
Morpheus 2.0: A Data Transformation Management
System

Pete Dobbins1, Tiffany Dohzen2, Christan Grant1, Joachim Hammer1, Malachi Jones1, Dev
Oliver1, Mujde Pamuk2, Jungmin Shin1, Mike Stonebraker2

1CISE Department, University of Florida
PO Box 116120

Gainesville, FL 32611-6120
Phone: (352) 262 - 7383, country code: 001

{pjd, cgrant, jhammer, mjones, doliver,
jshin}@cise.ufl.edu

2CSAIL, The Stata Center
Massachusetts Institute of Technology

Cambridge, MA 02139
Phone: (603) 714 - 4451, country code: 001

{dohzen, mujde}@mit.edu, stonebraker@csail.mit.edu

ABSTRACT

The authors have previously built the Morpheus Data
transformation system. Based on feedback from demo-ing the
system at SIGMOD 2006 as well as to numerous CIO’s and
researchers at IBM and Microsoft, we have completely
redesigned the system to facilitate a state-based browsing
paradigm, the ability to filter transforms based on lineage and
input-output properties and best-fit search for composite
transforms. Also included is a novel crawler to search for
transforms of interest either within an enterprise or across the
web. The result is Morpheus 2.0, which is now operational, and
is described in this paper.

1. INTRODUCTION
Information integration has been listed on all four self
assessments of the DBMS community [1-4] as an “achilles heel”
of computing. Basically, large enterprises have hundreds of
operational systems, which are usually constructed by
independent groups at different times, and a desire to share
information between these systems. This requires integrating a
large collection of independently written data base schemas, a
task that most enterprises find enormously challenging. The
industry thrust toward web services and the internet will
increase the scope of this information integration problem from
inside a single enterprise (intra-enterprise) to among enterprises
(inter-enterprise). This thrust will make information integration
that much more daunting.

At the same time, the need for information integration is not
limited to industry. The internet is also becoming the preferred
method for disseminating scientific data from a variety of
disciplines and domains such as astronomy, biology, the
geosciences, public health, and health care. The number of
independently developed schemas and databases is very large
and scientists have been struggling to keep up with this wealth

of information. For example, in bioinformatics, the need to
access and integrate data from the many and typically large
genomics repositories which use a large number of data models,
languages, and formats is hampering the discovery of genes and
their functions. Given the complexity of the genomics data
integration problem, systems such as GUS (Genomics Unified
Schema) at the University of Pennsylvania [5], which provides
an integrated warehouse for portions of GenBank, EMBL,
DDBJ, Swiss-Prot, and dbEST, remain the exception.

This schema integration problem exists when the goal is to
integrate information by extracting information from operational
systems, transforming it in some sort of middleware ETL
system and then loading it in a data warehouse. It exists equally
when the goal is to share live information between operational
systems through some sort of federated data base system, such
as the IBM information integrator [6] or BEA’s WebLogic
Integration Suite [7].

There are three possible approaches to schema integration,
which we explore in the following three subsections.

1.1 Schema Matching
Some researchers (such as [8-10]) have focused on the schema
matching problem. For example, a positive result from such
efforts would be to discover that wages in one human resources
schema matched salary in a second schema. Although such
research is well-intentioned, we believe that it only solves a
small portion of the overall data integration problem.
Specifically, independently constructed schemas never have
identical data elements. For example, wages in the first schema
might represent the salary of a French worker, which would be
expressed in Euros, net-after taxes and include a lunch
allowance. In contrast, salary might represent the
compensation of a U.S. worker, which would be expressed in
U.S dollars, gross-before taxes, while not including a lunch
allowance. Hence, syntactically matching the numbers in the
two fields, wages and salaries, will produce garbage, since they
represent different semantic objects, respectively U.S
compensation and French compensation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

There are several reasons why identical elements do not exist.
First, it is rarely, if ever, the case that two schemas use the same
representation for the same semantic construct. There are many
representations for calendar dates. All of the following are
reasonable representations for one of our birthdays:

• October 11, 1943
• 10/11/43
• 11/10/43
• Oct. 11 1943
• 11-10-43

Obviously, one cannot merely match two attributes, even if they
have the same or similar names, because they have different
representations. That produces a composite column with
“jumble” in it. Instead, one must define a transform that will
map the individual data elements in one representation to that
used by the second schema. Unless an organization has
company-wide standards for the representation of common data
elements, it will face this issue.

A second more difficult issue occurs when the two attributes do
not semantically mean the same thing, even if they have a
common representation. For example, “two days” is a
reasonable time value that could appear in a time-oriented
column in two different schemas. However, it can semantically
mean any of the following:

• Two calendar days
• Two business days (excluding weekends and holidays)
• Two Federal Express days (which excludes Sundays)
• Two Wall Street trading days (which excludes weekends

and certain other days)
• Two London trading days (which excludes weekends and

another collection of days)

Again, a transform is required to map between values in the
different schemas to produce a representation with a common
meaning.

1.2 Standards
Obviously, a solution to schema integration is to enforce
company-wide standards on representation and meaning. Even
more obviously, this is a very useful exercise for any company.
The less semantic diversity that exists, the easier the data
integration problem will be. However, there are several major
impediments to the success of standards.

