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ABSTRACT 

The authors have previously built the Morpheus Data 
transformation system. Based on feedback from demo-ing the 
system at SIGMOD 2006 as well as to numerous CIO’s and 
researchers at IBM and Microsoft, we have completely 
redesigned the system to facilitate a state-based browsing 
paradigm, the ability to filter transforms based on lineage and 
input-output properties and best-fit search for composite 
transforms. Also included is a novel crawler to search for 
transforms of interest either within an enterprise or across the 
web. The result is Morpheus 2.0, which is now operational, and 
is described in this paper. 

1. INTRODUCTION 
Information integration has been listed on all four self 
assessments of the DBMS community [1-4] as an “achilles heel” 
of computing. Basically, large enterprises have hundreds of 
operational systems, which are usually constructed by 
independent groups at different times, and a desire to share 
information between these systems. This requires integrating a 
large collection of independently written data base schemas, a 
task that most enterprises find enormously challenging. The 
industry thrust toward web services and the internet will 
increase the scope of this information integration problem from 
inside a single enterprise (intra-enterprise) to among enterprises 
(inter-enterprise). This thrust will make information integration 
that much more daunting. 

At the same time, the need for information integration is not 
limited to industry. The internet is also becoming the preferred 
method for disseminating scientific data from a variety of 
disciplines and domains such as astronomy, biology, the 
geosciences, public health, and health care. The number of 
independently developed schemas and databases is very large 
and scientists have been struggling to keep up with this wealth 

of information. For example, in bioinformatics, the need to 
access and integrate data from the many and typically large 
genomics repositories which use a large number of data models, 
languages, and formats is hampering the discovery of genes and 
their functions. Given the complexity of the genomics data 
integration problem, systems such as GUS (Genomics Unified 
Schema) at the University of Pennsylvania [5], which provides 
an integrated warehouse for portions of GenBank, EMBL, 
DDBJ, Swiss-Prot, and dbEST, remain the exception. 

This schema integration problem exists when the goal is to 
integrate information by extracting information from operational 
systems, transforming it in some sort of middleware ETL 
system and then loading it in a data warehouse. It exists equally 
when the goal is to share live information between operational 
systems through some sort of federated data base system, such 
as the IBM information integrator [6] or BEA’s WebLogic 
Integration Suite [7]. 

There are three possible approaches to schema integration, 
which we explore in the following three subsections. 

1.1 Schema Matching 
Some researchers (such as [8-10]) have focused on the schema 
matching problem. For example, a positive result from such 
efforts would be to discover that wages in one human resources 
schema matched salary in a second schema. Although such 
research is well-intentioned, we believe that it only solves a 
small portion of the overall data integration problem. 
Specifically, independently constructed schemas never have 
identical data elements. For example, wages in the first schema 
might represent the salary of a French worker, which would be 
expressed in Euros, net-after taxes and include a lunch 
allowance.  In contrast, salary might represent the 
compensation of a U.S. worker, which would be expressed in 
U.S dollars, gross-before taxes, while not including a lunch 
allowance. Hence, syntactically matching the numbers in the 
two fields, wages and salaries, will produce garbage, since they 
represent different semantic objects, respectively U.S 
compensation and French compensation. 
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There are several reasons why identical elements do not exist. 
First, it is rarely, if ever, the case that two schemas use the same 
representation for the same semantic construct. There are many 
representations for calendar dates. All of the following are 
reasonable representations for one of our birthdays: 



• October 11, 1943 
• 10/11/43 
• 11/10/43 
• Oct. 11 1943 
• 11-10-43 

Obviously, one cannot merely match two attributes, even if they 
have the same or similar names, because they have different 
representations. That produces a composite column with 
“jumble” in it. Instead, one must define a transform that will 
map the individual data elements in one representation to that 
used by the second schema. Unless an organization has 
company-wide standards for the representation of common data 
elements, it will face this issue.   

A second more difficult issue occurs when the two attributes do 
not semantically mean the same thing, even if they have a 
common representation. For example, “two days” is a 
reasonable time value that could appear in a time-oriented 
column in two different schemas. However, it can semantically 
mean any of the following: 

• Two calendar days 
• Two business days (excluding weekends and holidays) 
• Two Federal Express days (which excludes Sundays) 
• Two Wall Street trading days (which excludes weekends 

and certain other days) 
• Two London trading days (which excludes weekends and 

another collection of days) 

Again, a transform is required to map between values in the 
different schemas to produce a representation with a common 
meaning. 

