Nonparametric Bayesian Methods: Models, Algorithms, and Applications

Tamara Broderick
ITT Career Development Assistant Professor
Electrical Engineering & Computer Science
MIT
Nonparametric Bayes
Nonparametric Bayes

- Bayesian methods that are not parametric
Nonparametric Bayes

- Bayesian methods that are not parametric (wait!)
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
Nonparametric Bayes

• Bayesian methods that are not parametric
• Bayesian

\[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
  \[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
  \[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

[Wikipedia](http://wikipedia.org)
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
  \[ \mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

“Wikipedia phenomenon”
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
  \[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

[wikipedia.org]
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
  \[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

[Ed Bowlby, NOAA]

[wikipedia.org]
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
  \[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

[Ed Bowlby, NOAA]

[wikipedia.org]

[Escobar, West 1995; Ghosal et al 1999]
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters}) P(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
  \[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters})P(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
  \[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters}) P(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

[Ed Bowlby, NOAA]

[Prabhakaran, Azizi, Carr, Pe’er 2016]

[[wikipedia.org][1]]

[Escobar, West 1995; Ghosal et al 1999]

[Fox et al 2014]

[Escobar, West 1995; Hartl, Clark 2003]
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters}) P(\text{parameters}) \]

- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

[Ed Bowlby, NOAA]
[Prabhakaran, Azizi, Carr, Pe’er 2016]
[Escobar, West 1995; Ghosal et al 1999]
[Saria et al 2010]
[Fox et al 2014]
[Ed Bowlby, NOAA]
[Prabhakaran, Azizi, Carr, Pe’er 2016]
[Escobar, West 1995; Ghosal et al 1999]
[Saria et al 2010]
[Fox et al 2014]
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters})P(\text{parameters}) \]

- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

[Wikipedia]

[Ed Bowlby, NOAA]

[Prabhakaran, Azizi, Carr, Pe’er 2016]

[Escobar, West 1995; Ghosal et al 1999]

[Saria et al 2010]

[Lloyd et al 2012; Miller et al 2010]

[FOX et al 2014]

[EWENS, 1972; HARTL, CLARK 2003]
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters}) P(\text{parameters}) \]

- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

[Wikipedia]

[Ed Bowlby, NOAA]

[Prabhakaran, Azizi, Carr, Pe’er 2016]

[Ewens 1972; Hartl, Clark 2003]

[Escobar, West 1995; Ghosal et al 1999]

[Saria et al 2010]

[Fox et al 2014]

[Lloyd et al 2012; Miller et al 2010]

[Sudderth, Jordan 2009]
Nonparametric Bayes

- A theoretical motivation: De Finetti’s Theorem
Nonparametric Bayes

• A theoretical motivation: De Finetti’s Theorem

• A data sequence is *infinitely exchangeable* if the distribution of any $N$ data points doesn’t change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
Nonparametric Bayes

- A theoretical motivation: De Finetti’s Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any $N$ data points doesn’t change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- *De Finetti’s Theorem* (roughly): A sequence $X_1, X_2, \ldots$ is infinitely exchangeable if and only if, for all $N$ and some distribution $P$:

[Hewitt, Savage 1955; Aldous 1983]
Nonparametric Bayes

- A theoretical motivation: De Finetti’s Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any $N$ data points doesn’t change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- *De Finetti’s Theorem* (roughly): A sequence $X_1, X_2, \ldots$ is infinitely exchangeable if and only if, for all $N$ and some distribution $P$:

$$p(X_1, \ldots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n|\theta) P(d\theta)$$

[Hewitt, Savage 1955; Aldous 1983]
Nonparametric Bayes

• A theoretical motivation: De Finetti’s Theorem

• A data sequence is *infinitely exchangeable* if the distribution of any $N$ data points doesn’t change when permuted:  
  \[ p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)}) \]

• De Finetti’s Theorem (roughly): A sequence $X_1, X_2, \ldots$ is infinitely exchangeable if and only if, for all $N$ and some distribution $P$:
  \[ p(X_1, \ldots, X_N) = \int \prod_{n=1}^{N} p(X_n|\theta) P(d\theta) \]

• Motivates:

[Hewitt, Savage 1955; Aldous 1983]
Nonparametric Bayes

• A theoretical motivation: De Finetti’s Theorem
• A data sequence is *infinitely exchangeable* if the distribution of any $N$ data points doesn’t change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
• *De Finetti’s Theorem* (roughly): A sequence $X_1, X_2, \ldots$ is infinitely exchangeable if and only if, for all $N$ and some distribution $P$:
  $$p(X_1, \ldots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n|\theta) P(d\theta)$$
• Motivates:
  • Parameters and likelihoods

[Hewitt, Savage 1955; Aldous 1983]
Nonparametric Bayes

- A theoretical motivation: De Finetti’s Theorem
- A data sequence is \textit{infinitely exchangeable} if the distribution of any \( N \) data points doesn’t change when permuted: \( p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)}) \)
- \textit{De Finetti’s Theorem} (roughly): A sequence \( X_1, X_2, \ldots \) is infinitely exchangeable if and only if, for all \( N \) and some distribution \( P \):
  \[
p(X_1, \ldots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n|\theta) P(d\theta)
\]
- Motivates:
  - Parameters and likelihoods
  - Priors