First, this will not help legacy systems, which are already
deployed in large numbers. Retrofitting these to obey after-the-
fact standards is a major undertaking. Second, successful
standards require the enterprise to have the foresight to
standardize the right things. For example, a few years ago one
of us consulted for a large multi-national bank, which had
several autonomous divisions around the world. A recent
request from customers was to receive a single integrated world-
wide bank statement. Since the institution had not planned for
this requirement, there was no single world-wide identifier for a
customer. Since a given customer has different legal names in
different countries with different addresses, it proved impossible
to retrofit this capability, other than by expensive manual
human-to-human discussions between bank personnel and
customer personnel. A third impediment to standards is they are
extremely challenging to implement across enterprises. Not only
is there often an inability to co-operate, but also in every
vertical market we can think of, there are multiple standards.
Hence, there is an issue of which one to choose.

Effective standards appear to come in situations where there is a
market elephant which can drive them (for example, between
Dell and Walmart and their suppliers) or where there is
substantial market advantage to co-operation (for example
airline reservation systems). Even when an industry is behind
standards, for example RosettaNet1 in the electronics industry,
they have proved elusive.

1.3 Knowledge Representation and the
Semantic Web
A third approach to data integration is to construct a rich enough
knowledge representation language so that schema elements,
such as wages and salaries, can be described precisely, thereby
allowing an automatically generated transformer. This has been
the goal of knowledge representation languages, such as KIF2
and KQML3, and has been pursued (in our opinion with limited
success) for at least the last 30 years. The latest incarnation of
this avenue of effort is the semantic web [11].

One would be foolish to argue that this line of effort cannot
produce results. However, we merely indicate that results have
been elusive to date.

1.4 Our Past Experience
Some of the authors began a collaboration following the
publication of the most recent data base self-assessment [1].
That report suggested building a testbed of data bases, so that
researchers who wanted to explore ideas concerning data
integration would not have to go to the effort of assembling data
bases to integrate.

We took on the task of building such a testbed, and assembled a
collection of 50 schemas that represented data on Computer
Science instruction at different universities in several countries.
These data bases contained information on courses, instructors,
prerequisites, meeting times, credit and the like. Our system, the
THALIA information integration testbed4, is publicly available
for use and includes a collection of integration tasks (challenge
queries) that must be performed as well as an evaluation
framework to score any given tool [8].

The exercise of building THALIA has colored our thinking on
data integration extensively. A few of our challenge queries can
be solved merely by matching attributes in different schemas,
for example, the task of identifying specific course numbers in
the various schemas. However, the overwhelming majority of
the tasks require dealing with semantically heterogeneous data
elements. These include:

• Character strings in different languages (German, English,
etc.)

• Course credit (semester units, quarter units, etc.)

1 http://portal.rosettanet.org/cms/sites/RosettaNet/
2 logic.stanford.edu/kif/specification.html
3 www.cs.umbc.edu/kqml/papers/kqmlspec.ps
4 www.cise.ufl.edu/servlets/thalia.html

• Requirements (sophomore standing is not meaningful in
Europe)

• Lab credit (some universities have this concept, some do
not)

• Meeting time (many different representations, e.g. period 1,
time interval, etc.)

In summary, the vast majority of the THALIA tests required
transformations to be written that are well beyond the possible
scope of knowledge representation or schema matching. Hence,
we believe that the most profitable approach to data integration
would be to build a framework and toolkit for transform
construction as well as a repository for previously constructed
transforms to facilitate reuse of previously written ones. The
authors built an initial prototype of such a system, the Morpheus
data transformation management system over the last 18
months. In Section 2 we briefly review the capabilities of this
initial system. Then, in Section 3 we discuss a collection of
major improvements, which collectively are called Mopheus
2.0. Relevant work by others is treated in Section 4, along with
some suggestions for additional Morpheus improvements.

2. THE MORPHEUS DATA
TRANSFORMATION SYSTEM
Our basic goals for Morpheus 1.0 were two-fold:

1. Make it easy to write transforms
2. Make it easy to find and reuse transforms written by others

To this end, we built a transform construction tool (TCT) as
well as a searchable repository that holds transforms. These
two components are integrated into the Morpheus data
transformation management system described below.

Figure 1 shows an architecture diagram of the Morpheus
system. A human interacts with our browser and GUI for
building transforms, which are executed and stored inside a
Postgres DBMS5. We take the point of view that every
transform maps a Postgres data type into another Postgres data
type. Hence, we store information on data types and transforms
in Postgres tables, which can be browsed and modified in the
ways described below.

2.1 GUI and Browser
The heart of our approach for reusing transforms is a
sophisticated browser that allows a client to explore the
transform repository. Our approach borrows heavily from
Squirrel [12] developed two decades ago. Like Squirrel,
Morpheus objects (transforms including their source and target
data types) exist in a multidimensional space. A client can enter
this space in multiple ways to establish a Morpheus object as his
current focus. Then, he can browse to nearby objects along any
of the supported dimensions. Changing his focus to a new object
of interest allows the user to continue browsing, narrowing in on
an ultimate object of interest.

5 www.postgresql.org/

Figure 1. Architecture of the Morpheus System

The current Morpheus dimensions include:

• A classification hierarchy for source and target data types.
Here, “up” (less specificity) and “down” (more specificity)
are the two dimensions of browsing movement.

• A classification hierarchy for transforms. Again “up” and
“down” are well defined.

• Focus. If the current focus is a transform, the client can
move to the source or target data type. If the current focus
is a data type, the client can browse the transforms that
accept or produce the data type.