1.2 Standards 
Obviously, a solution to schema integration is to enforce 
company-wide standards on representation and meaning. Even 
more obviously, this is a very useful exercise for any company. 
The less semantic diversity that exists, the easier the data 
integration problem will be. However, there are several major 
impediments to the success of standards. 

First, this will not help legacy systems, which are already 
deployed in large numbers. Retrofitting these to obey after-the-
fact standards is a major undertaking. Second, successful 
standards require the enterprise to have the foresight to 
standardize the right things. For example, a few years ago one 
of us consulted for a large multi-national bank, which had 
several autonomous divisions around the world. A recent 
request from customers was to receive a single integrated world-
wide bank statement. Since the institution had not planned for 
this requirement, there was no single world-wide identifier for a 
customer. Since a given customer has different legal names in 
different countries with different addresses, it proved impossible 
to retrofit this capability, other than by expensive manual 
human-to-human discussions between bank personnel and 
customer personnel. A third impediment to standards is they are 
extremely challenging to implement across enterprises. Not only 
is there often an inability to co-operate, but also in every 
vertical market we can think of, there are multiple standards. 
Hence, there is an issue of which one to choose.   

Effective standards appear to come in situations where there is a 
market elephant which can drive them (for example, between 
Dell and Walmart and their suppliers) or where there is 
substantial market advantage to co-operation (for example 
airline reservation systems). Even when an industry is behind 
standards, for example RosettaNet1 in the electronics industry, 
they have proved elusive. 

1.3 Knowledge Representation and the 
Semantic Web 
A third approach to data integration is to construct a rich enough 
knowledge representation language so that schema elements, 
such as wages and salaries, can be described precisely, thereby 
allowing an automatically generated transformer. This has been 
the goal of knowledge representation languages, such as KIF2 
and KQML3, and has been pursued (in our opinion with limited 
success) for at least the last 30 years. The latest incarnation of 
this avenue of effort is the semantic web [11]. 

One would be foolish to argue that this line of effort cannot 
produce results. However, we merely indicate that results have 
been elusive to date. 

1.4 Our Past Experience 
Some of the authors began a collaboration following the 
publication of the most recent data base self-assessment [1]. 
That report suggested building a testbed of data bases, so that 
researchers who wanted to explore ideas concerning data 
integration would not have to go to the effort of assembling data 
bases to integrate. 

We took on the task of building such a testbed, and assembled a 
collection of 50 schemas that represented data on Computer 
Science instruction at different universities in several countries. 
These data bases contained information on courses, instructors, 
prerequisites, meeting times, credit and the like. Our system, the 
THALIA information integration testbed4, is publicly available 
for use and includes a collection of integration tasks (challenge 
queries) that must be performed as well as an evaluation 
framework to score any given tool [8]. 

The exercise of building THALIA has colored our thinking on 
data integration extensively. A few of our challenge queries can 
be solved merely by matching attributes in different schemas, 
for example, the task of identifying specific course numbers in 
the various schemas. However, the overwhelming majority of 
the tasks require dealing with semantically heterogeneous data 
elements. These include: 

• Character strings in different languages (German, English, 
etc.) 

• Course credit (semester units, quarter units, etc.) 
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• Requirements (sophomore standing is not meaningful in 
Europe) 

• Lab credit (some universities have this concept, some do 
not) 

• Meeting time (many different representations, e.g. period 1, 
time interval, etc.) 

In summary, the vast majority of the THALIA tests required 
transformations to be written that are well beyond the possible 
scope of knowledge representation or schema matching. Hence, 
we believe that the most profitable approach to data integration 
would be to build a framework and toolkit for transform 
construction as well as a repository for previously constructed 
transforms to facilitate reuse of previously written ones. The 
authors built an initial prototype of such a system, the Morpheus 
data transformation management system over the last 18 
months. In Section 2 we briefly review the capabilities of this 
initial system. Then, in Section 3 we discuss a collection of 
major improvements, which collectively are called Mopheus 
2.0. Relevant work by others is treated in Section 4, along with 
some suggestions for additional Morpheus improvements. 

2. THE MORPHEUS DATA 
TRANSFORMATION SYSTEM 
Our basic goals for Morpheus 1.0 were two-fold: 

1. Make it easy to write transforms 
2. Make it easy to find and reuse transforms written by others 

To this end, we built a transform construction tool (TCT) as 
well as a searchable repository that holds transforms. These 
two components are integrated into the Morpheus data 
transformation management system described below.   
 
Figure 1 shows an architecture diagram of the Morpheus 
system. A human interacts with our browser and GUI for 
building transforms, which are executed and stored inside a 
Postgres DBMS5. We take the point of view that every 
transform maps a Postgres data type into another Postgres data 
type. Hence, we store information on data types and transforms 
in Postgres tables, which can be browsed and modified in the 
ways described below. 