[Hewitt, Savage 1955; Aldous 1983]
Nonparametric Bayes

• A theoretical motivation: De Finetti’s Theorem
• A data sequence is *infinitely exchangeable* if the distribution of any $N$ data points doesn’t change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
• *De Finetti’s Theorem* (roughly): A sequence $X_1, X_2, \ldots$ is infinitely exchangeable if and only if, for all $N$ and some distribution $P$:
  $$p(X_1, \ldots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n | \theta) P(d\theta)$$
• Motivates:
  • Parameters and likelihoods
  • Priors
  • “Nonparametric Bayesian” priors

[Hewitt, Savage 1955; Aldous 1983]
Roadmap
Roadmap

- Example problem: clustering
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
Roadmap

• Example problem: clustering
• Example NBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes

- Big questions
  - Why NPBayes?
Roadmap

• Example problem: clustering
• Example NPBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes

• Big questions
  • Why NPBayes?
  • What does an infinite/growing number of parameters really mean (in NPBayes)?
Roadmap

• Example problem: clustering
• Example NPBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes

• Big questions
  • Why NPBayes?
  • What does an infinite/growing number of parameters really mean (in NPBayes)?
  • Why is NPBayes challenging but practical?
Generative model

- Don't know $\mu_1, \mu_2$
- Don't know $\mathcal{Z}$
- IID $\mathcal{Z}_n \sim \text{Categorical}(\mathcal{Z}_1, \mathcal{Z}_2)$
- IID $\mu_k \sim \mathcal{N}(\mu_0, \Sigma_0)$
- $\mathcal{Z}_1 \sim \text{Beta}(a_1, a_2)$
- $\mathcal{Z}_2 = 1 - \mathcal{Z}_1$

Inference goal: Assignments of data points to clusters, cluster parameters.
Generative model

- Finite Gaussian mixture model \((K=2\) clusters)
Generative model

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters}) P(\text{parameters}) \]

- Finite Gaussian mixture model \((K=2 \text{ clusters})\)
Generative model

\[ P(\text{parameters}\mid \text{data}) \propto P(\text{data}\mid \text{parameters})P(\text{parameters}) \]

- Finite Gaussian mixture model (\( K=2 \) clusters)
  
  \[ z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \]
Generative model

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters}) P(\text{parameters}) \]

- Finite Gaussian mixture model \((K=2\) clusters\)
  \[ z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \]
Generative model

\[ \mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters}) \mathbb{P}(\text{parameters}) \]

- Finite Gaussian mixture model (\(K=2\) clusters)

\[
\begin{align*}
  z_n & \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \\
  x_n & \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)
\end{align*}
\]
Generative model

$$P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters}) P(\text{parameters})$$

- Finite Gaussian mixture model ($K=2$ clusters)
  $$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
  $$x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$$

- Don't know $\mu_1, \mu_2$
Generative model

$$P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters})$$

- Finite Gaussian mixture model ($K=2$ clusters)
  \[ z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \]
  \[ x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma) \]
- Don’t know $\mu_1, \mu_2$
  \[ \mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]
Generative model

\[ \mathbb{P}(\text{parameters} | \text{data}) \propto \mathbb{P}(\text{data} | \text{parameters}) \mathbb{P}(\text{parameters}) \]

- Finite Gaussian mixture model \((K=2 \text{ clusters})\)
  \[ z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \]
  \[ x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma) \]
- Don’t know \(\mu_1, \mu_2\)
  \[ \mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]
- Don’t know \(\rho_1, \rho_2\)
Generative model

\[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]

- Finite Gaussian mixture model (\(K=2\) clusters)
  \[ z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \]
  \[ x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma) \]

- Don’t know \(\mu_1, \mu_2\)
  \[ \mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]

- Don’t know \(\rho_1, \rho_2\)
  \[ \rho_1 \overset{}{\sim} \text{Beta}(a_1, a_2) \]
  \[ \rho_2 = 1 - \rho_1 \]
Generative model

\[ \mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters}) \]

- Finite Gaussian mixture model \((K=2\) clusters\)
  \[
  z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \\
  x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)
  \]
- Don’t know \(\mu_1, \mu_2\)
  \[
  \mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)
  \]
- Don’t know \(\rho_1, \rho_2\)
  \[
  \rho_1 \sim \text{Beta}(a_1, a_2) \\
  \rho_2 = 1 - \rho_1
  \]
- Inference goal: assignments of data points to clusters, cluster parameters
Generative model

\[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]

- Finite Gaussian mixture model \((K=2\text{ clusters})\)
  \[
  z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \\
  x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)
  \]

- Don’t know \(\mu_1, \mu_2\)
  \[
  \mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)
  \]

- Don’t know \(\rho_1, \rho_2\)
  \[
  \rho_1 \sim \text{Beta}(a_1, a_2) \\
  \rho_2 = 1 - \rho_1
  \]

- Inference goal: assignments of data points to clusters, cluster parameters
Generative model

\[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]

- Finite Gaussian mixture model \((K=2 \text{ clusters})\)
  \[ z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \]
  \[ x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma) \]
- Don’t know \(\mu_1, \mu_2\)
  \[ \mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]
- Don’t know \(\rho_1, \rho_2\)
  \[ \rho_1 \sim \text{Beta}(a_1, a_2) \]
  \[ \rho_2 = 1 - \rho_1 \]
- Inference goal: assignments of data points to clusters, cluster parameters
Generative model

\[ P(\text{parameters} \mid \text{data}) \propto P(\text{data} \mid \text{parameters})P(\text{parameters}) \]