• Textual similarity. Similarity of textual description is
another dimension in which browsing is supported.
Similarity searching is supported in our prototype by the
Lucene text search engine6, which is integrated with
Postgres. This engine supports exact matches as well as
similarity-based matches on any of the meta-data stored for
Morpheus objects, including the textual description.

Using the Morpheus browser, a client enters the repository by
starting at the root of a classification hierarchy or by issuing a
keyword-oriented search. The result is a list of one or more data
types or transforms from which the user can select the current
focus for subsequent searching.

If a user clicks on a category, the Morpheus objects, which are
nearby in that category, appear on the screen. A user can click
on an object to change his current focus, and the cycle repeats.
Hence, the client browses by moving his current focus in any
supported dimension, thereby moving to an object of interest.

Once an interesting object is identified, Morpheus allows the
client to zoom into the object. Increasing amounts of detail are
given, ultimately providing the visual representation for the
transform or complete information on a data type.

6 lucene.apache.org/

2.2 TCT
In our opinion requiring a user to drop into a conventional
programming language, such as Java or C++, to construct
transforms, will automatically make the job of building
transformations very tedious. Even simple transforms require
tens to hundreds of lines of code in a conventional programming
language.

Instead, we have assembled a palette of high level building
blocks (workflow primitives) that can be wired together in a
composite workflow to accomplish a given transformation task.
We have built a compiler for this workflow language, TCT, to
generate an efficient executable representation.

The workflow primitives in the current Morpheus prototype
include the following:

• A computation primitive, which performs standard numeric
transformations (e.g., metric conversions).

• A control primitive, which supports branching within the
transform based on the value of a variable or result of an
expression.

• A lookup table primitive, which maps an object in one field
to an object in another field (e.g., letter grade to numeric
grade).

• A macro primitive (superbox), which allows a user to
group several boxes together (inside a larger box) as part of
a high-level transform (macro). This is also a way to hide
some of the details of a transformation.

• Postgres user-defined functions, so transforms can be
composed out of existing ones.

• A predicate primitive, which maps sets (ranges) of values
to related sets (e.g., University class status such as
freshman to units taken, ‘> 0’, ‘>35’, and so on) based on a
user-defined predicate.

• A re-arranger, which supports creation of transforms by
allowing the user to visually manipulate characters and
strings.

• A wrapper primitive for external call-outs (e.g., to Web
services).

The current prototype allows a user to start either with a blank
canvas or with an existing transformation from the repository.
He can then edit the workspace, adding, deleting and rewiring
objects of interest. When he is satisfied, he can register the
transform in the Morpheus repository. In addition, there are
facilities for testing transforms on individual input data
elements, entered from the GUI or on tables of objects stored in
Postgres.

Transforms are stored in two representations. The first is an
XML data structure that corresponds to the diagram. This
representation is chosen since it is easy to edit. The second
representation is a Java function, which is efficient to execute.
However, there is no requirement that transforms be written
using the TCT. Java code can be written, compiled outside of
the system, directly entered into the data base, and then
incorporated into a Morpheus transform. Moreover, we expect
many transforms to be available as web services.

2.3 Searchable Repository
All Morpheus information is stored in Postgres tables and our
browser is thereby data base-oriented. Storing transform and
data type information in a database requires a schema, and the
construction of the Morpheus schema is a conventional data
base design problem. The metadata we currently support
includes:

• Who constructed the transform
• When it was constructed
• What data type it accepts as input
• What data type it produces as output
• A textual description of the semantics of the transform
• Position in a classification hierarchy

In addition, source and target data types are registered as
Postgres data types, and transforms become user-defined
Postgres functions. In this way, conversions occur inside
Postgres by adding data to the data base and then running a
query which invokes a transform.

If the data types of the transform have not been registered in
Postgres, this step must be performed first. Next, the transform
is registered as a user-defined function. In order to execute a
transform a client provides one or more data elements of the
source data type. With this input, a query is executed to produce
the desired target result, which consists of one or more data
elements of the target data type.

The reason to leverage Postgres is to simplify the run-time
environment, which is all inside Postgres, as well as to use
Postgres query and storage facilities, in case large amounts of
data must be transformed in bulk. Over time, we expect Postgres
to support horizontal partitioning, which will allow bulk
transformations to be performed in parallel on multiple
machines for added performance.

Our approach to data transformation has points of similarity
with existing ETL tools7 in that we provide a high-level
transform tool. However, we differ from ETL vendors and
existing transformation tools in several important ways:

1. We provide a searchable repository in which transforms are
stored, along with powerful repository browsing tools
allowing our users to search for existing transformations
along several dimensions. Our idea is that a client with a
transformation problem will browse our repository looking
for a particular transform or something close, which he can
modify. In the latter case, he would add his modified
transform to the repository so others can benefit from his
effort.

2. In addition our repository is constructed to be language
neutral. Hence, transforms can be written in any
programming language or be web sites, wrapped as web
services.

7 For example, Altova’s Mapforce

(http://www.altova.com/products/mapforce/data_mapping.html),
Itemfield’s ContentMaster
(http://www.itemfield.com/products/overview1.aspx) or Informatica’s
PowerCenter (http://www.informatica.com)

3. We are leveraging the Postgres DBMS both as the repository
and as a platform to execute the transformations. Using this
technology, we can perform bulk transformations inside the
DBMS where transaction management and powerful queries
can be leveraged. This approach is in contrast to current
ETL tools, which are external to databases.