2.1 GUI and Browser 
The heart of our approach for reusing transforms is a 
sophisticated browser that allows a client to explore the 
transform repository. Our approach borrows heavily from 
Squirrel [12] developed two decades ago. Like Squirrel, 
Morpheus objects (transforms including their source and target 
data types) exist in a multidimensional space. A client can enter 
this space in multiple ways to establish a Morpheus object as his 
current focus. Then, he can browse to nearby objects along any 
of the supported dimensions. Changing his focus to a new object 
of interest allows the user to continue browsing, narrowing in on 
an ultimate object of interest. 
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Figure 1. Architecture of the Morpheus System 

The current Morpheus dimensions include: 

• A classification hierarchy for source and target data types. 
Here, “up” (less specificity) and “down” (more specificity) 
are the two dimensions of browsing movement. 

• A classification hierarchy for transforms. Again “up” and 
“down” are well defined. 

• Focus. If the current focus is a transform, the client can 
move to the source or target data type. If the current focus 
is a data type, the client can browse the transforms that 
accept or produce the data type. 

• Textual similarity. Similarity of textual description is 
another dimension in which browsing is supported. 
Similarity searching is supported in our prototype by the 
Lucene text search engine6, which is integrated with 
Postgres. This engine supports exact matches as well as 
similarity-based matches on any of the meta-data stored for 
Morpheus objects, including the textual description. 

Using the Morpheus browser, a client enters the repository by 
starting at the root of a classification hierarchy or by issuing a 
keyword-oriented search. The result is a list of one or more data 
types or transforms from which the user can select the current 
focus for subsequent searching. 

If a user clicks on a category, the Morpheus objects, which are 
nearby in that category, appear on the screen.  A user can click 
on an object to change his current focus, and the cycle repeats.  
Hence, the client browses by moving his current focus in any 
supported dimension, thereby moving to an object of interest. 

Once an interesting object is identified, Morpheus allows the 
client to zoom into the object. Increasing amounts of detail are 
given, ultimately providing the visual representation for the 
transform or complete information on a data type. 
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2.2 TCT 
In our opinion requiring a user to drop into a conventional 
programming language, such as Java or C++, to construct 
transforms, will automatically make the job of building 
transformations very tedious. Even simple transforms require 
tens to hundreds of lines of code in a conventional programming 
language. 

Instead, we have assembled a palette of high level building 
blocks (workflow primitives) that can be wired together in a 
composite workflow to accomplish a given transformation task. 
We have built a compiler for this workflow language, TCT, to 
generate an efficient executable representation.   

The workflow primitives in the current Morpheus prototype 
include the following:  

• A computation primitive, which performs standard numeric 
transformations (e.g., metric conversions). 

• A control primitive, which supports branching within the 
transform based on the value of a variable or result of an 
expression. 

• A lookup table primitive, which maps an object in one field 
to an object in another field (e.g., letter grade to numeric 
grade). 

• A macro primitive (superbox), which allows a user to 
group several boxes together (inside a larger box) as part of 
a high-level transform (macro). This is also a way to hide 
some of the details of a transformation. 

• Postgres user-defined functions, so transforms can be 
composed out of existing ones. 

• A predicate primitive, which maps sets (ranges) of values 
to related sets (e.g., University class status such as 
freshman to units taken, ‘> 0’, ‘>35’, and so on) based on a 
user-defined predicate. 

• A re-arranger, which supports creation of transforms by 
allowing the user to visually manipulate characters and 
strings. 

• A wrapper primitive for external call-outs (e.g., to Web 
services). 

The current prototype allows a user to start either with a blank 
canvas or with an existing transformation from the repository. 
He can then edit the workspace, adding, deleting and rewiring 
objects of interest. When he is satisfied, he can register the 
transform in the Morpheus repository. In addition, there are 
facilities for testing transforms on individual input data 
elements, entered from the GUI or on tables of objects stored in 
Postgres. 

Transforms are stored in two representations.  The first is an 
XML data structure that corresponds to the diagram. This 
representation is chosen since it is easy to edit. The second 
representation is a Java function, which is efficient to execute. 
However, there is no requirement that transforms be written 
using the TCT. Java code can be written, compiled outside of 
the system, directly entered into the data base, and then 
incorporated into a Morpheus transform. Moreover, we expect 
many transforms to be available as web services. 

