work well for the many 
operations involved in comparing 
anomaly detection results.

● Explore index and cache techniques to address 
aggregation bottleneck while considering 
chunk-size and granularity to maintain 
interactive latency at scale

● User study measuring the efficacy of Metro-Viz UI 
in assisting in the HiL workload 

Future Work

Window
Manager

DATSA / 
Legacy / 3rd 

Party DB

Metro-Viz Client

Interaction 
Manager

System
Monitor

Detector 
Manager

Detector 
Library

Detection 
Cache

Detection Module

Storage 
Manager

Window 
Prefetcher

Storage Module

Ground
Truth

Anomaly 
Manager

Anomaly
Statistics

TSAD 
Evaluator

Anomaly Module

A notifies B for an actionA B
A B A pushes data to B
A B A reads/writes to B

TSAD-Evaluator:
https://github.com/IntelLabs/TSAD-Evaluator

DATSA:
https://github.com/IntelLabs/DATSA

Detection 
Prefetcher

Anomaly 
Prefetcher

A queries B for dataA B