3. MORPHEUS 2.0
We have initial experience with using the Morpheus system
ourselves and have given several demos to persons with real
data integration problems (mostly CIOs of Boston area
companies). In addition, we have demoed the system at
SIGMOD 2006. This experience has motivated a significant
redesign, which is now operational. Salient points of Morpheus
2.0 are discussed in this section.

3.1 Crawler
One CIO of a large conglomerate reacted to the Morpheus demo
by saying "this tool would be very helpful, if all of our existing
transforms were in the repository. However, I don't see an easy
way to justify the effort of manually finding, documenting and
registering them".

To deal with this issue, we have built a crawler, which can look
for transforms either inside an enterprise or across the public
internet. On the public web the crawler looks for web sites with
form-oriented interfaces and with trim on the web page that is
indicative of a web service. The crawler outputs such web pages
to a human, who assembles the required Morpheus metadata for
the service. Such web services expect an instance of an input
data type and respond with an instance of an output data type.
As such, a web service is exactly an element of our semantic
transform architecture, albeit one that uses another language for
implementing the transform on a remote site. Hence, they can be
wrapped by our existing Morpheus callouts for Postgres.

In addition, either within the enterprise or across the web, our
crawler can look for source code files in a specific language,
right now either Java or Web Service Description Language
(WSDL). In WSDL mode, the crawler parses each acquired file
with a .wsdl extension looking for interface information
describing all publicly available functions, data type information
for all message requests and message responses, address
information for locating the web service and binding
information about the transport protocol to be used. With this
information, a connection to the web service can be established
through SOAP8 and execution of the available functions can be
performed. Such execution information can help a human to
evaluate the usefulness of the service and determine whether it
should be registered in the Morpheus repository.

In Java mode our crawler looks for .java source code files. The
crawler parses the input and output data type specifications, and
looks for comments in the code that indicate the purpose of the
routine. It also looks for documentation and read_me files. The
file is downloaded and compilation is attempted. If successful,
each method is identified as a candidate registration with

8 http://www.w3.org/TR/soap/

Morpheus. As with the WSDL mode, the user has the ability to
dynamically call each method and inspect the values returned.
All of this information can be used by a human in the Morpheus
registration process.

When looking for form-oriented web services, the crawler
parses HTML for key elements that identify the page as a form.
Such elements are the form tag, entry fields (text boxes, list
boxes, etc) and selection fields (submit or search buttons,
selection menus, etc). Once a form has been identified, the
keywords of the page (meta data, form name, button names,
etc), the input data type and output data type are collected. In
addition, sample data is submitted to the form, and (input,
output) pairs generated. As with candidate Java and WSDL web
services, this information is presented to a human to more
quickly ascertain usefulness and to facilitate resulting
registration.

Currently, our crawler requires a user to manually place each
web service in a classification hierarchy. However, we have
begun automating this process by examining the documentation
field in the WSDL file and performing a keyword-oriented
relevance based ranking to classification hierarchy elements.
We will also investigate adding a web service to multiple
categories if matches in each category reach a user-defined
threshold.

At this time, the crawler is operational, but only searching and
locating WSDL objects. The implementation of identifying
forms and Java files will be completed soon. We have tested the
current version of the crawler on the public internet for the past
week. The examination of 225,000 URLs yielded only 235
WSDL objects. Of these, 220 were useful web services. As
WSDL objects were found, our human cataloger required an
average of 30 seconds to reject an uninteresting web service and
3 minutes to register a useful one. We are continuing to crawl
for WSDL objects and anticipate that Java and form-oriented
searches will provide a much greater number of useful web
services.

We are about to try our enterprise crawler inside the firewall of
a major corporation. Included in this trial will be our
implementation of identifying useful forms and Java files. Our
results on both the public and private networks will be available
in the final paper.

3.2 Data as a Browsing Dimension
A frequently requested capability is to locate transforms in our
repository from specification of their input-output properties.
For example, a user might know that the value 27.3 can be
accepted as input and maps to an output value between 62 and
64. As such, users would like to find transforms based on their
input/output characteristics. In Morpheus 2.0 the (input, output)
pairs are recorded in Postgres every time a transform is
executed, along with the running time of the transform, which is
used by the TransformScout to be discussed in Section 3.4.

To facilitate browsing by data values, we have provided a
screen whereby the user can enter into a form a list of values or
value ranges for either input or output. The form is transformed
into a Postgres table, and a series of queries are run to find the
transforms that fit the data.

Although we could run a single query to perform the required
work, it is prohibitively expensive. Hence, we first eliminate the
transforms that fail to match the users input or output data types.
Second, we ensure that all tables are sorted in value order of the
input data types. Having each value or value range in the user’s
specification, allows us to quickly discard transforms that do not
have a recorded input value in the appropriate range. For ones
which qualify, we can then match the output values quickly.

It is entirely possible that there is no recorded data that matches
the user request. Hence, we also allow the user to put Morpheus
in data collection mode. Here, Morpheus automatically executes
potential transforms with artificial data in the range specified by
the user request, and examines the output data for a match.
Although slower than the default mode, this allows Morpheus to
check all transforms, rather than just those that have previously
recorded (input, output) pairs in the required range.

Lastly, Morpheus can also perform the automatic execution
noted above in background mode. In this case (input, output)
pairs based on artificial data are collected using otherwise idle
cycles. Our current algorithm runs round-robin to ensure that the
number of (input, output) pairs for all transforms is
approximately the same. Clearly, a more sophisticated algorithm
is possible.