2.3 Searchable Repository 
All Morpheus information is stored in Postgres tables and our 
browser is thereby data base-oriented. Storing transform and 
data type information in a database requires a schema, and the 
construction of the Morpheus schema is a conventional data 
base design problem. The metadata we currently support 
includes: 

• Who constructed the transform 
• When it was constructed 
• What data type it accepts as input 
• What data type it produces as output 
• A textual description of the semantics of the transform 
• Position in a classification hierarchy 

In addition, source and target data types are registered as 
Postgres data types, and transforms become user-defined 
Postgres functions. In this way, conversions occur inside 
Postgres by adding data to the data base and then running a 
query which invokes a transform.   

If the data types of the transform have not been registered in 
Postgres, this step must be performed first. Next, the transform 
is registered as a user-defined function. In order to execute a 
transform a client provides one or more data elements of the 
source data type. With this input, a query is executed to produce 
the desired target result, which consists of one or more data 
elements of the target data type. 

The reason to leverage Postgres is to simplify the run-time 
environment, which is all inside Postgres, as well as to use 
Postgres query and storage facilities, in case large amounts of 
data must be transformed in bulk. Over time, we expect Postgres 
to support horizontal partitioning, which will allow bulk 
transformations to be performed in parallel on multiple 
machines for added performance. 

Our approach to data transformation has points of similarity 
with existing ETL tools7 in that we provide a high-level 
transform tool. However, we differ from ETL vendors and 
existing transformation tools in several important ways:  

1. We provide a searchable repository in which transforms are 
stored, along with powerful repository browsing tools 
allowing our users to search for existing transformations 
along several dimensions. Our idea is that a client with a 
transformation problem will browse our repository looking 
for a particular transform or something close, which he can 
modify. In the latter case, he would add his modified 
transform to the repository so others can benefit from his 
effort.  

2. In addition our repository is constructed to be language 
neutral. Hence, transforms can be written in any 
programming language or be web sites, wrapped as web 
services. 
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Itemfield’s ContentMaster 
(http://www.itemfield.com/products/overview1.aspx) or Informatica’s 
PowerCenter (http://www.informatica.com) 



3. We are leveraging the Postgres DBMS both as the repository 
and as a platform to execute the transformations. Using this 
technology, we can perform bulk transformations inside the 
DBMS where transaction management and powerful queries 
can be leveraged. This approach is in contrast to current 
ETL tools, which are external to databases. 

3. MORPHEUS 2.0 
We have initial experience with using the Morpheus system 
ourselves and have given several demos to persons with real 
data integration problems (mostly CIOs of Boston area 
companies). In addition, we have demoed the system at 
SIGMOD 2006. This experience has motivated a significant 
redesign, which is now operational. Salient points of Morpheus 
2.0 are discussed in this section. 

3.1 Crawler 
One CIO of a large conglomerate reacted to the Morpheus demo 
by saying "this tool would be very helpful, if all of our existing 
transforms were in the repository. However, I don't see an easy 
way to justify the effort of manually finding, documenting and 
registering them". 

To deal with this issue, we have built a crawler, which can look 
for transforms either inside an enterprise or across the public 
internet. On the public web the crawler looks for web sites with 
form-oriented interfaces and with trim on the web page that is 
indicative of a web service. The crawler outputs such web pages 
to a human, who assembles the required Morpheus metadata for 
the service. Such web services expect an instance of an input 
data type and respond with an instance of an output data type. 
As such, a web service is exactly an element of our semantic 
transform architecture, albeit one that uses another language for 
implementing the transform on a remote site. Hence, they can be 
wrapped by our existing Morpheus callouts for Postgres. 

In addition, either within the enterprise or across the web, our 
crawler can look for source code files in a specific language, 
right now either Java or Web Service Description Language 
(WSDL). In WSDL mode, the crawler parses each acquired file 
with a .wsdl extension looking for interface information 
describing all publicly available functions, data type information 
for all message requests and message responses, address 
information for locating the web service and binding 
information about the transport protocol to be used. With this 
information, a connection to the web service can be established 
through SOAP8 and execution of the available functions can be 
performed. Such execution information can help a human to 
evaluate the usefulness of the service and determine whether it 
should be registered in the Morpheus repository. 

In Java mode our crawler looks for .java source code files. The 
crawler parses the input and output data type specifications, and 
looks for comments in the code that indicate the purpose of the 
routine. It also looks for documentation and read_me files. The 
file is downloaded and compilation is attempted. If successful, 
each method is identified as a candidate registration with 
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Morpheus. As with the WSDL mode, the user has the ability to 
dynamically call each method and inspect the values returned. 
All of this information can be used by a human in the Morpheus 
registration process. 

