Abstract

Class distribution skews in imbalanced datasets may lead to models with prediction bias towards majority classes. In this paper, we propose a simple and general-purpose evaluation framework for imbalanced data classification that is sensitive to arbitrary skews in class cardinalities and importances.

Key Design Principles

- **Simplicity:** It should be intuitive and easy to use and interpret.
- **Generality:** It should be general-purpose, i.e., (i) extensible to an arbitrary number of classes and (ii) customizable to any application domain.

Skew-Sensitive Evaluation Framework

Weighted Balanced Accuracy (WBA)

Suppose we are given a test dataset with N data items and C distinct classes: $N = \sum_{i=1}^{C} n_i$

Assume a classifier correctly predicts p_i out of n_i:

$$\text{Accuracy} = \frac{\sum_{i=1}^{C} p_i}{N}$$

Macro-average of Accuracy:

$$\text{Balanced Accuracy} = \frac{1}{C} \sum_{i=1}^{C} \text{Accuracy}_i$$

Generalize into *Weighted Balanced Accuracy* by extending it with per-class importance weights w_i:

$$\text{Weighted Balanced Accuracy} = \sum_{i=1}^{C} w_i \times \text{Accuracy}_i$$

Weight Customization

Importance criteria = User-defined

Importance criteria = Rarity

Multiple importance criteria

$$w_i = \frac{1}{f_i \times \sum_{j=1}^{C} \frac{1}{f_j}}$$

Partially-defined importance criteria: support the case when not all of the class weights are supplied by the user.

Model Training Improvement

Our framework can be easily extended to other metrics such as Precision, Recall, and F-Score.

Using $Loss_i$ to denote the total loss incurred by all samples within class i, with our proposed class weights w_i, the model training loss:

$$\mathcal{L} = \sum_{i=1}^{C} w_i \times Loss_i$$

Use Case 1: Learned Log Parsing

(a) macOS (skew = 8.454)

(b) BGL (skew = 8.900)

(c) Android (skew = 4.822)

(d) HDFS (skew = 0.202)

Use Case 3: URL Classification

<table>
<thead>
<tr>
<th>Category</th>
<th>#URLs</th>
<th>Rarity ω_i</th>
<th>User ω_i</th>
<th>Classification Accuracy</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>benign</td>
<td>16762</td>
<td>0.04</td>
<td>0.05</td>
<td>0.761</td>
<td>DBAC</td>
</tr>
<tr>
<td>NSFW</td>
<td>5276</td>
<td>0.14</td>
<td>0.05</td>
<td>0.965</td>
<td>DBAC</td>
</tr>
<tr>
<td>malware</td>
<td>1913</td>
<td>0.38</td>
<td>0.38</td>
<td>0.900</td>
<td>DBAC</td>
</tr>
<tr>
<td>phishing</td>
<td>1675</td>
<td>0.44</td>
<td>0.44</td>
<td>0.968</td>
<td>DBAC</td>
</tr>
</tbody>
</table>

Above: Evaluating and ranking the URL classification services

Right: Training and evaluating a URLNet model using WBA

Use Case 2: Sentiment Analysis

Table: Amazon per-class breakdown

<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
<th>Weights</th>
<th>LSTM</th>
<th>RNN</th>
<th>GRU</th>
<th>BILSTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.092</td>
<td>0.7</td>
<td>0.19</td>
<td>0.04</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>0.052</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.075</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.142</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>0.639</td>
<td>0.3</td>
<td>0.81</td>
<td>0.96</td>
<td>0.84</td>
<td>0.83</td>
</tr>
</tbody>
</table>

(a) WBA vs. Other Metrics (Train+Test)

(b) WBA: Test vs. Train+Test