3.3 Search by Lineage
One of the common themes that we have observed from industry
interviews is a desire to incorporate lineage information into
Morpheus. This reflects a desire to find transforms that have
been derived from a “seed” transform by one or more
modifications. To support this sort of search, Morpheus notes
when a user modifies a transformation into a new one, and adds
a record to a Lineage table indicating that the revised one is a
direct descendent of the original one. Also, since a user can
incorporate multiple existing transformations into a new one, the
derivation (lineage) history stored in the Lineage table is a
graph.

We have converted Morpheus to allow browsing and searching
on this graph. A user can search the graph for all transforms that
are descendents or ancestors of a given transform and within a
specific graph distance. We are exploring more sophisticated
metrics to compute lineage distance that are based on other
information. We are especially interested in distance metrics
that depend on the degree of code similarity between two related
transforms. Hence, distance would be smaller for a transform
that had made fewer changes to a transform than one that had
modified it more extensively.

Notice that much of the literature on lineage has focused on data
lineage, for example Trio [13]. In contrast, Morpheus deals with
code lineage. Hence, the information stored and the queries that
deal with lineage in the two cases are quite different.

3.4 Search for Composite Transform
A fourth capability requested by many of the people who have
seen Morpheus was to specify an input data type and an output
data type and have Morpheus find either:

1. A ranked ordering of composite transforms that map input
to output through some collection of intermediate data
types.

2. A ranked order of “partial” collections of transforms that
map from input to output through a collection of
intermediate nodes as above. However, one or more of the
transforms along this path has not been defined. Hence, the
user can get the transform he wants by a composition of
existing transforms if he defines the missing one(s).

We have implemented a facility called TransformScout (TS),
which accomplishes these two capabilities. Basically, TS
searches a graph whose nodes are data types and whose edges
are existing transforms. Each edge in this graph is marked with
a cost function of the average running time of the associated
transform. The first feature is supported by finding all connected
paths from a given input data type to an output data type. This is
a standard graph search problem on a graph which may have
thousands of nodes, for which we are using an A* algorithm.
Both running time and memory usage can become problematic
using A*. In the worst case, both are exponential in the number
of nodes in the graph. We use a memory bounded variant of A*
to limit complexity, heuristically discarding partial paths when
necessary using the following functions. Any given partial path,
X, has a priority determined by:

• F(X), the sum of cost functions for each edge in the path.
This is a proxy for the cost of the path.

• H(X), a heuristic estimate of the minimal cost to reach the
target data type from X. This estimate is based on the
similarity between the data type at the end of path X and
the target data type.

If multiple complete paths are found, we first compose stored
(input, output) pairs to ascertain if the multiple paths are
semantically identical. If none exist, then we execute the
functions to produce (input, output) pairs that can be composed.

The result is a collection of semantically distinct composite
transforms. Each composite transform may have multiple
implementations (paths from input to output) which Morpheus
must rank. This is accomplished by a metric which takes into
account computational performance and software quality. The
first portion of the metric is obtainable using F(x) above. The
second is supported by allowing users to review a transform and
indicate their quality rating, as well as report bugs. Searching
for an incomplete path uses the same logic discussed for
connected paths. There are simply more paths which must be
considered.

We are in the process of evaluating our algorithms on a
collection of about 200 data types concerning US government
entities (e.g. Social Security Administration, Department of
Education, Amtrak, Medicaid, and Internal Revenue Service).
For these entities, we have wrapped about 100 functions that are
publicly available on the web and registered them as transforms
in Morpheus. For example, consider two data types in this
collection:

• SSA (Social Security Administration) profile data type.
This data type contains, among other things, the history of
contributions to date.

• RBE (Retirement Break Even) age; i.e., the age at which
the lifetime sum of future benefits is maximized.

RBE is calculated by statistically computing the average age of
death of the individual, and computing the current value of
his/her lifetime payout, and then finding the retirement year in
which this number is maximized.

There are two transforms which operate on the SSA data type
and produce benefits information, a Quick Benefit Calculator
and Detailed Benefit Calculator9. There is only one transform in
the system that produces Retirement Break Even Age, but it
operates on an intermediate data type.

Hence, besides writing the complete transform from scratch,
there are five partial paths which use some of the available
transforms. TransformScout produces a ranked list of these 6
alternatives.

We plan experiments on a variety of these kinds of problems to
compare the answers generated by our tool with those generated
by a knowledgeable human. Results of these experiments will
be available by September.

3.5 Search of the Classification Hierarchy
Using the DMOZ10 hierarchy, a subset of the semantic web, we
have built a taxonomy of general and domain-specific terms that
describe the semantics of transforms and data types. Our
implementation leverages the DMOZ structure since we have a
large source of potentially uncategorized information which
needs to be linked in a user modifiable hierarchy. For every new
transform or data type that is entered into the repository, the
user selects the terms in the taxonomy relevant to the new item.
The terms chosen are then used as labels. The resulting category
browser provides a compact search structure that complements
the more rudimentary string matching using textual descriptions
which Morpheus also supports. The DMOZ hierarchy also gives
us the benefit of using a framework which is under active
extension.

In our approach, when the search begins, the user is presented
with the root level of the category list. After the user selects a
category, the subcategories under this category expand into
view. As additional categories are selected, the process
continues and the user moves deeper into the hierarchy. When a
category is selected, the associated transforms and data types are
displayed within the Morpheus browsing model. The user may
also extend the DMOZ taxonomy with his own categories by
adding new nodes.
Our DMOZ hierarchy is the initial perspective presented to the
user. However, Morpheus is extendible, so additional
classification hierarchies can be added. This merely requires
uploading a file containing the user-defined taxonomy.
Additional taxonomies are stored in separate Postgres tables.