When looking for form-oriented web services, the crawler 
parses HTML for key elements that identify the page as a form. 
Such elements are the form tag, entry fields (text boxes, list 
boxes, etc) and selection fields (submit or search buttons, 
selection menus, etc). Once a form has been identified, the 
keywords of the page (meta data, form name, button names, 
etc), the input data type and output data type are collected. In 
addition, sample data is submitted to the form, and (input, 
output) pairs generated. As with candidate Java and WSDL web 
services, this information is presented to a human to more 
quickly ascertain usefulness and to facilitate resulting 
registration. 

Currently, our crawler requires a user to manually place each 
web service in a classification hierarchy. However, we have 
begun automating this process by examining the documentation 
field in the WSDL file and performing a keyword-oriented 
relevance based ranking to classification hierarchy elements. 
We will also investigate adding a web service to multiple 
categories if matches in each category reach a user-defined 
threshold. 

At this time, the crawler is operational, but only searching and 
locating WSDL objects. The implementation of identifying 
forms and Java files will be completed soon. We have tested the 
current version of the crawler on the public internet for the past 
week. The examination of 225,000 URLs yielded only 235 
WSDL objects. Of these, 220 were useful web services. As 
WSDL objects were found, our human cataloger required an 
average of 30 seconds to reject an uninteresting web service and 
3 minutes to register a useful one. We are continuing to crawl 
for WSDL objects and anticipate that Java and form-oriented 
searches will provide a much greater number of useful web 
services. 

We are about to try our enterprise crawler inside the firewall of 
a major corporation. Included in this trial will be our 
implementation of identifying useful forms and Java files. Our 
results on both the public and private networks will be available 
in the final paper. 

3.2 Data as a Browsing Dimension 
A frequently requested capability is to locate transforms in our 
repository from specification of their input-output properties. 
For example, a user might know that the value 27.3 can be 
accepted as input and maps to an output value between 62 and 
64. As such, users would like to find transforms based on their 
input/output characteristics. In Morpheus 2.0 the (input, output) 
pairs are recorded in Postgres every time a transform is 
executed, along with the running time of the transform, which is 
used by the TransformScout to be discussed in Section 3.4.  

To facilitate browsing by data values, we have provided a 
screen whereby the user can enter into a form a list of values or 
value ranges for either input or output. The form is transformed 
into a Postgres table, and a series of queries are run to find the 
transforms that fit the data. 



Although we could run a single query to perform the required 
work, it is prohibitively expensive. Hence, we first eliminate the 
transforms that fail to match the users input or output data types. 
Second, we ensure that all tables are sorted in value order of the 
input data types. Having each value or value range in the user’s 
specification, allows us to quickly discard transforms that do not 
have a recorded input value in the appropriate range. For ones 
which qualify, we can then match the output values quickly. 

It is entirely possible that there is no recorded data that matches 
the user request. Hence, we also allow the user to put Morpheus 
in data collection mode. Here, Morpheus automatically executes 
potential transforms with artificial data in the range specified by 
the user request, and examines the output data for a match. 
Although slower than the default mode, this allows Morpheus to 
check all transforms, rather than just those that have previously 
recorded (input, output) pairs in the required range. 

Lastly, Morpheus can also perform the automatic execution 
noted above in background mode. In this case (input, output) 
pairs based on artificial data are collected using otherwise idle 
cycles. Our current algorithm runs round-robin to ensure that the 
number of (input, output) pairs for all transforms is 
approximately the same. Clearly, a more sophisticated algorithm 
is possible. 

3.3 Search by Lineage 
One of the common themes that we have observed from industry 
interviews is a desire to incorporate lineage information into 
Morpheus. This reflects a desire to find transforms that have 
been derived from a “seed” transform by one or more 
modifications. To support this sort of search, Morpheus notes 
when a user modifies a transformation into a new one, and adds 
a record to a Lineage table indicating that the revised one is a 
direct descendent of the original one. Also, since a user can 
incorporate multiple existing transformations into a new one, the 
derivation (lineage) history stored in the Lineage table is a 
graph. 

We have converted Morpheus to allow browsing and searching 
on this graph. A user can search the graph for all transforms that 
are descendents or ancestors of a given transform and within a 
specific graph distance. We are exploring more sophisticated 
metrics to compute lineage distance that are based on other 
information. We are especially interested in distance metrics 
that depend on the degree of code similarity between two related 
transforms. Hence, distance would be smaller for a transform 
that had made fewer changes to a transform than one that had 
modified it more extensively.  

Notice that much of the literature on lineage has focused on data 
lineage, for example Trio [13]. In contrast, Morpheus deals with 
code lineage. Hence, the information stored and the queries that 
deal with lineage in the two cases are quite different. 

