Nonparametric Bayesian Methods: Models, Algorithms, and Applications (Part III)

Tamara Broderick
ITT Career Development Assistant Professor
Electrical Engineering & Computer Science
MIT
Marginal cluster assignments
Marginal cluster assignments

• Pólya urn
Marginal cluster assignments

- Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color
Marginal cluster assignments

- Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

$\text{PolyaUrn}(a_{\text{orange}}, a_{\text{green}})$
Marginal cluster assignments

- Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

\[
\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \overset{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})
\]
Marginal cluster assignments

• Hoppe urn / Blackwell-MacQueen urn
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn

[Blackwell, MacQueen 1973; Hoppe 1984]
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass

[Blackwell, MacQueen 1973; Hoppe 1984]
Marginal cluster assignments

• Hoppe urn / Blackwell-MacQueen urn
 • Choose ball with prob proportional to its mass
 • If black, replace and add ball of new color

[Blackwell, MacQueen 1973; Hoppe 1984]
Marginal cluster assignments

• Hoppe urn / Blackwell-MacQueen urn
 • Choose ball with prob proportional to its mass
 • If black, replace and add ball of new color
 • Else, replace and add ball of same color

[Blackwell, MacQueen 1973; Hoppe 1984]
Marginal cluster assignments

• Hoppe urn / Blackwell-MacQueen urn
 • Choose ball with prob proportional to its mass
 • If black, replace and add ball of new color
 • Else, replace and add ball of same color

Step 0

[Blackwell, MacQueen 1973; Hoppe 1984]
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

[Blackwell, MacQueen 1973; Hoppe 1984]
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Step 0
Step 1
Step 2

[Blackwell, MacQueen 1973; Hoppe 1984]
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

[Blackwell, MacQueen 1973; Hoppe 1984]
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn

 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

[Step 0]
[Step 1]
[Step 2]
[Step 3]
[Step 4]

[Blackwell, MacQueen 1973; Hoppe 1984]
Marginal cluster assignments

• Hoppe urn / Blackwell-MacQueen urn
• Choose ball with prob proportional to its mass
• If black, replace and add ball of new color
• Else, replace and add ball of same color

\[
(\#\text{orange}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)
\]
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

\[
\begin{align*}
\text{Step 0} & & \text{Step 1} & & \text{Step 2} & & \text{Step 3} & & \text{Step 4} \\
\bullet & & \bullet & & \bullet & & \bullet & & \bullet \\
\end{align*}
\]

\[(\#\text{orange}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)\]
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

\[
\begin{align*}
\text{(} & \#\text{orange, } \#\text{other}) = \text{PolyaUrn}(1, \alpha) \\
\text{not orange: } (& \#\text{green, } \#\text{other}) = \text{PolyaUrn}(1, \alpha)
\end{align*}
\]
Marginal cluster assignments

• Hoppe urn / Blackwell-MacQueen urn
 • Choose ball with prob proportional to its mass
 • If black, replace and add ball of new color
 • Else, replace and add ball of same color

\[(\#\text{orange}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)\]

• not orange: \((\#\text{green}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)\)
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Step 0

Step 1

Step 2

Step 3

Step 4

(#orange, #other) = PolyaUrn(1, \alpha)
- not orange: (#green, #other) = PolyaUrn(1, \alpha)
- not orange, green: (#red, #other) = PolyaUrn(1, \alpha)
Marginal cluster assignments

• Hoppe urn / Blackwell-MacQueen urn

• Choose ball with prob proportional to its mass
• If black, replace and add ball of new color
• Else, replace and add ball of same color

Step 0
Step 1
Step 2
Step 3
Step 4

(#orange, #other) = PolyaUrn(1, \alpha)

• not orange: (#green, #other) = PolyaUrn(1, \alpha)
• not orange, green: (#red, #other) = PolyaUrn(1, \alpha)
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

\[
\begin{align*}
\text{Step 0} & \quad \text{Step 1} & \quad \text{Step 2} & \quad \text{Step 3} & \quad \text{Step 4} \\
\black & \quad \bullet & \quad \bullet \bullet & \quad \bullet \bullet \bullet & \quad \bullet \bullet \bullet \\
\end{align*}
\]

\[
V_k \overset{iid}{\sim} \text{Beta}(1, \alpha)
\]

\[
(\#\text{orange}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)
\]

- not orange: \((\#\text{green}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)\)
- not orange, green: \((\#\text{red}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)\)
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Step 0	Step 1	Step 2	Step 3	Step 4
• | • | • | • | •

$V_k \overset{iid}{\sim} \text{Beta}(1, \alpha)$

$\rho_1 = V_1$

$(\#\text{orange}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)$
- not orange: $(\#\text{green}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)$
- not orange, green: $(\#\text{red}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)$
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

\[
\begin{align*}
(V_k)_{iid} & \sim \text{Beta}(1, \alpha) \\
\rho_1 &= V_1 \\
\rho_2 &= (1 - V_1)V_2
\end{align*}
\]

\((\#\text{orange}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)\)
- not orange: \((\#\text{green}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)\)
- not orange, green: \((\#\text{red}, \#\text{other}) = \text{PolyaUrn}(1, \alpha)\)
Marginal cluster assignments

- Hoppe urn / Blackwell-MacQueen urn
 - Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Step 0

Step 1

Step 2

Step 3

Step 4

\(V_k \overset{iid}{\sim} \text{Beta}(1, \alpha) \)

\(\rho_1 = V_1 \)

\(\rho_2 = (1 - V_1)V_2 \)

\(\rho_3 = \prod_{k=1}^{2} (1 - V_k) V_3 \)

(#orange, #other) = PolyaUrn(1, \alpha)

- not orange: (#green, #other) = PolyaUrn(1, \alpha)

- not orange, green: (#red, #other) = PolyaUrn(1, \alpha)
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
- Sits at existing table with probability proportional to the number of people there
- Forms a new table with probability proportional to α
- Marginal for the Categorical likelihood with GEM prior

\[\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\} \]

$\mathcal{Z} = \{1, \ldots, 8\}$

\[\uparrow \]

\[\{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\} \]
Chinese restaurant process

- Same thing we just did
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
Chinese restaurant process

• Same thing we just did
• Each customer walks into the restaurant
 • Sits at existing table with prob proportional to # people there
Chinese restaurant process

• Same thing we just did
• Each customer walks into the restaurant
 • Sits at existing table with prob proportional to # people there
 • Forms new table with prob proportional to α
Chinese restaurant process

1. Same thing we just did
2. Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
Chinese restaurant process

1. Same thing we just did
2. Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

\[\phi_1\]

\[\mathbb{P}(\mathcal{Z}) = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}\]
Chinese restaurant process

1

\[\phi_1 \]

• Same thing we just did
• Each customer walks into the restaurant
 • Sits at existing table with prob proportional to # people there
 • Forms new table with prob proportional to \(\alpha \)
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to \(\alpha \)
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

\[\phi_1 \]

1

Partition of 8: set of mutually exclusive & exhaustive sets

\[\uparrow 8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\} \]

\[[8] = \{1, \ldots, 8\} \]
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

\[\phi_1, \phi_2, \phi_3, \phi_4\]
Chinese restaurant process

• Same thing we just did
• Each customer walks into the restaurant
 • Sits at existing table with prob proportional to # people there
 • Forms new table with prob proportional to α
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to \# people there
 - Forms new table with prob proportional to α
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
Chinese restaurant process