- Finite Gaussian mixture model \((K=2 \text{ clusters})\)
  \[ z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \]
  \[ x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma) \]
- Don’t know \(\mu_1, \mu_2\)
  \[ \mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]
- Don’t know \(\rho_1, \rho_2\)
  \[ \rho_1 \sim \text{Beta}(a_1, a_2) \]
  \[ \rho_2 = 1 - \rho_1 \]
- Inference goal: assignments of data points to clusters, cluster parameters
Generative model

\[ \mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters}) \]

- Finite Gaussian mixture model \((K=2\text{ clusters})\)
  \[ z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2) \]
  \[ x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma) \]

- Don’t know \(\mu_1, \mu_2\)
  \[ \mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]

- Don’t know \(\rho_1, \rho_2\)
  \[ \rho_1 \sim \text{Beta}(a_1, a_2) \]
  \[ \rho_2 = 1 - \rho_1 \]

- Inference goal: assignments of data points to clusters, cluster parameters
Beta distribution review

\[
\text{Beta}(\rho_1 | a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}
\]

\[
\rho_1 \in (0, 1) \\
a_1, a_2 > 0
\]
Beta distribution review

\[
\text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1} \\
\rho_1 \in (0, 1) \quad a_1, a_2 > 0
\]

- Gamma function $\Gamma$
Beta distribution review

\[
\text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1} (1 - \rho_1)^{a_2-1} \]

- Gamma function \( \Gamma \)
- integer \( m \): \( \Gamma(m + 1) = m! \)
Beta distribution review

\[ \text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1} \]

\( \rho_1 \in (0, 1) \)
\( a_1, a_2 > 0 \)

- Gamma function \( \Gamma \)
- integer \( m \): \( \Gamma(m + 1) = m! \)
- for \( x > 0 \): \( \Gamma(x + 1) = x\Gamma(x) \)
Beta distribution review

\[
\text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}
\]

\[
\rho_1 \in (0, 1) \quad a_1, a_2 > 0
\]

- Gamma function $\Gamma$
- integer $m$: $\Gamma(m + 1) = m!$
- for $x > 0$: $\Gamma(x + 1) = x\Gamma(x)$
- What happens?
Beta distribution review

\[ \text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1} \]

\[ \rho_1 \in (0, 1) \quad a_1, a_2 > 0 \]

- Gamma function \( \Gamma \)
- integer \( m \): \( \Gamma(m + 1) = m! \)
- for \( x > 0 \): \( \Gamma(x + 1) = x\Gamma(x) \)

- What happens?

\( \rho_1 \in (0, 1) \quad a_1, a_2 > 0 \)

\( \rho_1 \in (0, 1) \quad a_1, a_2 > 0 \)
Beta distribution review

\[ \text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1} \]

\[ \forall a_1, a_2 > 0 \]

\[ \rho_1 \in (0, 1) \]

- Gamma function \( \Gamma \)
- integer \( m \): \( \Gamma(m + 1) = m! \)
- for \( x > 0 \): \( \Gamma(x + 1) = x\Gamma(x) \)

- What happens?
  - \( a = a_1 = a_2 \to 0 \)
Beta distribution review

\[ \text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1} \]

\[ a_1, a_2 > 0 \]

- Gamma function \( \Gamma \)
- Integer \( m \): \( \Gamma(m + 1) = m! \)
- For \( x > 0 \): \( \Gamma(x + 1) = x\Gamma(x) \)
- What happens?
  - \( a = a_1 = a_2 \to 0 \)

\( \rho_1 \in (0, 1) \)
Beta distribution review

\[ \text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1} \]

\( \rho_1 \in (0, 1) \)
\( a_1, a_2 > 0 \)

- Gamma function \( \Gamma \)
- integer \( m \): \( \Gamma(m + 1) = m! \)
- for \( x > 0 \): \( \Gamma(x + 1) = x\Gamma(x) \)

- What happens?
  - \( a = a_1 = a_2 \to 0 \)
  - \( a = a_1 = a_2 \to \infty \)
Beta distribution review

\[ \text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1}(1 - \rho_1)^{a_2 - 1} \quad \rho_1 \in (0, 1) \]
\[ a_1, a_2 > 0 \]

- Gamma function \( \Gamma \)
- integer \( m \): \( \Gamma(m + 1) = m! \)
- for \( x > 0 \): \( \Gamma(x + 1) = x\Gamma(x) \)

What happens?
- \( a = a_1 = a_2 \to 0 \)
- \( a = a_1 = a_2 \to \infty \)
- \( a_1 > a_2 \)
Beta distribution review

\[
\text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}
\]

\(\rho_1 \in (0, 1)\)
\(a_1, a_2 > 0\)

- Gamma function \(\Gamma\)
- integer \(m\): \(\Gamma(m + 1) = m!\)
- for \(x > 0\): \(\Gamma(x + 1) = x\Gamma(x)\)

- What happens?
  - \(a = a_1 = a_2 \rightarrow 0\)
  - \(a = a_1 = a_2 \rightarrow \infty\)
  - \(a_1 > a_2\) [demo]

- Beta is conjugate to Cat
Beta distribution review

\[
\text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}
\]

- Gamma function \( \Gamma \):
- integer \( m \): \( \Gamma(m + 1) = m! \)
- for \( x > 0 \): \( \Gamma(x + 1) = x\Gamma(x) \)

---

- What happens?
  - \( a = a_1 = a_2 \to 0 \)
  - \( a = a_1 = a_2 \to \infty \)
  - \( a_1 > a_2 \) [demo]