Moreover, the user can dynamically switch hierarchies. If the
current focus is a transform or data type, then the display is
redrawn showing the location of the specified object in the new

9 www.ssa.gov/
10 www.dmoz.org/

hierarchy. If the current focus is a descriptive term in the
hierarchy, then the search must start at the root node of the new
hierarchy.

3.6 Browsing Model
Our current browsing model allows a user to “wander” the
repository in multiple dimensions. However, this model does
not correspond with what users have indicated they want. Users
typically know various pieces of information about the
transform they would like to find. For example, they might
know it was written by someone in department 27, uses a
lookup table, and maps 27.3 into a number between 62 and 64.

This search requirement is best supported by allowing a user to
specify search criteria in multiple dimensions at once. Such
multi-faceted search is very different from the multi-
dimensional browsing supported in Morpheus 1.0. In addition,
the user may have several multi-faceted searches open at one
time. If a search yields too many candidates, he may want to
interactively refine the search. Hence, result sets of previous
queries must be remembered so that subsequent refinement is
possible. Moreover, we support union and intersection on results
sets, so that they can be combined together, where desirable.

This capability is foreign to SQL, which has no notion of
refining results, but it is a popular information retrieval
paradigm. Since every search in Morpheus turns into some
Postgres query, we simply remember the query that corresponds
to every result set and then AND on extra predicates to refine
the result.

A simplistic model would deal with each new predicate with
equal weight. However, it is likely that some refinement
dimensions are more important than others, and a relevance
concept should be introduced to model the differences in weight
between the various dimensions.

3.7 Putting It All Together
We have converted the GUI in Morpheus to support the notion
of result sets and multidimensional filtering. To begin his
search, the user specifies a current focus, which is either empty
or a result set, as noted in the lower left-hand window of the
search screen in Figure 2. Then, he specifies the dimension in
which he desires to add filtering in the upper right-hand window
of the screen shown in Figure 2. Since different search
dimensions may have radically different types of visualizations,
the upper left-hand window is overlaid with a dimension-
specific window. In Figure 2 we show the screen for navigating
the category hierarchy.

Figure 2. The Root Search Screen

Figure 3. The Author Browse/Search Visualization

There is a “Google style” panel for keyword search of the meta
data, a hierarchy browser for searching the classification
hierarchy, a form-oriented text system to enter predicates on
specific fields, a data panel to enter (input, output) pairs for data
search, and a panel for composite search. We also plan but have
not yet implemented multi-faceted GUI panels that allow filters
on multiple dimensions to be specified at once. The
visualization to support browsing and filtering by author name is
shown in Figure 3.

In this way, a user can refine or expand any result set by altering
the predicates used to construct it. When he clicks “run”, the
new result set is materialized, which he can either discard or
register as a new result set.

4. RELEVANT PREVIOUS WORK
Information integration has been widely studied over the last
quarter century from various points of view. In fact, the search
engine Google has 104,000 citations on the topic of federating
disparate databases. Many companies have built distributed data
bases, object-oriented data bases, gateways, and/or adaptors and
thereby have offerings in this area. In the 1990’s, Cohera
extended this support to include user-defined functions to
specify mappings from local schemas to a global schema. IBM’s

distributed data system, Data Joiner [14], now called the
Information Integrator [6], contains the same sort of capabilities,
which were first explored in the TSIMMIS [15] and Garlic [16]
projects.

There are numerous tools in the Extract-Transform-Load (e.g.,
Informatica’s Power Center11, Ascential’s Data Stage12, Visual
Importer by DB Software Laboratory13) and data migration
space (e.g., DTM Migration Kit by SQL Edit14, SQLWays by
Ispirer Systems15), which support the transformation of data
from one representation to another. However, none of these
tools are currently capable of supporting management and reuse
of transformations as proposed in Morpheus.

Also, the research community has been incredibly active on this
topic with efforts ranging from view integration [17], sharing
architectures [18], sharing languages [19] including multi-
source query processing [20], schema matching [21], data
translation [22] and data cleansing [23]. Hence, in this section
we can only survey a portion of this space at a very high level.

Table 1 indicates our view of the various approaches to
information integration. Here, we see a standard “quad chart”
with columns for text and data integration. The corresponding
rows indicate whether the goal is to find matching information
or to transform source information into target information.

Table 1. Information Integration Approaches

 Text Data

transform LANGUAGE
TRANSLATION OUR APPROACH

match TAXONOMIES,
ONTOLOGIES SCHEMA MATCHING

The lower left hand field deals with text matching, for example
determining that “rubber gloves” mean the same thing as “latex
hand protectors”. There has been considerable work on
ontologies and taxonomies that address this issue [8, 24]. In fact,
some argue that the semantic web [11] is largely aimed at this
box.

In the lower right hand field, there has been substantial work in
performing schema matching [9, 25], i.e., determining that the
attribute “wages” in your schema matches the attribute “salary”
in my schema. Given the range of differences that exist between
the schemas, identifying the mappings has for the most part
been a time-consuming and mostly manual task. Some research
has been done on automating this task, for example GLUE [26],
LSD [27], IMAP [28] and Corpus-Based Matching [29]. These
projects have focused on developing techniques, frequently
based on machine learning algorithms, for identifying semantic
mappings with minimal human involvement. In contrast,
Morpheus provides a powerful toolkit whereby a human can
complete the task much more efficiently.