3.4 Search for Composite Transform 
A fourth capability requested by many of the people who have 
seen Morpheus was to specify an input data type and an output 
data type and have Morpheus find either: 

1. A ranked ordering of composite transforms that map input 
to output through some collection of intermediate data 
types. 

2. A ranked order of “partial” collections of transforms that 
map from input to output through a collection of 
intermediate nodes as above. However, one or more of the 
transforms along this path has not been defined. Hence, the 
user can get the transform he wants by a composition of 
existing transforms if he defines the missing one(s). 

We have implemented a facility called TransformScout (TS), 
which accomplishes these two capabilities. Basically, TS 
searches a graph whose nodes are data types and whose edges 
are existing transforms. Each edge in this graph is marked with 
a cost function of the average running time of the associated 
transform. The first feature is supported by finding all connected 
paths from a given input data type to an output data type. This is 
a standard graph search problem on a graph which may have 
thousands of nodes, for which we are using an A* algorithm. 
Both running time and memory usage can become problematic 
using A*. In the worst case, both are exponential in the number 
of nodes in the graph. We use a memory bounded variant of A* 
to limit complexity, heuristically discarding partial paths when 
necessary using the following functions. Any given partial path, 
X, has a priority determined by: 

• F(X), the sum of cost functions for each edge in the path. 
This is a proxy for the cost of the path.  

• H(X), a heuristic estimate of the minimal cost to reach the 
target data type from X. This estimate is based on the 
similarity between the data type at the end of path X and 
the target data type. 

If multiple complete paths are found, we first compose stored 
(input, output) pairs to ascertain if the multiple paths are 
semantically identical. If none exist, then we execute the 
functions to produce (input, output) pairs that can be composed.   

The result is a collection of semantically distinct composite 
transforms. Each composite transform may have multiple 
implementations (paths from input to output) which Morpheus 
must rank. This is accomplished by a metric which takes into 
account computational performance and software quality. The 
first portion of the metric is obtainable using F(x) above. The 
second is supported by allowing users to review a transform and 
indicate their quality rating, as well as report bugs.   Searching 
for an incomplete path uses the same logic discussed for 
connected paths. There are simply more paths which must be 
considered. 

We are in the process of evaluating our algorithms on a 
collection of about 200 data types concerning US government 
entities (e.g. Social Security Administration, Department of 
Education, Amtrak, Medicaid, and Internal Revenue Service). 
For these entities, we have wrapped about 100 functions that are 
publicly available on the web and registered them as transforms 
in Morpheus. For example, consider two data types in this 
collection: 

• SSA (Social Security Administration) profile data type. 
This data type contains, among other things, the history of 
contributions to date. 



• RBE (Retirement Break Even) age; i.e., the age at which 
the lifetime sum of future benefits is maximized. 

RBE is calculated by statistically computing the average age of 
death of the individual, and computing the current value of 
his/her lifetime payout, and then finding the retirement year in 
which this number is maximized. 

There are two transforms which operate on the SSA data type 
and produce benefits information, a Quick Benefit Calculator 
and Detailed Benefit Calculator9. There is only one transform in 
the system that produces Retirement Break Even Age, but it 
operates on an intermediate data type. 

Hence, besides writing the complete transform from scratch, 
there are five partial paths which use some of the available 
transforms. TransformScout produces a ranked list of these 6 
alternatives. 

We plan experiments on a variety of these kinds of problems to 
compare the answers generated by our tool with those generated 
by a knowledgeable human. Results of these experiments will 
be available by September. 

3.5 Search of the Classification Hierarchy 
Using the DMOZ10 hierarchy, a subset of the semantic web, we 
have built a taxonomy of general and domain-specific terms that 
describe the semantics of transforms and data types. Our 
implementation leverages the DMOZ structure since we have a 
large source of potentially uncategorized information which 
needs to be linked in a user modifiable hierarchy. For every new 
transform or data type that is entered into the repository, the 
user selects the terms in the taxonomy relevant to the new item. 
The terms chosen are then used as labels. The resulting category 
browser provides a compact search structure that complements 
the more rudimentary string matching using textual descriptions 
which Morpheus also supports. The DMOZ hierarchy also gives 
us the benefit of using a framework which is under active 
extension. 