• Same thing we just did
• Each customer walks into the restaurant
 • Sits at existing table with prob proportional to # people there
 • Forms new table with prob proportional to α
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to \# people there
 - Forms new table with prob proportional to α
Chinese restaurant process

• Same thing we just did
• Each customer walks into the restaurant
 • Sits at existing table with prob proportional to # people there
 • Forms new table with prob proportional to α
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

\[[8] = \{\{1,2,7,8\}, \{3,5,6\}, \{4\}\} \]

\[[\phi_1, \phi_2, \phi_3] = [1,2,7,8] \]

[Aldous 1983]
Chinese restaurant process

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior
Chinese restaurant process

• Same thing we just did
• Each customer walks into the restaurant
 • Sits at existing table with prob proportional to # people there
 • Forms new table with prob proportional to α
• Marginal for the Categorical likelihood with GEM prior

So far: Dirichlet process, Chinese restaurant process
• Infinity of parameters, growing number of parameters
Roadmap

• Example problem: clustering
• Example NPBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes

• Big questions
 • Why NPBayes?
 • What does an infinite/growing number of parameters really mean (in NPBayes)?
 • Why is NPBayes challenging but practical?
Roadmap

• Example problem: clustering
• Example NPBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes

• Big questions
 • Why NPBayes?
 • What does an infinite/growing number of parameters really mean (in NPBayes)?
 • Why is NPBayes challenging but practical?
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes

- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes

- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes

Big questions
- Why NPBayes? Learn more as acquire more data
- What does an infinite/growing number of parameters really mean (in NPBayes)?
- Why is NPBayes challenging but practical?
Roadmap

• Example problem: clustering
• Example NPBayes model: Dirichlet process
• Chinese restaurant process
• Inference
• Venture further into the wild world of Nonparametric Bayes

• Big questions
 • Why NPBayes? Learn more as acquire more data
 • What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs. clusters; latent vs. realized
 • Why is NPBayes challenging but practical?
Roadmap

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes

Big questions
- Why NPBayes? Learn more as acquire more data
- What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs. clusters; latent vs. realized
- Why is NPBayes challenging but practical? Infinite dimensional parameter, but finitely many parameters realized
Each customer walks into the restaurant
• Sits at existing table with prob proportional to \# people there
• Forms new table with prob proportional to \(\alpha \)
• Marginal for the Categorical likelihood with GEM prior
Chinese restaurant process

- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior

 $z_1 = z_2 = z_7 = z_8 = 1, z_3 = z_5 = z_6 = 2, z_4 = 3$
• Each customer walks into the restaurant
 • Sits at existing table with prob proportional to # people there
 • Forms new table with prob proportional to α
• Marginal for the Categorical likelihood with GEM prior
 $z_1 = z_2 = z_7 = z_8 = 1, z_3 = z_5 = z_6 = 2, z_4 = 3$
 $\Rightarrow \Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}$
Chinese restaurant process

- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Marginal for the Categorical likelihood with GEM prior

$$\begin{align*}
z_1 = z_2 = z_7 = z_8 = 1, z_3 = z_5 = z_6 = 2, z_4 = 3 \\
\Rightarrow \Pi_8 &= \left\{ \{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\} \right\}
\end{align*}$$

- *Partition of [8]:* set of mutually exclusive & exhaustive sets of [8] := $\{1, \ldots, 8\}$
Chinese restaurant process

- Probability of this seating:
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{k_n}\]

\begin{align*}
\phi_1 & \quad 7 & \quad \phi_2 & \quad 6 & \quad \phi_3 & \quad 4 \\
1 & \quad 7 & \quad 2 & \quad 6 & \quad 3 & \quad 4 \\
2 & \quad 5 \\
8 & \quad 5 & \quad 8 & \quad 8 & \quad 8 & \quad 8 \\
\end{align*}
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1}
 \]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2}
 \]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3}
 \]
Chinese restaurant process

• Probability of this seating:
\[
\frac{1}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4}
\]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha + 1} \cdot \frac{1}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5}
 \]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6}
 \]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]
• Probability of this seating:
 \[\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7} \]

• Probability of \(N \) customers (\(K_N \) tables, \(n_k \) at table \(k \)):
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

- Probability of \(N \) customers (\(K_N \) tables, \(n_k \) at table \(k \)):
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

- Probability of \(N \) customers (\(K_N \) tables, \(n_k \) at table \(k \)):
 \[
 \frac{1}{\alpha \cdots (\alpha + N - 1)}
 \]
• Probability of this seating:
\[
\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
\]

• Probability of \(N\) customers (\(K\) tables, \(n_k\) at table \(k\)):
\[
\frac{\alpha^{K_N}}{\alpha \cdots (\alpha + N - 1)}
\]
Chinese restaurant process

- Probability of this seating:
 \[\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7} \]

- Probability of \(N \) customers (\(K_N \) tables, \(n_k \) at table \(k \)):
 \[\frac{\alpha^{K_N}}{\alpha \cdots (\alpha + N - 1)} \]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

- Probability of \(N \) customers (\(K_N \) tables, \(n_k \) at table \(k \)):
 \[
 \frac{\alpha^{K_N}}{\alpha \cdots (\alpha + N - 1)}
 \]
• Probability of this seating:
\[
\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{3}{\alpha + 6} \cdot \frac{\alpha + 7}{\alpha + 8}
\]

• Probability of \(N\) customers (\(K_N\) tables, \(n_k\) at table \(k\)):
\[
\frac{\alpha^{K_N}}{\alpha \cdot \cdots (\alpha + N - 1)}
\]
• Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

• Probability of \(N \) customers (\(K_N \) tables, \(n_k \) at table \(k \)):
 \[
 \frac{\alpha^{K_N}}{\alpha \cdots (\alpha + N - 1)}
 \]
Chinese restaurant process

• Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

• Probability of \(N \) customers (\(K_N \) tables, \(n_k \) at table \(k \)):
 \[
 \alpha^{KN} \prod_{k=1}^{KN} (n_k - 1)! \cdot \frac{\alpha \cdot \cdots \cdot (\alpha + N - 1)}{\alpha \cdot \cdots} \]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

- Probability of \(N\) customers (\(K_N\) tables, \#\(C\) at table \(C\)):
 \[
 \alpha^{K_N} \prod_{C \in \Pi_N} (#C - 1)! / (\alpha \cdots (\alpha + N - 1))
 \]
Chinese restaurant process

• Probability of this seating:
\[
\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
\]

• Probability of N customers (K_N tables, $\#C$ at table C):
\[
\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)
\]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

- Probability of \(N \) customers (\(K_N \) tables, \(#C \) at table \(C \)):
 \[
 \frac{\alpha^{K_N} \prod_{C \in \Pi_N} (#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)
 \]

- Prob doesn’t depend on customer order: exchangeable
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

- Probability of \(N \) customers (\(K_N \) tables, \(#C \) at table \(C \)):
 \[
 \frac{\alpha^{K_N} \prod_{C \in \Pi_N} (#C - 1)!}{\alpha \cdot \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)
 \]

- Prob doesn’t depend on customer order: exchangeable
 \[
 \mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})
 \]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

- Probability of \(N\) customers (\(K_N\) tables, \(#C\) at table \(C\)):
 \[
 \frac{\alpha^{K_N} \prod_{C \in \Pi_N} (#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)
 \]