In the upper left hand field appear technologies such as
language translation. In the THALIA project [30], which

11 www.informatica.com/products/powercenter/default.htm
12 www.ascential.com/products/datastage.html
13 www.sqledit.com/mk/
14 www.sqledit.com/mk/
15 www.ispirer.com/products/

assembled a test bed of more than 50 schemas from Computer
Science departments around the world dealing with courses,
instructors, meeting times, prerequisites, and so on, the
researchers found that text fields were inevitably in the native
language spoken in the country where each university was
located. Hence, to find courses on databases in the USA or
Germany, one had to translate German course descriptions into
English or to translate “Datenbanken” into “database”.

Lastly, the upper right hand field deals with data
transformations. For example, a salary in a French data base
would be expressed as an after tax quantity in Euros and would
include a lunch allowance. The corresponding salary in a USA
database would be gross, before taxes, and would not include a
lunch allowance. A fairly complex transformation is required to
one or both of these objects to make them comparable in a data
warehouse or a federated information system. Historically the
purpose of extract, transform, and load (ETL) systems, such as
Informatica and Ascential (now owned by IBM) was to address
the upper right hand field.

The purpose of the Morpheus project is to address the upper
right hand field better than ETL systems. As such, it
complements the technologies being developed to address other
boxes in Table 1. Some projects attempt to build
transformations automatically, for example, the context
mediation approach introduced in [31]. This approach will work
for fairly simple transformations, for example currency
conversions, but is unlikely to succeed in more complex cases,
such as the salary conversion problem noted above. Our
approach, in contrast, is to provide tools to assist a human in
constructing and reusing transformations.

Although information integration has been widely addressed, we
believe that it is far from solved. For example, we know of no
system that can score well on the THALIA benchmark and the
continuous stream of war stories about the integration
challenges in industry are further testament to the inadequacies
of current solutions.

5. CONCLUSIONS AND FUTURE WORK
This paper has presented the main constructs in Morpheus 2.0.
At a high level, there are three main contributions enhancing the
original system.

First, the implementation of a crawler to assist in transform
discovery, either over the web or inside an enterprise. Currently,
Morpheus 2.0 performs automatic discovery and manual
registration. We are working toward more automatic
registration.

Second, a search paradigm, based on result sets and query
refinement has been created to replace the browsing-oriented
paradigm in Morpheus 1.0. This allows a user to have a focus
which is a collection of records, rather than the previous scheme
which supported moving around in N-dimensional space.

Lastly, new search primitives are incorporated. These include
filtering on transform lineage, filtering on input-output
characteristics, and the ability to find composite transforms that
fully or partially solve the user’s problem.

We expect to carefully evaluate Morpheus 2.0 with real world
users. Without a doubt, there will be a Morpheus 3.0 to address
shortcomings discovered. We also expect to move ahead
aggressively with automatic discovery and registration of
transforms, since the amount of manual effort required currently
is an impediment to adopting the Morpheus approach.

6. REFERENCES
[1] S. Abiteboul, R. Agrawal, P. A. Bernstein, M. J. Carey, S.

Ceri, W. B. Croft, D. J. DeWitt, M. J. Franklin, H. Garcia-
Molina, D. Gawlick, J. Gray, L. M. Haas, A. Y. Halevy, J.
M. Hellerstein, Y. E. Ioannidis, M. L. Kersten, M. J.
Pazzani, M. Lesk, D. Maier, J. F. Naughton, H.-J. Schek,
T. K. Sellis, A. Silberschatz, M. Stonebraker, R. T.
Snodgrass, J. D. Ullman, G. Weikum, J. Widom, and S. B.
Zdonik, "The LOWELL Database Research Self
Assessment," The Computing Research Repository
(CoRR), vol. cs.DB/0310006, 2003.

[2] P. A. Bernstein, U. Dayal, D. J. DeWitt, D. Gawlick, J.
Gray, M. Jarke, B. G. Lindsay, P. C. Lockemann, D.
Maier, E. J. Neuhold, A. Reuter, L. A. Rowe, H. J. Schek,
J. W. Schmidt, M. Schrefl, and M. Stonebraker, "Future
Directions in DBMS Research - The Laguna Beach
Participants," SIGMOD Record (ACM Special Interest
Group on Management of Data), vol. 18, pp. 17-26, 1989.

[3] P. A. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M.
Franklin, H. Garcia-Molina, J. Gray, J. Held, J.
Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J.
Naughton, H. Pirahesh, M. Stonebraker, and J. Ullman,
"The Asilomar Report on Database Research," SIGMOD
Record, vol. 27, pp. 74-80, 1998.

[4] A. Silberschatz, M. Stonebraker, and J. Ullman,
"Database Systems: Achievements and Opportunities,"
Communications of the ACM, vol. 34, pp. 110-120, 1991.

[5] S. Davidson, J. Crabtree, B. Brunk, J. Schug, V. Tannen,
C. Overton, and C. Stoeckert, "K2/Kleisli and GUS:
Experiments in integrated access to genomic data
sources," IBM Systems Journal, vol. 40, pp. 512-531,
2001.

[6] IBM Corp., "Using the Federated Database Technology of
IBM DB2 Information Integrator," IBM White Paper
GC18-9066-00, October 2003.

[7] I. BEA Systems, "WebLogic Integration."
[8] Y. An, A. Borgida, and J. Mylopoulos, "Constructing

Complex Semantic Mappings Between XML Data and
Ontologies," in International Semantic Web Conference.
Galway, Ireland: Springer, 2005.