In our approach, when the search begins, the user is presented 
with the root level of the category list. After the user selects a 
category, the subcategories under this category expand into 
view. As additional categories are selected, the process 
continues and the user moves deeper into the hierarchy. When a 
category is selected, the associated transforms and data types are 
displayed within the Morpheus browsing model. The user may 
also extend the DMOZ taxonomy with his own categories by 
adding new nodes. 
Our DMOZ hierarchy is the initial perspective presented to the 
user. However, Morpheus is extendible, so additional 
classification hierarchies can be added. This merely requires 
uploading a file containing the user-defined taxonomy. 
Additional taxonomies are stored in separate Postgres tables. 

Moreover, the user can dynamically switch hierarchies. If the 
current focus is a transform or data type, then the display is 
redrawn showing the location of the specified object in the new 
                                                                 
9 www.ssa.gov/ 
10 www.dmoz.org/ 

hierarchy. If the current focus is a descriptive term in the 
hierarchy, then the search must start at the root node of the new 
hierarchy. 

3.6 Browsing Model 
Our current browsing model allows a user to “wander” the 
repository in multiple dimensions. However, this model does 
not correspond with what users have indicated they want. Users 
typically know various pieces of information about the 
transform they would like to find. For example, they might 
know it was written by someone in department 27, uses a 
lookup table, and maps 27.3 into a number between 62 and 64.  

This search requirement is best supported by allowing a user to 
specify search criteria in multiple dimensions at once. Such 
multi-faceted search is very different from the multi-
dimensional browsing supported in Morpheus 1.0. In addition, 
the user may have several multi-faceted searches open at one 
time. If a search yields too many candidates, he may want to 
interactively refine the search. Hence, result sets of previous 
queries must be remembered so that subsequent refinement is 
possible. Moreover, we support union and intersection on results 
sets, so that they can be combined together, where desirable. 

This capability is foreign to SQL, which has no notion of 
refining results, but it is a popular information retrieval 
paradigm. Since every search in Morpheus turns into some 
Postgres query, we simply remember the query that corresponds 
to every result set and then AND on extra predicates to refine 
the result.   

A simplistic model would deal with each new predicate with 
equal weight.  However, it is likely that some refinement 
dimensions are more important than others, and a relevance 
concept should be introduced to model the differences in weight 
between the various dimensions. 

3.7 Putting It All Together 
We have converted the GUI in Morpheus to support the notion 
of result sets and multidimensional filtering. To begin his 
search, the user specifies a current focus, which is either empty 
or a result set, as noted in the lower left-hand window of the 
search screen in Figure 2. Then, he specifies the dimension in 
which he desires to add filtering in the upper right-hand window 
of the screen shown in Figure 2. Since different search 
dimensions may have radically different types of visualizations, 
the upper left-hand window is overlaid with a dimension-
specific window. In Figure 2 we show the screen for navigating 
the category hierarchy. 



 
Figure 2. The Root Search Screen 

 
Figure 3. The Author Browse/Search Visualization 

There is a “Google style” panel for keyword search of the meta 
data, a hierarchy browser for searching the classification 
hierarchy, a form-oriented text system to enter predicates on 
specific fields, a data panel to enter (input, output) pairs for data 
search, and a panel for composite search. We also plan but have 
not yet implemented multi-faceted GUI panels that allow filters 
on multiple dimensions to be specified at once. The 
visualization to support browsing and filtering by author name is 
shown in Figure 3. 

In this way, a user can refine or expand any result set by altering 
the predicates used to construct it. When he clicks “run”, the 
new result set is materialized, which he can either discard or 
register as a new result set. 

4. RELEVANT PREVIOUS WORK 
Information integration has been widely studied over the last 
quarter century from various points of view. In fact, the search 
engine Google has 104,000 citations on the topic of federating 
disparate databases. Many companies have built distributed data 
bases, object-oriented data bases, gateways, and/or adaptors and 
thereby have offerings in this area. In the 1990’s, Cohera 
extended this support to include user-defined functions to 
specify mappings from local schemas to a global schema. IBM’s 

distributed data system, Data Joiner [14], now called the 
Information Integrator [6], contains the same sort of capabilities, 
which were first explored in the TSIMMIS [15] and Garlic [16] 
projects. 

There are numerous tools in the Extract-Transform-Load (e.g., 
Informatica’s Power Center11, Ascential’s Data Stage12, Visual 
Importer by DB Software Laboratory13) and data migration 
space (e.g., DTM Migration Kit by SQL Edit14, SQLWays by 
Ispirer Systems15), which support the transformation of data 
from one representation to another. However, none of these 
tools are currently capable of supporting management and reuse 
of transformations as proposed in Morpheus. 

Also, the research community has been incredibly active on this 
topic with efforts ranging from view integration [17], sharing 
architectures [18], sharing languages [19] including multi-
source query processing [20], schema matching [21], data 
translation [22] and data cleansing [23]. Hence, in this section 
we can only survey a portion of this space at a very high level. 