- Prob doesn’t depend on customer order: exchangeable
 \[
 \mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})
 \]

- Can always pretend \(n\) is the last customer and calculate
 \[
p(\Pi_N | \Pi_{N,-n})
 \]
Chinese restaurant process

- Probability of this seating:
 \[
 \frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5} \cdot \frac{2}{\alpha + 6} \cdot \frac{3}{\alpha + 7}
 \]

- Probability of \(N \) customers (\(K_N \) tables, \#C at table \(C \)):
 \[
 \frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdot \ldots \cdot (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)
 \]

- Prob doesn’t depend on customer order: exchangeable
 \[
 \mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})
 \]

- Can always pretend \(n \) is the last customer and calculate
 \[
 p(\Pi_N | \Pi_{N,-n})
 \]
 - e.g. \(\Pi_{8,-5} = \{\{1, 2, 7, 8\}, \{3, 6\}, \{4\}\} \)
Chinese restaurant process

- Probability of N customers (K_N tables, $\#C$ at table C):
 \[
 \frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdot \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)
 \]
- So:
 \[
p(\Pi_N | \Pi_{N,-n}) = \]

\[
\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)! \quad \alpha \cdot \cdots (\alpha + N - 1)
\]
Chinese restaurant process

- Probability of N customers (K_N tables, $\#C$ at table C):
 \[
 \alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)! \quad \frac{\alpha \cdots (\alpha + N - 1)}{\alpha^{K_N}} = \mathbb{P}(\Pi_N = \pi_N)
 \]

- So:
 \[
 p(\Pi_N | \Pi_{N,-n}) = \left\{ \right\}
 \]
Chinese restaurant process

- Probability of N customers (K_N tables, $\#C$ at table C):
 $$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- So:
 $$p(\Pi_N | \Pi_N, -n) = \begin{cases}
 \text{if } n \text{ joins cluster } C \\
 \text{if } n \text{ starts a new cluster}
 \end{cases}$$
Chinese restaurant process

- Probability of N customers (K_N tables, $\#C$ at table C):
 \[
 \alpha^{K_N} \frac{\prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)
 \]

- So:
 \[
 p(\Pi_N | \Pi_{N,-n}) = \begin{cases}
 \frac{\#C}{\alpha + N - 1} & \text{if } n \text{ joins cluster } C \\
 \alpha^{K_{N-1}} \frac{\prod_{C \in \Pi_{N-1}} (\#C - 1)!}{\alpha \cdots (\alpha + N - 2)} & \text{if } n \text{ starts a new cluster}
 \end{cases}
 \]
Chinese restaurant process

- Probability of N customers (K_N tables, $\#C$ at table C):
 \[
 \alpha^K_N \prod_{C \in \Pi_N} (\#C - 1)! \left/ \alpha \cdots (\alpha + N - 1) \right. = \mathbb{P}(\Pi_N = \pi_N)
 \]
- So:
 \[
 p(\Pi_N | \Pi_N, -n) = \begin{cases}
 \frac{\#C}{\alpha + N - 1} & \text{if } n \text{ joins cluster } C \\
 \frac{\alpha}{\alpha + N - 1} & \text{if } n \text{ starts a new cluster}
 \end{cases}
 \]
Chinese restaurant process

- Probability of N customers (K_N tables, $\#C$ at table C):

$$\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)! \over \alpha \cdot \cdots (\alpha + N - 1) = \mathbb{P}(\Pi_N = \pi_N)$$

- So:

$$p(\Pi_N | \Pi_{N,-n}) = \begin{cases} \frac{\#C}{\alpha + N - 1} & \text{if } n \text{ joins cluster } C \\ \frac{\alpha}{\alpha + N - 1} & \text{if } n \text{ starts a new cluster} \end{cases}$$

- Gibbs sampling review:
Chinese restaurant process

- Probability of N customers (K_N tables, $\#C$ at table C):
 \[
 \frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)
 \]

- So:
 \[
 p(\Pi_N | \Pi_{N,-n}) = \begin{cases}
 \frac{\#C}{\alpha + N - 1} & \text{if } n \text{ joins cluster } C \\
 \frac{\alpha}{\alpha + N - 1} & \text{if } n \text{ starts a new cluster}
 \end{cases}
 \]

- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
Chinese restaurant process

- Probability of N customers (K_N tables, $\#C$ at table C):
 \[
 \frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)
 \]

- So:
 \[
 p(\Pi_N | \Pi_{N,-n}) = \begin{cases}
 \frac{\#C}{\alpha + N - 1} & \text{if } n \text{ joins cluster } C \\
 \frac{\alpha}{\alpha + N - 1} & \text{if } n \text{ starts a new cluster}
 \end{cases}
 \]

- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$

 - Start: $v_1^{(0)}, v_2^{(0)}, v_3^{(0)}$
Chinese restaurant process

• Probability of N customers (K_N tables, $\#C$ at table C):
$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

• So:
$$p(\Pi_N | \Pi_{N,-n}) = \begin{cases} \frac{\#C}{\alpha + N - 1} & \text{if } n \text{ joins cluster } C \\ \frac{\alpha}{\alpha + N - 1} & \text{if } n \text{ starts a new cluster} \end{cases}$$

• Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
 - Start: $v_1^{(0)}, v_2^{(0)}, v_3^{(0)}$
 - t^{th} step: $v_1^{(t)} \sim p(v_1 | v_2^{(t-1)}, v_3^{(t-1)})$
Chinese restaurant process

- Probability of N customers (K_N tables, $\#C$ at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- So:

$$p(\Pi_N|\Pi_{N,-n}) = \begin{cases} \frac{\#C}{\alpha + N - 1} & \text{if } n \text{ joins cluster } C \\ \frac{\alpha}{\alpha + N - 1} & \text{if } n \text{ starts a new cluster} \end{cases}$$

- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$

 - Start: $v_1^{(0)}$, $v_2^{(0)}$, $v_3^{(0)}$

 - t^{th} step: $v_1^{(t)} \sim p(v_1|v_2^{(t-1)}, v_3^{(t-1)})$

 - $v_2^{(t)} \sim p(v_2|v_1^{(t)}, v_3^{(t-1)})$
Chinese restaurant process

• Probability of N customers (K_N tables, #C at table C):

$$\alpha^{K_N} \prod_{C \in \Pi_N} (#C - 1)! \over \alpha \cdots (\alpha + N - 1) = \mathbb{P}(\Pi_N = \pi_N)$$

• So:

$$p(\Pi_N | \Pi_N, -n) = \begin{cases}
\frac{\#C}{\alpha + N - 1} & \text{if } n \text{ joins cluster } C \\
\frac{\alpha}{\alpha + N - 1} & \text{if } n \text{ starts a new cluster}
\end{cases}$$

• Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$

 • Start: $v_1^{(0)}, v_2^{(0)}, v_3^{(0)}$

 • t^{th} step: $v_1^{(t)} \sim p(v_1 | v_2^{(t-1)}, v_3^{(t-1)})$, $v_2^{(t)} \sim p(v_2 | v_1^{(t)}, v_3^{(t-1)})$, $v_3^{(t)} \sim p(v_3 | v_1^{(t)}, v_2^{(t)})$
CRP mixture model: inference
CRP mixture model: inference