- Beta is conjugate to Cat

\[
\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)
\]
Beta distribution review

\[
\text{Beta}(\rho_1 | a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1) \Gamma(a_2)} \rho_1^{a_1-1} (1 - \rho_1)^{a_2-1}
\]

\[
\rho_1 \in (0, 1) \quad a_1, a_2 > 0
\]

- Gamma function \( \Gamma \)
- integer \( m \): \( \Gamma(m + 1) = m! \)
- for \( x > 0 \): \( \Gamma(x + 1) = x\Gamma(x) \)

What happens?
- \( a = a_1 = a_2 \to 0 \)
- \( a = a_1 = a_2 \to \infty \)
- \( a_1 > a_2 \quad \text{[demo]} \)

- Beta is conjugate to Cat

\[
\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)
\]

\[ p(\rho_1, z) \propto \]
Beta distribution review

\[
\text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}
\]

\(\rho_1 \in (0, 1)\)

\(a_1, a_2 > 0\)

- Gamma function \(\Gamma\)
  - integer \(m\): \(\Gamma(m + 1) = m!\)
- for \(x > 0\): \(\Gamma(x + 1) = x\Gamma(x)\)

- What happens?
  - \(a = a_1 = a_2 \to 0\)
  - \(a = a_1 = a_2 \to \infty\)
  - \(a_1 > a_2\) [demo]

- Beta is conjugate to Cat
  \(\rho_1 \sim \text{Beta}(a_1, a_2), \ z \sim \text{Cat}(\rho_1, \rho_2)\)

\[
p(\rho_1, z) \propto \rho_1^{1\{z=1\}}(1 - \rho_1)^{1\{z=2\}}.
\]
Beta distribution review

\[
\text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}
\]

- Gamma function $\Gamma$
- integer $m$: $\Gamma(m + 1) = m!$
- for $x > 0$: $\Gamma(x + 1) = x\Gamma(x)$

What happens?
- $a = a_1 = a_2 \to 0$
- $a = a_1 = a_2 \to \infty$
- $a_1 > a_2$

Beta is conjugate to Cat

$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$

\[
p(\rho_1, z) \propto \rho_1^{1\{z=1\}}(1 - \rho_1)^{1\{z=2\}} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}
\]
Beta distribution review

$$\text{Beta}(\rho_1| a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1} (1 - \rho_1)^{a_2-1}$$

$$\rho_1 \in (0, 1) \quad a_1, a_2 > 0$$

- Gamma function $\Gamma$
- integer $m$: $\Gamma(m + 1) = m!$
- for $x > 0$: $\Gamma(x + 1) = x\Gamma(x)$
- What happens?
  - $a = a_1 = a_2 \to 0$
  - $a = a_1 = a_2 \to \infty$
  - $a_1 > a_2$

- Beta is conjugate to Cat

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1, z) \propto \rho_1^{1\{z=1\}}(1 - \rho_1)^{1\{z=2\}} \rho_1^{a_1-1} (1 - \rho_1)^{a_2-1}$$

$$p(\rho_1|z) \propto$$
Beta distribution review

$$\text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}$$

- Gamma function $\Gamma$
- integer $m$: $\Gamma(m + 1) = m!$
- for $x > 0$: $\Gamma(x + 1) = x\Gamma(x)$

- What happens?
  - $a = a_1 = a_2 \to 0$
  - $a = a_1 = a_2 \to \infty$
  - $a_1 > a_2$
  - Beta is conjugate to Cat

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1, z) \propto \rho_1^{1\{z=1\}}(1 - \rho_1)^{1\{z=2\}} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}$$

$$p(\rho_1|z) \propto \rho_1^{a_1+1\{z=1\}-1}(1 - \rho_1)^{a_2+1\{z=2\}-1}$$
Beta distribution review

\[
\text{Beta}(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1} \\
\rho_1 \in (0, 1) \quad a_1, a_2 > 0
\]

- Gamma function $\Gamma$
- integer $m$: $\Gamma(m + 1) = m!$
- for $x > 0$: $\Gamma(x + 1) = x\Gamma(x)$

- What happens?
  - $a = a_1 = a_2 \to 0$
  - $a = a_1 = a_2 \to \infty$
  - $a_1 > a_2$

- Beta is conjugate to Cat
  \[
  \rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)
  \]

\[
p(\rho_1, z) \propto \rho_1^{1\{z=1\}}(1 - \rho_1)^{1\{z=2\}} \rho_1^{a_1-1}(1 - \rho_1)^{a_2-1}
\]

\[
p(\rho_1|z) \propto \rho_1^{a_1+1\{z=1\}-1}(1 - \rho_1)^{a_2+1\{z=2\}-1} \propto \text{Beta}(\rho_1|a_1 + 1\{z = 1\}, a_2 + 1\{z = 2\})
\]
Generative model

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters})P(\text{parameters}) \]

- Finite Gaussian mixture model (\(K\) clusters)
Generative model

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters}) P(\text{parameters}) \]

- Finite Gaussian mixture model \((K \text{ clusters})\)
Generative model

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters})P(\text{parameters}) \]

- Finite Gaussian mixture model (\( K \) clusters)

\[ \rho_{1:K} \sim \text{Dirichlet}(a_{1:K}) \]
Generative model

\[ P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]

- Finite Gaussian mixture model (\( K \) clusters)

\[ \rho_1:K \sim \text{Dirichlet}(a_1:K) \]
\[ \mu_k \overset{iid}{\sim} N(\mu_0, \Sigma_0) \]
Generative model

\[
\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})
\]