[9] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy,
"Corpus-based schema matching," in 21st International
Conference on Data Engineering (ICDE). Tokyo, Japan,
2005.

[10] O. Topsakal and J. Hammer, "Schema Matching By
Analyzing Application Source Code with Heuristics," in
IEEE International Conference on Information Reuse and
Integration. Waikoloa, Hawaii: IEEE, 2006.

[11] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic
Web," in Scientific American, vol. 2001, 2001.

[12] R. G. Cattell, "Design and Implementation of a
Relationship-Entity-Datum Data Model," Xerox PARC,
Palo Alto, CA, Xerox PARC Technical Report CSL 83-4,
March 1983.

[13] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S.
U. Nabar, T. Sugihara, and J. Widom, "Trio: A System for
Data, Uncertainty, and Lineage," in International
Conference on Very Large Databases. Seoul, Korea,
2006, pp. 1151-1154.

[14] P. G. a. E. T. Lin., "Datajoiner: A practical approach to
multidatabase access," presented at Intl. IEEE Conf. on
Parallel and Distributed Information Systems, Austin, TX,
USA, 1994.

[15] J. Hammer, H. Garcia-Molina, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J. Widom, "Integrating
and Accessing Heterogeneous Information Sources in
TSIMMIS," presented at AAAI Symposium on
Information Gathering, Stanford, CA, 1995.

[16] V. Josifovski, P. Schwarz, L. Haas, and E. Lin, "Garlic: A
New Flavor of Federated Query Processing for DB2,"
presented at SIGMOD 2002, Madison, WI, USA, 2002.

[17] A. P. Sheth, J. A. Larson, and E. Watkins, "TAILOR, A
Tool for Updating Views," presented at International
Conference on Extending Database Technology:
Advances in Database Technology, 1988.

[18] A. Sheth and J. A. Larson, "Federated Database Systems
for Managing Distributed, Heterogeneous, and
Autonomous Databases," ACM Computing Surveys, vol.
22, pp. 183-236, 1990.

[19] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian,
"SchemaSQL - A Language for Interoperability in
Relational Multi-database Systems," presented at Twenty-
Second International Conference on Very Large
Databases, Mumbai, India, 1996.

[20] J. D. Ullman, "Information Integration Using Logical
Views," presented at International Conference on
Database Theory, 1997.

[21] E. Rahm and P. A. Bernstein, "A survey of approaches to
automatic schema matching," VLDB Journal: Very Large
Data Bases, vol. 10, pp. 334-350, 2001.

[22] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J.
Ullman, "A Query Translation Scheme for Rapid
Implementation of Wrappers," presented at Fourth
International Conference on Deductive and Object-
Oriented Databases, Singapore, 1995.

[23] E. Rahm and H. H. Do, "Data Cleaning: Problems and
Current Approaches," IEEE Data Engineering Bulletin,
vol. 23, 2000.

[24] J. Davies, D. Fensel, and F. v. Harmelen, Towards the
Semantic Web – Ontology-Driven Knowledge
Management: Wiley, 2002.

[25] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy, and P.
Domingos, "Imap: Discovering complex mappings
between database schemas," in ACM SIGMOD
International Conference on Management of Data. Paris,
France: ACM, 2004.

[26] A. Doan, "Learning to Map between Structured
Representations of Data," in CS Dept. Seattle, WA:
University of Washington, 2002.

[27] A. Doan, P. Domingos, and A. Halevy, "Reconciling
Schemas of Disparate Data Sources: A Machine Learning
Approach," presented at ACM SIGMOD Conference on
Management of Data (SIGMOD'2001), Santa Barbara,
USA, 2001.

[28] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy, and P.
Domingos, "IMAP: Discovering Complex Mappings
between Database Schemas," presented at ACM
SIGMOD International Conference on Management of
Data, Paris, France, 2004.

[29] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy,
"Corpus-based Schema Matching," presented at 21st
International Conference on Data Engineering (ICDE),
Tokyo, Japan, 2005.

[30] J. Hammer, O. Topsakal, and M. Stonebraker, "THALIA:
Test Harness for the Assessment of Legacy Information
Integration Approaches," in 21st International Conference
on Data Engineering (ICDE). Tokyo, Japan: IEEE, 2005,
pp. 485-486.

[31] T. Gannon, S. Madnick, A. Moulton, M. Siegel, M.
Sabbouh, and H. Zhu, "Semantic Information Integration
in the Large: Adaptability, Extensibility, and Scalability
of the Context Mediation Approach," MIT, Cambridge,
MA, Research Report CISL# 2005-04, May 2005.

	1. INTRODUCTION
	1.1 Schema Matching
	1.2 Standards
	1.3 Knowledge Representation and the Semantic Web
	1.4 Our Past Experience

	2. THE MORPHEUS DATA TRANSFORMATION SYSTEM
	2.1 GUI and Browser
	2.2 TCT
	2.3 Searchable Repository

	3. MORPHEUS 2.0
	3.1 Crawler
	3.2 Data as a Browsing Dimension
	3.3 Search by Lineage
	3.4 Search for Composite Transform
	3.5 Search of the Classification Hierarchy
	3.6 Browsing Model
	3.7 Putting It All Together

	4. RELEVANT PREVIOUS WORK
	5. CONCLUSIONS AND FUTURE WORK
	6. REFERENCES