- Data $x_1:N$
CRP mixture model: inference

- Data $x_{1:N}$
CRP mixture model: inference

- Data $x_{1:N}$
- Generative model
CRP mixture model: inference

- Data \(x_1 : N \)
- Generative model
 \[\Pi_N \sim \text{CRP}(N, \alpha) \]
CRP mixture model: inference

• Data $x_{1:N}$

• Generative model $\Pi_N \sim \text{CRP}(N, \alpha)$
CRP mixture model: inference

• Data $x_{1:N}$

• Generative model

$\Pi_N \sim \text{CRP}(N, \alpha)$

$\forall C \in \Pi_N, \mu_C \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
CRP mixture model: inference

• Data $x_{1:N}$

• Generative model

$\Pi_N \sim \text{CRP}(N, \alpha)$

$\forall C \in \Pi_N, \mu_C \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
CRP mixture model: inference

• Data $x_{1:N}$

• Generative model
 $\Pi_N \sim \text{CRP}(N, \alpha)$
 $\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0)$

\[
\begin{align*}
\mu_1 & 1 & 7 & 2 & 8 \\
\mu_2 & 6 & 3 & 5 & \\
\mu_3 & 4 & & & \\
\end{align*}
\]
CRP mixture model: inference

- Data $x_1:N$

- Generative model
 \[\Pi_N \sim \text{CRP}(N, \alpha)\]
 \[\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0)\]
 \[\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma)\]
CRP mixture model: inference

- Data $x_{1:N}$

- Generative model

 $\Pi_N \sim \text{CRP}(N, \alpha)$

 $\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0)$

 $\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma)$
CRP mixture model: inference

- Data $x_{1:N}$
- Generative model
 $\Pi_N \sim \text{CRP}(N, \alpha)$
 $\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0)$
 $\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma)$

- Want: posterior
CRP mixture model: inference

- Data \(x_{1:N} \)

- Generative model
 \[
 \Pi_N \sim \text{CRP}(N, \alpha) \\
 \forall C \in \Pi_N, \mu_C \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \\
 \forall C \in \Pi_N, \forall n \in C, x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_C, \Sigma)
 \]

- Want: posterior \(p(\Pi_N | x_{1:N}) \)
CRP mixture model: inference

• Data $x_{1:N}$

• Generative model

 $\Pi_N \sim \text{CRP}(N, \alpha)$

 $\forall C \in \Pi_N, \mu_C \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$

 $\forall C \in \Pi_N, \forall n \in C, x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_C, \Sigma)$

• Want: posterior $p(\Pi_N|x_{1:N})$

• Gibbs sampler:
CRP mixture model: inference

- **Data** $x_{1:N}$
- **Generative model**
 \(\Pi_N \sim \text{CRP}(N, \alpha) \)
 \(\forall C \in \Pi_N, \mu_C \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \)
 \(\forall C \in \Pi_N, \forall n \in C, x_n \overset{indep}{\sim} \mathcal{N}(\mu_C, \Sigma) \)

- **Want** posterior \(p(\Pi_N | x_{1:N}) \)

- **Gibbs sampler**:

 \[p(\Pi_N | \Pi_{N,-n}, x) \]
CRP mixture model: inference

- Data \(x_{1:N} \)
- Generative model
 \[\Pi_N \sim \text{CRP}(N, \alpha) \]
 \[\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0) \]
 \[\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma) \]
- Want: posterior \(p(\Pi_N|x_{1:N}) \)
- Gibbs sampler:
 \[p(\Pi_N|\Pi_{N,-n}, x) \propto \left\{ \right\} \]
CRP mixture model: inference

- **Data** $x_{1:N}$
- **Generative model**

 $\Pi_N \sim \text{CRP}(N, \alpha)$

 $\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0)$

 $\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma)$

- **Want:** posterior $p(\Pi_N|x_{1:N})$

- **Gibbs sampler:**

 $p(\Pi_N|\Pi_{N,-n}, x) \propto \left\{ \begin{array}{ll}
 \text{if } n \text{ joins cluster } C
 \end{array} \right.$
CRP mixture model: inference

• Data \(x_{1:N} \)

• Generative model
 \[\Pi_N \sim \text{CRP}(N, \alpha) \]
 \[\forall C \in \Pi_N, \mu_C \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]
 \[\forall C \in \Pi_N, \forall n \in C, x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_C, \Sigma) \]

• Want: posterior \(p(\Pi_N | x_{1:N}) \)

• Gibbs sampler:

\[
p(\Pi_N | \Pi_{N,-n}, x) \propto \begin{cases} & \text{if } n \text{ joins cluster } C \\
& \text{if } n \text{ starts a new cluster}
\end{cases}
\]
CRP mixture model: inference

- **Data** \(x_{1:N} \)
- **Generative model**
 \[\Pi_N \sim \text{CRP}(N, \alpha) \]
 \[\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0) \]
 \[\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma) \]
- **Want:** posterior \(p(\Pi_N|x_{1:N}) \)
- **Gibbs sampler:**

\[
p(\Pi_N|\Pi_{N,-n}, x) \propto \begin{cases}
\frac{\#C}{\alpha+N-1}p(x_{C \cup \{n\}}|x_C) & \text{if } n \text{ joins cluster } C \\
0 & \text{if } n \text{ starts a new cluster}
\end{cases}
\]
CRP mixture model: inference

- Data $x_1:N$
- Generative model
 \[\Pi_N \sim \text{CRP}(N, \alpha) \]
 \[\forall C \in \Pi_N, \mu_C \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]
 \[\forall C \in \Pi_N, \forall n \in C, x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_C, \Sigma) \]

- Want: posterior $p(\Pi_N|x_1:N)$

- Gibbs sampler:
 \[
p(\Pi_N|\Pi_{N,-n}, x) \propto \begin{cases}
 \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if } n \text{ joins cluster } C \\
 \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster}
\end{cases}
\]
CRP mixture model: inference

• Data $x_{1:N}$

• Generative model

 $\Pi_N \sim \text{CRP}(N, \alpha)$

 $\forall C \in \Pi_N, \mu_C \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$

 $\forall C \in \Pi_N, \forall n \in C, x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_C, \Sigma)$

• Want: posterior $p(\Pi_N|x_{1:N})$

• Gibbs sampler:

 $p(\Pi_N|\Pi_{N,-n}, x) \propto \begin{cases} \frac{\#C}{\alpha+N-1} p(x_{C \cup \{n\}}|x_C) & \text{if } n \text{ joins cluster } C \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster} \end{cases}$

• For completeness: $p(x_{C \cup \{n\}}|x_C) =$
CRP mixture model: inference

- Data $x_{1:N}$
- Generative model
 $\Pi_N \sim \text{CRP}(N, \alpha)$
 $\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0)$
 $\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma)$

- Want: posterior $p(\Pi_N | x_{1:N})$

- Gibbs sampler:

$$p(\Pi_N | \Pi_{N,-n}, x) \propto \begin{cases} \frac{\#C}{\alpha + N - 1} p(x_{C \cup \{n\}} | x_C) & \text{if } n \text{ joins cluster } C \\ \frac{\alpha}{\alpha + N - 1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster} \end{cases}$$

- For completeness: $p(x_{C \cup \{n\}} | x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$
CRP mixture model: inference