- Finite Gaussian mixture model \((K\text{ clusters})\)

\[
\begin{align*}
\rho_{1:K} & \sim \text{Dirichlet}(a_{1:K}) \\
\mu_k & \sim \mathcal{N}(\mu_0, \Sigma_0) \\
z_n & \overset{iid}{\sim} \text{Categorical}(\rho_{1:K})
\end{align*}
\]
Generative model

\[ P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters}) \cdot P(\text{parameters}) \]

- Finite Gaussian mixture model \((K\text{ clusters})\)
  
  \[ \rho_1:K \sim \text{Dirichlet}(a_1:K) \]
  
  \[ \mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]
  
  \[ z_n \overset{iid}{\sim} \text{Categorical}(\rho_1:K) \]
  
  \[ x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma) \]
Dirichlet distribution review

$$\text{Dirichlet}(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1}$$

$$a_k > 0$$
Dirichlet distribution review

\[ \text{Dirichlet}(\rho_{1:K} \mid a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1} \]

\[ a_k > 0 \quad \rho_k \in (0, 1) \quad \sum_k \rho_k = 1 \]
Dirichlet distribution review

\[
\text{Dirichlet}(\rho_1:K | a_1:K) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1}
\]

- What happens?

\[
a_k > 0 \\
\rho_k \in (0, 1) \\
\sum_k \rho_k = 1
\]
Dirichlet distribution review

\[
\text{Dirichlet}(\rho_1:K|a_1:K) = \frac{\Gamma\left(\sum_{k=1}^{K} a_k\right)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1}
\]

- What happens?
- Dirichlet is conjugate to Categorical

\[a = (0.5, 0.5, 0.5)\]
\[a = (5, 5, 5)\]
\[a = (40, 10, 10)\]
Dirichlet distribution review

\[
\text{Dirichlet}(\rho_1:K \mid a_1:K) = \frac{\Gamma\left(\sum_{k=1}^{K} a_k\right)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1}
\]

\[a = (0.5, 0.5, 0.5)\]
\[a = (5, 5, 5)\]
\[a = (40, 10, 10)\]

- What happens? \[a = a_k = 1\]
Dirichlet distribution review

\[
\text{Dirichlet}(\rho_1:K | a_1:K) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1}
\]

- What happens?  
  \[a = a_k = 1\]

\[a = (0.5,0.5,0.5)\]
\[a = (5,5,5)\]
\[a = (40,10,10)\]

\[\rho_k \in (0,1)\]
\[\sum_k \rho_k = 1\]
Dirichlet distribution review

Dirichlet \( \rho_{1:K} | a_{1:K} \) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}

\( a = (0.5, 0.5, 0.5) \)
\( a = (5, 5, 5) \)
\( a = (40, 10, 10) \)

- What happens?
  \( a = a_k = 1 \)
  \( a = a_k \to 0 \)

\( a_k > 0 \)
\( \rho_k \in (0, 1) \)
\( \sum_k \rho_k = 1 \)
Dirichlet distribution review

\[
\text{Dirichlet}(\rho_{1:K} | a_{1:K}) = \frac{\Gamma\left(\sum_{k=1}^{K} a_k\right)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1}
\]

\[
a = (0.5,0.5,0.5) \quad a = (5,5,5) \quad a = (40,10,10)
\]

- What happens?  \( a = a_k = 1 \)  \( a = a_k \to 0 \)  \( a = a_k \to \infty \)

\( \rho_k \in (0,1) \quad \sum_k \rho_k = 1 \)
Dirichlet distribution review

\[
\text{Dirichlet}(\rho_1:K|a_1:K) = \frac{\Gamma\left(\sum_{k=1}^{K} a_k\right)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1}
\]

\[a = (0.5,0.5,0.5)\]
\[a = (5,5,5)\]
\[a = (40,10,10)\]

- What happens? \( a = a_k = 1 \) \( a = a_k \to 0 \) \( a = a_k \to \infty \)
- Dirichlet is conjugate to Categorical
Dirichlet distribution review

Dirichlet distribution

Dirichlet($\rho_{1:K} \mid a_{1:K}$) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}

\begin{align*}
a &= (0.5, 0.5, 0.5) \\
a &= (5, 5, 5) \\
a &= (40, 10, 10)
\end{align*}

- What happens? \( a = a_k = 1 \) \( a = a_k \to 0 \) \( a = a_k \to \infty \)
- Dirichlet is conjugate to Categorical
  \( \rho_{1:K} \sim \text{Dirichlet}(a_{1:K}) \), \( z \sim \text{Cat}(\rho_{1:K}) \)
Dirichlet distribution review

\[
\text{Dirichlet}(\rho_{1:K} | a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1}
\]

\[
a = (0.5, 0.5, 0.5) \quad a = (5, 5, 5) \quad a = (40, 10, 10)
\]

- What happens? \( a = a_k = 1 \) \( a = a_k \to 0 \) \( a = a_k \to \infty \)
- Dirichlet is conjugate to Categorical

\[
\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), \ z \sim \text{Cat}(\rho_{1:K})
\]

\[
\rho_{1:K} \mid z \overset{d}{=} \text{Dirichlet}(a'_{1:K}), \ a'_k = a_k + 1 \{z = k\}
\]
What if $K > N$?

- Components: number of latent groups
- Clusters: number of components represented in the data
- Number of clusters for $N$ data points is $K$ and random
- Number of clusters grows with $N$

$\rho_1$, $\rho_2$, $\rho_3$, $\rho_{1000}$
What if $K > N$?