Table 1 indicates our view of the various approaches to 
information integration. Here, we see a standard “quad chart” 
with columns for text and data integration. The corresponding 
rows indicate whether the goal is to find matching information 
or to transform source information into target information. 

Table 1. Information Integration Approaches 

 Text Data 

transform LANGUAGE  
TRANSLATION OUR APPROACH 

match TAXONOMIES, 
ONTOLOGIES SCHEMA MATCHING 

The lower left hand field deals with text matching, for example 
determining that “rubber gloves” mean the same thing as “latex 
hand protectors”. There has been considerable work on 
ontologies and taxonomies that address this issue [8, 24]. In fact, 
some argue that the semantic web [11] is largely aimed at this 
box.   

In the lower right hand field, there has been substantial work in 
performing schema matching [9, 25], i.e., determining that the 
attribute “wages” in your schema matches the attribute “salary” 
in my schema. Given the range of differences that exist between 
the schemas, identifying the mappings has for the most part 
been a time-consuming and mostly manual task. Some research 
has been done on automating this task, for example GLUE [26], 
LSD [27], IMAP [28] and Corpus-Based Matching [29]. These 
projects have focused on developing techniques, frequently 
based on machine learning algorithms, for identifying semantic 
mappings with minimal human involvement. In contrast, 
Morpheus provides a powerful toolkit whereby a human can 
complete the task much more efficiently. 

In the upper left hand field appear technologies such as 
language translation. In the THALIA project [30], which 
                                                                 
11 www.informatica.com/products/powercenter/default.htm 
12 www.ascential.com/products/datastage.html 
13 www.sqledit.com/mk/ 
14 www.sqledit.com/mk/ 
15 www.ispirer.com/products/ 



assembled a test bed of more than 50 schemas from Computer 
Science departments around the world dealing with courses, 
instructors, meeting times, prerequisites, and so on, the 
researchers found that text fields were inevitably in the native 
language spoken in the country where each university was 
located. Hence, to find courses on databases in the USA or 
Germany, one had to translate German course descriptions into 
English or to translate “Datenbanken” into “database”.   

Lastly, the upper right hand field deals with data 
transformations. For example, a salary in a French data base 
would be expressed as an after tax quantity in Euros and would 
include a lunch allowance. The corresponding salary in a USA 
database would be gross, before taxes, and would not include a 
lunch allowance. A fairly complex transformation is required to 
one or both of these objects to make them comparable in a data 
warehouse or a federated information system. Historically the 
purpose of extract, transform, and load (ETL) systems, such as 
Informatica and Ascential (now owned by IBM) was to address 
the upper right hand field. 

The purpose of the Morpheus project is to address the upper 
right hand field better than ETL systems. As such, it 
complements the technologies being developed to address other 
boxes in Table 1. Some projects attempt to build 
transformations automatically, for example, the context 
mediation approach introduced in [31]. This approach will work 
for fairly simple transformations, for example currency 
conversions, but is unlikely to succeed in more complex cases, 
such as the salary conversion problem noted above. Our 
approach, in contrast, is to provide tools to assist a human in 
constructing and reusing transformations.  

Although information integration has been widely addressed, we 
believe that it is far from solved. For example, we know of no 
system that can score well on the THALIA benchmark and the 
continuous stream of war stories about the integration 
challenges in industry are further testament to the inadequacies 
of current solutions. 

5. CONCLUSIONS AND FUTURE WORK 
This paper has presented the main constructs in Morpheus 2.0. 
At a high level, there are three main contributions enhancing the 
original system. 

First, the implementation of a crawler to assist in transform 
discovery, either over the web or inside an enterprise. Currently, 
Morpheus 2.0 performs automatic discovery and manual 
registration. We are working toward more automatic 
registration. 

Second, a search paradigm, based on result sets and query 
refinement has been created to replace the browsing-oriented 
paradigm in Morpheus 1.0. This allows a user to have a focus 
which is a collection of records, rather than the previous scheme 
which supported moving around in N-dimensional space. 

Lastly, new search primitives are incorporated. These include 
filtering on transform lineage, filtering on input-output 
characteristics, and the ability to find composite transforms that 
fully or partially solve the user’s problem. 

We expect to carefully evaluate Morpheus 2.0 with real world 
users. Without a doubt, there will be a Morpheus 3.0 to address 
shortcomings discovered. We also expect to move ahead 
aggressively with automatic discovery and registration of 
transforms, since the amount of manual effort required currently 
is an impediment to adopting the Morpheus approach. 
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