• Data $x_{1:N}$

• Generative model

\[\Pi_N \sim \text{CRP}(N, \alpha) \]
\[\forall C \in \Pi_N, \mu_C \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0) \]
\[\forall C \in \Pi_N, \forall n \in C, x_n \overset{\text{indep}}{\sim} \mathcal{N}(\mu_C, \Sigma) \]

• Want: posterior $p(\Pi_N|x_{1:N})$

• Gibbs sampler:

\[
p(\Pi_N|\Pi_{N,-n}, x) \propto \begin{cases}
\frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if } n \text{ joins cluster } C \\
\frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster}
\end{cases}
\]

• For completeness: $p(x_{C\cup\{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

\[
\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}
\]
\[
\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)
\]
CRP mixture model: inference

• Data \(x_{1:N} \)

• Generative model
 \(\Pi_N \sim \text{CRP}(N, \alpha) \)
 \(\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0) \)
 \(\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma) \)

• Want: posterior \(p(\Pi_N|x_{1:N}) \)

• Gibbs sampler:
 \[
p(\Pi_N|\Pi_{N,-n}, x) \propto \begin{cases}
\frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if } n \text{ joins cluster } C \\
\frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster}
\end{cases}
\]

• For completeness: \(p(x_{C\cup\{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma) \)
 \[
\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1} \\
\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)
\]

[MacEachern 1994; Neal 1992; Neal 2000]
CRP mixture model: inference

- Data $x_{1:N}$

- Generative model
 \[
 \Pi_N \sim \text{CRP}(N, \alpha) \\
 \forall C \in \Pi_N, \phi_C \sim G_0^{\text{iid}} \\
 \forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma)
 \]

- Want: posterior $p(\Pi_N | x_{1:N})$

- Gibbs sampler:
 \[
 p(\Pi_N | \Pi_{N,-n}, x) \propto \begin{cases}
 \frac{\#C}{\alpha + N - 1} p(x_{C \cup \{n\}} | x_C) & \text{if } n \text{ joins cluster } C \\
 \frac{\alpha}{\alpha + N - 1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster}
 \end{cases}
 \]

- For completeness: $p(x_{C \cup \{n\}} | x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$
 \[
 \tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1} \\
 \tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)
 \]

[MacEachern 1994; Neal 1992; Neal 2000]
CRP mixture model: inference

• Data $x_{1:N}$

• Generative model

 $\Pi_N \sim \text{CRP}(N, \alpha)$

 $\forall C \in \Pi_N, \phi_C \sim G_0$

 $\forall C \in \Pi_N, \forall n \in C, x_n \sim F(\phi_C)$

• Want: posterior $p(\Pi_N|x_{1:N})$

• Gibbs sampler:

 $p(\Pi_N|\Pi_{N,-n}, x) \propto \begin{cases} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if } n \text{ joins cluster } C \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster} \end{cases}$

• For completeness: $p(x_{C\cup\{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

 $\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (#C)\Sigma^{-1}$

 $\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$

[MacEachern 1994; Neal 1992; Neal 2000]
CRP mixture model: inference

- **Data** \(x_{1:N} \)
- **Generative model**
 \[\Pi_N \sim \text{CRP}(N, \alpha) \]
 \[\forall C \in \Pi_N, \phi_C \overset{iid}{\sim} G_0 \]
 \[\forall C \in \Pi_N, \forall n \in C, x_n \overset{\text{indep}}{\sim} F(\phi_C) \]

- **Want:** posterior \(p(\Pi_N|x_{1:N}) \)

- **Gibbs sampler:**

\[
p(\Pi_N|\Pi_{N,-n}, x) \propto \begin{cases}
\frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if } n \text{ joins cluster } C \\
\frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster}
\end{cases}
\]

[MacEachern 1994; Neal 1992; Neal 2000]
CRP mixture model: inference

- **Data** $x_{1:N}$
- **Generative model**
 \[\Pi_N \sim \text{CRP}(N, \alpha) \]
 \[\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0) \]
 \[\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma) \]

- **Want:** posterior $p(\Pi_N|x_{1:N})$

- **Gibbs sampler:**
 \[
p(\Pi_N|\Pi_{N,-n}, x) \propto \begin{cases}
 \frac{\#C}{\alpha + N - 1} p(x_{C \cup \{n\}}|x_C) & \text{if } n \text{ joins cluster } C \\
 \frac{\alpha}{\alpha + N - 1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster}
 \end{cases}
\]

- **For completeness:**
 \[p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma) \]
 \[\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (#C)\Sigma^{-1} \]
 \[\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right) \]

[MacEachern 1994; Neal 1992; Neal 2000]
CRP mixture model: inference

- Data $x_{1:N}$
- Generative model
 \[\Pi_N \sim \text{CRP}(N, \alpha) \]
 \[\forall C \in \Pi_N, \mu_C \sim \mathcal{N}(\mu_0, \Sigma_0) \]
 \[\forall C \in \Pi_N, \forall n \in C, x_n \sim \mathcal{N}(\mu_C, \Sigma) \]

- Want: posterior $p(\Pi_N | x_{1:N})$

- Gibbs sampler:
 \[
p(\Pi_N | \Pi_{N,-n}, x) \propto \begin{cases}
\frac{\#C}{\alpha + N - 1} p(x_{C \cup \{n\}} | x_C) & \text{if } n \text{ joins cluster } C \\
\frac{\alpha}{\alpha + N - 1} p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster}
\end{cases}
\]

- For completeness: $p(x_{C \cup \{n\}} | x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$
 \[\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (#C) \Sigma^{-1} \]
 \[\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right) \]

[MacEachern 1994; Neal 1992; Neal 2000]
More Markov Chain Monte Carlo
More Markov Chain Monte Carlo

• Slice sampling
More Markov Chain Monte Carlo

• Slice sampling
 • auxiliary variable \Rightarrow finite conditionals
More Markov Chain Monte Carlo

- Slice sampling
- auxiliary variable \rightarrow finite conditionals
More Markov Chain Monte Carlo

• Slice sampling
• auxiliary variable \Rightarrow finite conditionals
More Markov Chain Monte Carlo

- Slice sampling
 - auxiliary variable \rightarrow finite conditionals

- Approximate with truncated distribution

[Ishwaran, James 2001; Campbell*, Huggins*, Broderick 2016]
More Markov Chain Monte Carlo

• Slice sampling
 • auxiliary variable \rightarrow finite conditionals

• Approximate with truncated distribution
 • E.g., Hamiltonian Monte Carlo

[Ishwaran, James 2001; Campbell*, Huggins*, Broderick 2016]
Variational Bayes
Variational Bayes

- Variational Bayes (VB)
Variational Bayes

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
Variational Bayes

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
Variational Bayes

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
Variational Bayes

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta | x)$

$p(\theta | x)$

$q^*(\theta)$
Variational Bayes

- Variational Bayes (VB)
- Approximation \(q^*(\theta) \) for posterior \(p(\theta|x) \)
- “Close”: Minimize Kullback-Liebler (KL) divergence:
\[
KL(q||p(\cdot|x))
\]
Variational Bayes

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- “Close”: Minimize Kullback-Liebler (KL) divergence:
 \[KL(q \| p(\cdot|x)) \]
Variational Bayes

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- “Close”: Minimize Kullback-Liebler (KL) divergence:
 $$KL(q||p(\cdot|x))$$
- “Nice”: factorizes, exponential family, truncation