- e.g. species sampling, topic modeling, groups on a social network, etc.

![Diagram with $\rho_1$, $\rho_2$, $\rho_3$, $\rho_{1000}$]
What if $K > N$?

- e.g. species sampling, topic modeling, groups on a social network, etc.

- Components: number of latent groups

- Clusters: number of components represented in the data

- Number of clusters for $N$ data points is $< K$ and random

- Number of clusters grows with $N$

What if $K > N$?
What if $K > N$?

- e.g. species sampling, topic modeling, groups on a social network, etc.

- Components: number of latent groups

- Clusters: number of components represented in the data
What if $K > N$?

- e.g. species sampling, topic modeling, groups on a social network, etc.

- Components: number of latent groups

- Clusters: number of components represented in the data

- [demo 1, demo 2]
What if $K > N$?

- e.g. species sampling, topic modeling, groups on a social network, etc.

- Components: number of latent groups

- Clusters: number of components represented in the data

- [demo 1, demo 2]

- Number of clusters for $N$ data points is $< K$ and random
What if $K > N$?

- e.g. species sampling, topic modeling, groups on a social network, etc.

- Components: number of latent groups

- Clusters: number of components represented in the data

- [demo 1, demo 2]

- Number of clusters for $N$ data points is $< K$ and random

- Number of clusters grows with $N$
• Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1)$$
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
- Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$\Leftrightarrow \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1)$
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2, \ldots, \rho_K)}{1-\rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)$$
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?

  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

\[
\iff \quad \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2, \ldots, \rho_K)}{1 - \rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)
\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

\[
\iff \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2, \ldots, \rho_K)}{1-\rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)
\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_1:K \sim \text{Dirichlet}(a_1:K)$

\[
\Rightarrow \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2, \ldots, \rho_K)}{1-\rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)
\]

- “Stick breaking”
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

\[
\Leftrightarrow \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{\rho_2, \ldots, \rho_K}{1 - \rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)
\]

- “Stick breaking”

\[
V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)
\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
- Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_1:K)$

\[ \Leftrightarrow \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \overset{d}{=} \frac{\rho_2, \ldots, \rho_K}{1 - \rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K) \]

- “Stick breaking”

\[ V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4) \]

\[ \rho_1 = V_1 \]
Choosing \( K = \infty \)

- Here, difficult to choose finite \( K \) in advance (contrast with small \( K \)): don’t know \( K \), difficult to infer, streaming data
- How to generate \( K = \infty \) strictly positive frequencies that sum to one?
  - Observation: \( \rho_{1:K} \sim \text{Dirichlet}(a_{1:K}) \)

\[
\Leftrightarrow \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2, \ldots, \rho_K)}{1-\rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)
\]

- “Stick breaking”

\[
\begin{align*}
V_1 & \sim \text{Beta}(a_1, a_2 + a_3 + a_4) & \rho_1 = V_1 \\
V_2 & \sim \text{Beta}(a_2, a_3 + a_4)
\end{align*}
\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_1:K \sim \text{Dirichlet}(a_1:K)$

$$\iff \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2, \ldots, \rho_K)}{1 - \rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)$$

- “Stick breaking”
  $$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4) \quad \rho_1 = V_1$$
  $$V_2 \sim \text{Beta}(a_2, a_3 + a_4) \quad \rho_2 = (1 - V_1)V_2$$
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

\[
\Leftrightarrow \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2, \ldots, \rho_K)}{1-\rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)
\]

- “Stick breaking”
  \[
  V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4) \quad \rho_1 = V_1
  \]
  \[
  V_2 \sim \text{Beta}(a_2, a_3 + a_4) \quad \rho_2 = (1 - V_1)V_2
  \]
  \[
  V_3 \sim \text{Beta}(a_3, a_4)
  \]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

\[ \Leftrightarrow \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2, \ldots, \rho_K)}{1-\rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K) \]

- “Stick breaking”

  \[ V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4) \quad \rho_1 = V_1 \]
  \[ V_2 \sim \text{Beta}(a_2, a_3 + a_4) \quad \rho_2 = (1 - V_1)V_2 \]
  \[ V_3 \sim \text{Beta}(a_3, a_4) \quad \rho_3 = (1 - V_1)(1 - V_2)V_3 \]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
  - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

\[\Leftrightarrow \rho_1 \overset{\text{d}}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2,\ldots,\rho_K)}{1-\rho_1} \overset{\text{d}}{=} \text{Dirichlet}(a_2, \ldots, a_K)\]

- “Stick breaking”
  
  \[V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4) \quad \rho_1 = V_1\]
  
  \[V_2 \sim \text{Beta}(a_2, a_3 + a_4) \quad \rho_2 = (1 - V_1)V_2\]
  
  \[V_3 \sim \text{Beta}(a_3, a_4) \quad \rho_3 = (1 - V_1)(1 - V_2)V_3\]

  \[\rho_4 = 1 - \sum_{k=1}^{3} \rho_k\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?

\[ V_1 \sim \text{Beta}(a_1, b_1) \]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

\[
V_1 \sim \text{Beta}(a_1, b_1) \quad \rho_1 = V_1
\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data.