$p(\theta|x)$
$q^*(\theta)$
Variational Bayes

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- “Close”: Minimize Kullback-Liebler (KL) divergence:
 $$KL(q||p(\cdot|x))$$
- “Nice”: factorizes, exponential family, truncation

- VB practical success
Variational Bayes

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- “Close”: Minimize Kullback-Liebler (KL) divergence:
 \[KL(q\|p(\cdot|x)) \]
- “Nice”: factorizes, exponential family, truncation

- VB practical success
 - point estimates and prediction
Variational Bayes

- Variational Bayes (VB)
- Approximation \(q^*(\theta) \) for posterior \(p(\theta|x) \)
- “Close”: Minimize Kullback-Liebler (KL) divergence:
 \[
 KL(q\|p(\cdot|x))
 \]
- “Nice”: factorizes, exponential family, truncation

- VB practical success
 - point estimates and prediction
 - fast, streaming, distributed

[Broderick, Boyd, Wibisono, Wilson, Jordan 2013]
Exercises

Data $x_{1:N}$
Exercises

• Code a CRP mixture model simulator
Exercises

- Code a CRP mixture model simulator
- Derive the CRP mixture model Gibbs sampler in the slides; derive \(p(x_{C \cup \{n\}} \mid x_C) \) explicitly for a Gaussian mixture
Exercises

- Code a CRP mixture model simulator
- Derive the CRP mixture model Gibbs sampler in the slides; derive $p(x_{C \cup \{n\}}|x_C)$ explicitly for a Gaussian mixture
- Extend the CRP mixture model Gibbs sampler in the slides to sample the cluster-specific parameters as well
Exercises

• Code a CRP mixture model simulator
• Derive the CRP mixture model Gibbs sampler in the slides; derive \(p(x_{C \cup \{n\}} | x_C) \) explicitly for a Gaussian mixture
• Extend the CRP mixture model Gibbs sampler in the slides to sample the cluster-specific parameters as well
• Review Gibbs sampling, slice sampling [Neal 2003], variational Bayes [Bishop 2006]
Exercises

• Code a CRP mixture model simulator
• Derive the CRP mixture model Gibbs sampler in the slides; derive $p(x_{C \cup \{n\}} | x_C)$ explicitly for a Gaussian mixture
• Extend the CRP mixture model Gibbs sampler in the slides to sample the cluster-specific parameters as well
• Review Gibbs sampling, slice sampling [Neal 2003], variational Bayes [Bishop 2006]
• Read [Neal 2000] and code a DPMM Gibbs sampler
Exercises

- Code a CRP mixture model simulator
- Derive the CRP mixture model Gibbs sampler in the slides; derive \(p(x_{C \cup \{n\}} | x_C) \) explicitly for a Gaussian mixture
- Extend the CRP mixture model Gibbs sampler in the slides to sample the cluster-specific parameters as well
- Review Gibbs sampling, slice sampling [Neal 2003], variational Bayes [Bishop 2006]
- Read [Neal 2000] and code a DPMM Gibbs sampler
- Read [Walker 2007; Kall, Griffin, Walker 2011] and code a DPMM slice sampler
Exercises

- Code a CRP mixture model simulator
- Derive the CRP mixture model Gibbs sampler in the slides; derive \(p(x_{C \cup \{n\}} | x_C) \) explicitly for a Gaussian mixture
- Extend the CRP mixture model Gibbs sampler in the slides to sample the cluster-specific parameters as well
- Review Gibbs sampling, slice sampling [Neal 2003], variational Bayes [Bishop 2006]
- Read [Neal 2000] and code a DPMM Gibbs sampler
- Read [Walker 2007; Kalli, Griffin, Walker 2011] and code a DPMM slice sampler
- Read [Blei, Jordan 2006] and code variational inference for the DPMM
Power laws
Hierarchies
Dependencies
Coalescents/Diffusions/Trees
de Finetti
Feature allocations
Networks/graphs
Poisson processes
Here be Dragons
Clustering

<table>
<thead>
<tr>
<th>Document 1</th>
<th>Arts</th>
<th>Econ</th>
<th>Sports</th>
<th>Health</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feature allocation

<table>
<thead>
<tr>
<th>Document</th>
<th>Arts</th>
<th>Econ</th>
<th>Sports</th>
<th>Health</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document 1</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
<tr>
<td>Document 2</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
<tr>
<td>Document 3</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
<tr>
<td>Document 4</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
<tr>
<td>Document 5</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
<tr>
<td>Document 6</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
<tr>
<td>Document 7</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
<td>🟥</td>
</tr>
</tbody>
</table>
Feature allocation

<table>
<thead>
<tr>
<th>Document 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts</td>
<td>E</td>
<td>n</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Indian buffet process
Feature allocation

- Indian buffet process

<table>
<thead>
<tr>
<th></th>
<th>Arts</th>
<th>Econ</th>
<th>Sports</th>
<th>Health</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feature allocation

<table>
<thead>
<tr>
<th></th>
<th>Arts</th>
<th>Econ</th>
<th>Sports</th>
<th>Health</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document 1</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Document 2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Document 3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Document 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Document 5</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Document 6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Document 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- Indian buffet process
- Beta process

[Griffiths, Ghahramani 2005]
Feature allocation

<table>
<thead>
<tr>
<th></th>
<th>Arts</th>
<th>Econ</th>
<th>Sports</th>
<th>Health</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Indian buffet process
- Beta process

[Griffiths, Ghahramani 2005, Hjort 1990]
Feature allocation

<table>
<thead>
<tr>
<th></th>
<th>Arts</th>
<th>Econ</th>
<th>Sports</th>
<th>Health</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Indian buffet process
- Beta process

Power laws
Power laws

- $K_N := \# \text{ clusters occupied by } N \text{ data points}$

$K_N \sim \alpha \log N$ w.p. 1,

$K_N \sim N \alpha$ w.p. 1,

$\# j \sim C(j)$, $j \rightarrow 1$ w.p. 1

Power laws

- $K_N := \# \text{ clusters occupied by } N \text{ data points}$
- CRP: $K_N \sim \alpha \log N \text{ w.p. } 1$

\[K_N \sim \alpha \log N \text{ w.p. } 1, \quad \implies \quad \frac{1}{j} \sim C(j), \quad j \to \infty, \text{ w.p. } 1\]
Power laws

- $K_N := \# \text{ clusters occupied by } N \text{ data points}$
- CRP: $K_N \sim \alpha \log N \text{ w.p. 1}$
- vs. Heaps’ law, Herdan’s law, etc

$K_N \sim \alpha \log N \text{ w.p. 1}$
$\implies # j \sim C(j), j \to \infty, \text{ w.p. 1}$

Power laws

- $K_N := \# \text{ clusters occupied by } N \text{ data points}$
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps’ law, Herdan’s law, etc

Power laws

- $K_N := \# \text{ clusters occupied by } N \text{ data points}$
- CRP: $K_N \sim \alpha \log N \text{ w.p. 1}$
 - vs. Heaps’ law, Herdan’s law, etc
- Pitman-Yor process:
Power laws