- How to generate $K = \infty$ strictly positive frequencies that sum to one?

\[
V_1 \sim \text{Beta}(a_1, b_1) \quad \rho_1 = V_1 \\
V_2 \sim \text{Beta}(a_2, b_2)
\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

\[
V_1 \sim \text{Beta}(a_1, b_1) \quad \rho_1 = V_1 \\
V_2 \sim \text{Beta}(a_2, b_2) \quad \rho_2 = (1 - V_1)V_2
\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?

\[
\begin{align*}
V_1 & \sim \text{Beta}(a_1, b_1) & \rho_1 &= V_1 \\
V_2 & \sim \text{Beta}(a_2, b_2) & \rho_2 &= (1 - V_1)V_2
\end{align*}
\]
Choosing \( K = \infty \)

- Here, difficult to choose finite \( K \) in advance (contrast with small \( K \)): don’t know \( K \), difficult to infer, streaming data.
- How to generate \( K = \infty \) strictly positive frequencies that sum to one?

\[
V_1 \sim \text{Beta}(a_1, b_1) \quad \rho_1 = V_1 \\
V_2 \sim \text{Beta}(a_2, b_2) \quad \rho_2 = (1 - V_1)V_2
\]
Choosing $K = \infty$

• Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

• How to generate $K = \infty$ strictly positive frequencies that sum to one?

\[
\begin{align*}
V_1 &\sim \text{Beta}(a_1, b_1) \quad \rho_1 = V_1 \\
V_2 &\sim \text{Beta}(a_2, b_2) \quad \rho_2 = (1 - V_1)V_2 \\
&\vdots \\
V_k &\sim \text{Beta}(a_k, b_k)
\end{align*}
\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

\[
\begin{align*}
V_1 &\sim \text{Beta}(a_1, b_1) & \rho_1 &= V_1 \\
V_2 &\sim \text{Beta}(a_2, b_2) & \rho_2 &= (1 - V_1)V_2 \\
&\vdots & & \\
V_k &\sim \text{Beta}(a_k, b_k) & \rho_k &= \left[ \prod_{j=1}^{k-1} (1 - V_j) \right] V_k
\end{align*}
\]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

\[ V_1 \sim \text{Beta}(a_1, b_1) \quad \rho_1 = V_1 \]
\[ V_2 \sim \text{Beta}(a_2, b_2) \quad \rho_2 = (1 - V_1)V_2 \]
\[ \vdots \]
\[ V_k \sim \text{Beta}(a_k, b_k) \quad \rho_k = \left[ \prod_{j=1}^{k-1} (1 - V_j) \right] V_k \]

[Ishwaran, James 2001]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?

  - **Dirichlet process stick-breaking:** $a_k = 1, b_k = \alpha > 0$

\[
\begin{align*}
V_1 & \sim \text{Beta}(a_1, b_1) \quad \rho_1 = V_1 \\
V_2 & \sim \text{Beta}(a_2, b_2) \quad \rho_2 = (1 - V_1)V_2 \\
& \vdots \\
V_k & \sim \text{Beta}(a_k, b_k) \quad \rho_k = \left[ \prod_{j=1}^{k-1} (1 - V_j) \right] V_k
\end{align*}
\]

[Ishwaran, James 2001]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- **Dirichlet process stick-breaking**: $a_k = 1, b_k = \alpha > 0$

- Griffiths-Engen-McCloskey (GEM) distribution:

  \[
  \rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)
  \]

  \[
  V_1 \sim \text{Beta}(a_1, b_1) \quad \rho_1 = V_1
  \]

  \[
  V_2 \sim \text{Beta}(a_2, b_2) \quad \rho_2 = (1 - V_1)V_2
  \]

  \[
  \vdots
  \]

  \[
  V_k \sim \text{Beta}(a_k, b_k) \quad \rho_k = \left[\prod_{j=1}^{k-1} (1 - V_j)\right] V_k
  \]
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?

  - **Dirichlet process stick-breaking**: $a_k = 1, b_k = \alpha > 0$

  - Griffiths-Engen-McCloskey (GEM) distribution:
    \[
    \rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)
    \]

  \[
  V_k \overset{iid}{\sim} \text{Beta}(1, \alpha) \quad \rho_k = \left[ \prod_{j=1}^{k-1} (1 - V_j) \right] V_k
  \]

  ...
Choosing $K = \infty$

- Here, difficult to choose finite $K$ in advance (contrast with small $K$): don’t know $K$, difficult to infer, streaming data

- How to generate $K = \infty$ strictly positive frequencies that sum to one?

  - **Dirichlet process stick-breaking:** $a_k = 1, b_k = \alpha > 0$

  - Griffiths-Engen-McCloskey (**GEM**) distribution:
    
    $$
    \rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)
    $$

    $$
    V_k \overset{iid}{\sim} \text{Beta}(1, \alpha) \quad \rho_k = \left[ \prod_{j=1}^{k-1} (1 - V_j) \right] V_k
    $$

    [demo]

[McCloskey 1965; Engen 1975; Patil and Taillie 1977; Ewens 1987; Sethuraman 1994; Ishwaran, James 2001]
Distributions
Distributions

• Beta → random distribution over 1, 2
Distributions

• Beta → random distribution over 1, 2

• Dirichlet → random distribution over 1, 2, ..., $K$
Distributions

- Beta $\rightarrow$ random distribution over $1, 2$

- Dirichlet $\rightarrow$ random distribution over $1, 2, \ldots, K$

- GEM / Dirichlet process stick-breaking $\rightarrow$ random distribution over $1, 2, \ldots$
Distributions

- Beta $\rightarrow$ random distribution over $1, 2$

- Dirichlet $\rightarrow$ random distribution over $1, 2, \ldots, K$

- GEM / Dirichlet process stick-breaking $\rightarrow$ random distribution over $1, 2, \ldots$