- $K_N := \# \text{ clusters occupied by } N \text{ data points}$
- CRP: $K_N \sim \alpha \log N \text{ w.p. } 1$
 - vs. Heaps’ law, Herdan’s law, etc
- Pitman-Yor process:

\[[\text{Gnedin, et al 2007, Pitman, Yor 1997}] \]
Power laws

- $K_N := \# \text{ clusters occupied by } N \text{ data points}$
- CRP: $K_N \sim \alpha \log N \text{ w.p. 1}$
 - vs. Heaps’ law, Herdan’s law, etc
- Pitman-Yor process:
 $K_N \sim S_\alpha N^\sigma \text{ w.p. 1}$

Power laws

- $K_N := \# \text{ clusters occupied by } N \text{ data points}$
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps’ law, Herdan’s law, etc
- Pitman-Yor process:
 $K_N \sim S_\alpha N^\sigma$ w.p. 1

Power laws

- $K_N := \#$ clusters occupied by N data points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps’ law, Herdan’s law, etc
- Pitman-Yor process:

 $K_N \sim S_{\alpha} N^\sigma$ w.p. 1

 - related to Zipf’s law (ranked frequencies)

Power laws

- $K_N := \# \text{ clusters occupied by } N \text{ data points}$
- CRP: $K_N \sim \alpha \log N \text{ w.p. } 1$
 - vs. Heaps’ law, Herdan’s law, etc
- Pitman-Yor process:
 - $K_N \sim S_\alpha N^\sigma \text{ w.p. } 1$
 - related to Zipf’s law (ranked frequencies)
- Not just clusters

Hierarchies
Hierarchies

- Hierarchical Dirichlet process

Hierarchies

• Hierarchical Dirichlet process

[Teh et al 2006, Rodríguez et al 2008]
Hierarchies

- Hierarchical Dirichlet process
- Chinese restaurant franchise

[Teh et al 2006, Rodríguez et al 2008]
Hierarchies

- Hierarchical Dirichlet process
- Chinese restaurant franchise

[Teh et al 2006, Rodríguez et al 2008]
Hierarchies

- Hierarchical Dirichlet process
- Chinese restaurant franchise
- Hierarchical beta process

[Teh et al 2006, Rodríguez et al 2008]
Hierarchies

• Hierarchical Dirichlet process
• Chinese restaurant franchise
• Hierarchical beta process

[Teh et al 2006]
Genealogy, trees, beyond trees

[Diagram of a genealogy tree with labels 1 to 9 and branches labeled T_2, T_3, T_4.]
Genealogy, trees, beyond trees

- Kingman coalescent

[Diagram of a genealogy tree with nodes labeled 1 to 9, and branches labeled T_2, T_3, T_4.]

[Note from Wakeley 2008]
Genealogy, trees, beyond trees

- Kingman coalescent

[Diagram showing a tree structure with labels 1 to 9, and references to Wakeley 2008 and Kingman 1982]
Genealogy, trees, beyond trees

- Kingman coalescent
- Fragmentation
- Coagulation

[Wakeley 2008]

[Kingman 1982]
Genealogy, trees, beyond trees

- Kingman coalescent
- Fragmentation
- Coagulation

Genealogy, trees, beyond trees

- Kingman coalescent
- Fragmentation
- Coagulation
- Dirichlet diffusion tree

[Wakeley 2008]

Genealogy, trees, beyond trees

- Kingman coalescent
- Fragmentation
- Coagulation
- Dirichlet diffusion tree

Conjugacy & Poisson point processes

• Beta process, Bernoulli process (Indian buffet)
• Gamma process, Poisson likelihood process (DP, CRP)
• Beta process, negative binomial process

Posteriors, conjugacy, and exponential families for completely random measures

Conjugacy & Poisson point processes

- Beta process, Bernoulli process (Indian buffet)

Conjugacy & Poisson point processes

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)

Conjugacy & Poisson point processes

• Beta process, Bernoulli process (Indian buffet)

• Gamma process, Poisson likelihood process (DP, CRP)

• Beta process, negative binomial process

Conjugacy & Poisson point processes

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

Orbanz 2009, Orbanz 2010
Conjugacy & Poisson point processes

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

Conjugacy & Poisson point processes

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process
- Posteriors, conjugacy, and exponential families for completely random measures

Conjugacy & Poisson point processes

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

- Posteriors, conjugacy, and exponential families for completely random measures

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
social: Facebook, Twitter, email
biological: ecological, protein, gene
transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

\[p(\cdot) \]

social: Facebook, Twitter, email
biological: ecological, protein, gene
transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

$p(\cdot)$

- Rich relationships, coherent uncertainties, prior info

social: Facebook, Twitter, email

biological: ecological, protein, gene

transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

- Rich relationships, coherent uncertainties, prior info
- Example models: Stochastic block, mixed membership stochastic block, infinite relational, and many more

social: Facebook, Twitter, email
biological: ecological, protein, gene
transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008]
Probabilistic models for graphs

$p(\cdot)$

- Rich relationships, coherent uncertainties, prior info
- Example models: Stochastic block, mixed membership, stochastic block, infinite relational, and many more

Social: Facebook, Twitter, email
Biological: ecological, protein, gene
Transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

\(p(\cdot) \)

- Rich relationships, coherent uncertainties, prior info
- Example models: Stochastic block, mixed membership stochastic block, infinite relational, and many more
- Assume: Adding more data doesn’t change distribution of earlier data (projectivity)

Social: Facebook, Twitter, email
Biological: ecological, protein, gene
Transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

\[p() \]

- Rich relationships, coherent uncertainties, prior info
- Example models: Stochastic block, mixed membership stochastic block, infinite relational, and many more
- Assume: Adding more data doesn’t change distribution of earlier data (*projectivity*)
- **Problem**: model misspecification, dense graphs

social: Facebook, Twitter, email

biological: ecological, protein, gene

transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

\[p(\cdot) \]

- Rich relationships, coherent uncertainties, prior info
- Example models: Stochastic block, mixed membership stochastic block, infinite relational, and many more
- Assume: Adding more data doesn’t change distribution of earlier data (projectivity)
- **Problem**: model misspecification, dense graphs
- **Solution**: a new framework for sparse graphs

social: Facebook, Twitter, email
biological: ecological, protein, gene
transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

- Rich relationships, coherent uncertainties, prior info
- Example models: Stochastic block, mixed membership stochastic block, infinite relational, and many more
- Assume: Adding more data doesn’t change distribution of earlier data (*projectivity*)
- **Problem**: model misspecification, dense graphs
- **Solution**: a new framework for sparse graphs

social: Facebook, Twitter, email
biological: ecological, protein, gene
transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

\[p(\cdot) \]

- Rich relationships, coherent uncertainties, prior info
- Example models: Stochastic block, mixed membership stochastic block, infinite relational, and many more
- Assume: Adding more data doesn’t change distribution of earlier data (*projectivity*)
- **Problem**: model misspecification, dense graphs
- **Solution**: a *new framework* for sparse graphs

social: Facebook, Twitter, email
biological: ecological, protein, gene
transportation: roads, railways

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

\[p(\cdot) \]

- Rich relationships, coherent uncertainties, prior info
- Example models: Stochastic block, mixed membership stochastic block, infinite relational, and many more
- Assume: Adding more data doesn’t change distribution of earlier data (*projectivity*)
- **Problem**: model misspecification, dense graphs
- **Solution**: a new framework for *sparse graphs*

- social: *Facebook, Twitter, email*
- biological: *ecological, protein, gene*
- transportation: *roads, railways*

[Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]
Probabilistic models for graphs

\[p(\cdot) \]

- Rich relationships, coherent uncertainties, prior info
- Example models: Stochastic block, mixed membership stochastic block, infinite relational, and many more
- Assume: Adding more data doesn’t change distribution of earlier data (projectivity)
- **Problem**: model misspecification, dense graphs
- **Solution**: a new framework for sparse graphs
 - Concurrent & independent graphs work by Crane & Dempsey

social: Facebook, Twitter, email
biological: ecological, protein, gene
transportation: roads, railways
Sequence of graphs
Sequence of graphs

\[G_1 \]

\[G \]
Sequence of graphs

\[G_1 \quad | \quad G_2 \quad | \quad G \]
Sequence of graphs

G_1

G_2

G_3

G
Sequence of graphs

G_1 G_2 G_3 G_4 G
Sequence of graphs

\(G_1 \)

\(G_2 \)

\(G_3 \)

\(G_4 \)

\(\ldots \)
Sequence of graphs

- Dense graph sequence \(\#\text{edges}(G_n) \geq c \cdot [\#\text{nodes}(G_n)]^2 \)
Sequence of graphs

- Dense graph sequence \(\#\text{edges}(G_n) \geq c \cdot [\#\text{nodes}(G_n)]^2 \)
- Sparse graph sequence \(\#\text{edges}(G_n) \in o([\#\text{nodes}(G_n)]^2) \)
The Old Way: Nodes

G_1
The Old Way: Nodes

G_1
The Old Way: Nodes

\[G_1 \]

\[G_2 \]
The Old Way: Nodes

G_1

G_2

G_3
The Old Way: Nodes

\[G_1 \]

\[G_2 \]

\[G_3 \]

\[G_4 \]

[Hoover 1979, Aldous 1981]
Exchangeability

G_1

G_2

G_3

G_4

[Hoover 1979, Aldous 1981]
Exchangeability

G_1 | G_2 | G_3 | G_4

[Hoover 1979, Aldous 1981]
Exchangeability

\[G_1 \]
\[G_2 \]
\[G_3 \]
\[G_4 \]

\[p() \]
Exchangeability

\[p(G_1) = p(G_2) = p(G_3) = p(G_4) \]

[Hoover 1979, Aldous 1981]
Node exchangeability

\[p(1, 2, 3, 4) = p(2, 3, 1, 4) \]

\[G_1 \] \hspace{2cm} \[G_2 \] \hspace{2cm} \[G_3 \] \hspace{2cm} \[G_4 \]

[Hoover 1979, Aldous 1981]
The Old Way: Node exchangeability

\[p(G_1) = p(G_2) = p(G_3) = p(G_4) \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[\begin{array}{|c|c|}
\hline
0 & 1 \\
\hline
\end{array} \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]
Aldous-Hoover

\[W(x, y) \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]
Aldous-Hoover

$W(x, y)$

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]
Aldous-Hoover

\[W(x, y) \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]

\[[\text{Hoover 1979, Aldous 1981}] \]
Aldous-Hoover

\[W(x, y) \]

[Hoover 1979, Aldous 1981]
Aldous-Hoover

\[W(x, y) \]

[Hoover 1979, Aldous 1981]
Every node-exchangeable graph has a graphon rep

[Hoover 1979, Aldous 1981]
Every node-exchangeable graph has a graphon rep

\[\mathbb{E}[\#\text{edges}(G_n)] \]

[Hoover 1979, Aldous 1981, Orbanz, Roy 2015]
Every node-exchangeable graph has a graphon rep

\[
\mathbb{E}[\# \text{edges}(G_n)] = \mathbb{E} \left[\frac{n}{2} \int_0^1 \int_0^1 W(x, y) \, dx \, dy \right]
\]

[Hoover 1979, Aldous 1981, Orbanz, Roy 2015]
Aldous-Hoover

Every node-exchangeable graph has a graphon rep

\[\mathbb{E}[\#\text{edges}(G_n)] = \mathbb{E} \left[\binom{n}{2} \frac{1}{2} \int_0^1 \int_0^1 W(x, y) \, dx \, dy \right] \]

\[\sim cn^2 \]

[Hoover 1979, Aldous 1981, Orbanz, Roy 2015]
Every node-exchangeable graph has a graphon rep

\[E[\#\text{edges}(G_n)] = E \left[\binom{n}{2} \frac{1}{2} \int_0^1 \int_0^1 W(x, y) \, dx \, dy \right] \]

\[\sim cn^2 = c \cdot [\#\text{nodes}(G_n)]^2 \]
Every node-exchangeable graph has a graphon rep

\[\mathbb{E}[\# \text{edges}(G_n)] = \mathbb{E} \left[\binom{n}{2} \frac{1}{2} \int_0^1 \int_0^1 W(x, y) \, dx \, dy \right] \]

\[\sim cn^2 = c \cdot [\# \text{nodes}(G_n)]^2 \]

Every node-exch graph sequence is dense (or empty)

[Hoover 1979, Aldous 1981, Orbanz, Roy 2015]
Every node-exchangeable graph has a graphon rep

\[\mathbb{E}[\#\text{edges}(G_n)] = \mathbb{E} \left[\binom{n}{2} \frac{1}{2} \int_0^1 \int_0^1 W(x, y) \, dx \, dy \right] \]

\[\sim cn^2 = c \cdot [\#\text{nodes}(G_n)]^2 \]

Every node-exch graph sequence is dense (or empty)

[Hoover 1979, Aldous 1981, Orbanz, Roy 2015; Caron, Fox 2014; Veitch, Roy 2015; Borgs, Chayes, Cohn, Holden 2016; Broderick, Cai 2015; Crane, Dempsey 2015; Crane, Dempsey 2016; Cai, Campbell, Broderick 2016]
A New Way: Edges

\[G_1 \]
A New Way: Edges

G_1
A New Way: Edges

G_1 G_2
A New Way: Edges

G_1

G_2

G_3
A New Way: Edges

G_1

G_2

G_3

G_4
Edge exchangeability

G_1

G_2

G_3

G_4
Edge exchangeability

G_1

G_2

G_3

G_4
Edge exchangeability

\[p(G_1) = p(G_2) = p(G_3) = p(G_4) \]
Edge exchangeability

\[p(1, 2, 3, 4) = p(2, 4, 1, 3) \]
Edge exchangeability

Thm. A wide range of edge-exchangeable graph sequences are sparse

\[p(1 \rightarrow 2 \rightarrow 3) = p(2 \rightarrow 4 \rightarrow 1) \]
Nonparametric Bayes

- Bayesian methods that are not parametric
- Bayesian
 \[P(\text{parameters} | \text{data}) \propto P(\text{data} | \text{parameters})P(\text{parameters}) \]
- Not parametric (i.e. not finite parameter, unbounded/growing/infinite number of parameters)

[Wikipedia]

[Ed Bowlby, NOAA]

[Prabhakaran, Azizi, Carr, Pe’er 2016]

[Escobar, West 1995; Ghosal, et al 1999]

[Saria et al 2010]

[Fox, et al 2014]

[Ed Bowlby, NOAA]

[Lloyd et al 2012; Miller et al, 2010]

[Ewens, 1972; Hartl, Clark 2003]

[Sudderth, Jordan 2009]
References (page 1 of 4)