- Infinity of parameters: components
- Growing number of parameters: clusters
Roadmap

• Example problem: clustering
• Example NPBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes

• Big questions
  • Why NPBayes?
  • What does an infinite/growing number of parameters really mean (in NPBayes)?
  • Why is NPBayes challenging but practical?
Roadmap

• Example problem: clustering
• Example NPBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes

• Big questions
  • Why NPBayes?
  • What does an infinite/growing number of parameters really mean (in NPBayes)?
  • Why is NPBayes challenging but practical?
Roadmap

• Example problem: clustering
• Example NPBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes

• Big questions
  • Why NPBayes?
  • What does an infinite/growing number of parameters really mean (in NPBayes)?
  • Why is NPBayes challenging but practical?
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes

- Big questions
  - Why NPBayes? Learn more as acquire more data
  - What does an infinite/growing number of parameters really mean (in NPBayes)?
  - Why is NPBayes challenging but practical?
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes

Big questions
- Why NPBayes? Learn more as acquire more data
- What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs. clusters; latent vs. realized
- Why is NPBayes challenging but practical?
Roadmap

• Example problem: clustering
• Example NPBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes

• Big questions
  • Why NPBayes? Learn more as acquire more data
  • What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs. clusters; latent vs. realized
  • Why is NPBayes challenging but practical? Infinite dimensional parameter; more on this next session!
Exercises
Exercises

[slides, code: www.tamarabroderick.com/tutorials.html]
Exercises [slides, code: www.tamarabroderick.com/tutorials.html]

• Prove the beta (Dirichlet) is conjugate to the categorical
Exercises

- Prove the beta (Dirichlet) is conjugate to the categorical
- What is the posterior after $N$ data points?

[slides, code: www.tamarabroderick.com/tutorials.html]
Exercises [slides, code: www.tamarabroderick.com/tutorials.html]

• Prove the beta (Dirichlet) is conjugate to the categorical
• What is the posterior after $N$ data points?
• Code your own GEM simulator for $\rho$; why is this hard?
Exercises

• Prove the beta (Dirichlet) is conjugate to the categorical
• What is the posterior after $N$ data points?
• Code your own GEM simulator for $\rho$; why is this hard?
• Simulate drawing cluster indicators ($z$) from your $\rho$
Exercises

• Prove the beta (Dirichlet) is conjugate to the categorical
• What is the posterior after $N$ data points?
• Code your own GEM simulator for $\rho$; why is this hard?
• Simulate drawing cluster indicators ($z$) from your $\rho$

• Compare the number of clusters as $N$ changes in the GEM with the growth for $K=1000$

[slides, code: www.tamarabroderick.com/tutorials.html]
Exercises

• Prove the beta (Dirichlet) is conjugate to the categorical
• What is the posterior after $N$ data points?
• Code your own GEM simulator for $\rho$; why is this hard?
• Simulate drawing cluster indicators ($z$) from your $\rho$

• Compare the number of clusters as $N$ changes in the GEM with the growth for $K=1000$

• How does the growth in $N$ change when you change $\alpha$?
Exercises

- Prove the beta (Dirichlet) is conjugate to the categorical
- What is the posterior after $N$ data points?
- Code your own GEM simulator for $\rho$; why is this hard?
- Simulate drawing cluster indicators ($z$) from your $\rho$
  
  ![Graph showing the number of clusters varying with $N$ changing for $K=1000$]

- Compare the number of clusters as $N$ changes in the GEM with the growth for $K=1000$
- How does the growth in $N$ change when you change $\alpha$?
- How does the distribution of # clusters at $N$ change with $\alpha$?

[slides, code: www.tamarabroderick.com/tutorials.html]
Exercises

- Prove the beta (Dirichlet) is conjugate to the categorical
- What is the posterior after \( N \) data points?
- Code your own GEM simulator for \( \rho \); why is this hard?
- Simulate drawing cluster indicators \((z)\) from your \( \rho \)
- Compare the number of clusters as \( N \) changes in the GEM with the growth for \( K=1000 \)
- How does the growth in \( N \) change when you change \( \alpha \)?
- How does the distribution of # clusters at \( N \) change with \( \alpha \)?
- Suppose \( \rho_1:K \sim \text{Dirichlet}(a_1:K) \); prove equivalence to
  \[
  \rho_1 \overset{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \parallel \frac{(\rho_2, \ldots, \rho_K)}{1-\rho_1} \overset{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)
  \]

[slides, code: www.tamarabroderick.com/tutorials.html]
Exercises

- Prove the beta (Dirichlet) is conjugate to the categorical
- What is the posterior after $N$ data points?
- Code your own GEM simulator for $\rho$; why is this hard?
- Simulate drawing cluster indicators ($z$) from your $\rho$

- Compare the number of clusters as $N$ changes in the GEM with the growth for $K=1000$

- How does the growth in $N$ change when you change $\alpha$?
- How does the distribution of # clusters at $N$ change with $\alpha$?
- Suppose $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$; prove equivalence to

$$
\rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^{K} a_k - a_1) \perp \frac{(\rho_2, \ldots, \rho_K)}{1-\rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \ldots, a_K)
$$

- For which stick-breaking ($a_k, b_k$) can you prove $\sum_{k=1}^{\infty} \rho_k = 1$?

[slides, code: www.tamarabroderick.com/tutorials.html]
References

A full reference list is provided at the end of the “Part III” slides.