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Abstract

It is well known that there may be many
causal explanations that are consistent with
a given set of data. Recent work has been
done to represent the common aspects of
these explanations into one representation.
In this paper, we address what is less well
known: how do the relationships common
to every causal explanation among the ob-
served variables of some DAG process change
in the presence of latent variables? Ancestral
graphs provide a class of graphs that can en-
code conditional independence relations that
arise in DAG models with latent and selection
variables. In this paper we present a set of
orientation rules that construct the Markov
equivalence class representative for ancestral
graphs, given a member of the equivalence
class. These rules are sound and complete.
We also show that when the equivalence class
includes a DAG, the equivalence class repre-
sentative is the essential graph for the said
DAG.

Keywords: DAG, maximal ancestral graph,
Markov equivalence

1 INTRODUCTION

Directed acyclic graph (DAG) models, represented
by graphs consisting of vertices and directed (−−−Â)
edges, encode the conditional independence relations
holding among the variables (vertices) of some data
generating process. Such models have been used in
various forms such as path analyses in the social sci-
ences, structural equation models in economics, and
more recently as Bayesian networks in artificial in-
telligence. DAG models have many associated bene-
fits, two main benefits being that associated with each
DAG is i) a natural factorization of the joint density

of the variables in the graph, and ii) a simple causal
interpretation of the modelled process.

However, given a set of conditional independence rela-
tions, there are often many DAGs that can encode the
same relations. All DAGs that encode the same set of
conditional independence relations are Markov equiv-
alent. Frydenberg (1990), Verma and Pearl (1991),
Chickering (1995), Meek (1995) and Andersson et al.
(1997) have characterized Markov equivalence classes
for DAGs, and have presented algorithms for con-
structing an equivalence class representation given a
member (DAG) of the equivalence class.

Following Andersson et al. (1997), we refer to the DAG
equivalence class representative as the essential graph.
For data generated by some DAG with no latent vari-
ables, one could correctly specify the associated essen-
tial graph. However, without knowing the underly-
ing graph, one may worry that there were latent vari-
ables present, and that the learned essential graph is
no longer valid. Ancestral graphs provide a class of
graphs that can encode conditional independence re-
lations that arise in DAG models with latent and se-
lection variables. Section 2 provides relevant defini-
tions and results on DAGs and Markov equivalence.
Section 3 provides a unique representation of equiva-
lence classes for maximal ancestral graphs. Analogous
to Meek (1995), we provide in Section 4 an orienta-
tion procedure that constructs the equivalence class
representative for maximal ancestral graphs (see Def-
inition 2.3). We prove that the orientation rules are
sound and complete. We also show that whenever the
equivalence class includes a DAG, the corresponding
equivalence class representative is simply the DAG’s
corresponding essential graph.

2 BACKGROUND

A graphical Markov model is a pair 〈V, E〉 that rep-
resents an independence model where V is a set of
vertices (or variables); E is a set of edges; and an



independence model is a list of conditional indepen-
dence statements such as “A is independent of B given
S” for disjoint subsets, {A,B, S}, of V and we write
“A⊥⊥B|S”.

2.1 VERTEX RELATIONS
We only consider graphs that have at most one edge
between each pair of vertices. If there is an edge
α−−−Âβ, or α≺−−Âβ then the edge end at β is an ar-
rowhead. Conversely, if there is an edge α−−−Âβ, or
α−−−−β then the edge end at α is a tail. We do not
allow a vertex to be adjacent to itself. A path, π is a
sequence of distinct vertices that are adjacent.

If α and β are vertices in a graph G such that α≺−−Âβ,
then α is a spouse of β and vice versa. If α−−−Âβ
in G , then α is a parent of β, and β is a child
of α. If there is a directed path from α to β (i.e.
α−−−Â−−−Â . . . −−−Âβ) or α = β, then α is an ancestor
of β, and β is a descendant of α.

2.2 MAXIMAL ANCESTRAL GRAPHS

2.2.1 Directed Acyclic Graphs
A directed acyclic graph (DAG) is a graph such that
all edges are directed (−−−Â), and there are no directed
cycles. We say that a triple of vertices {x, y, z} forms
an unshielded triple if the pairs (x, y) and (y, z) are
adjacent, but x and z are not adjacent. Otherwise,
the triple is shielded and forms a triangle. For DAGs,
a non-endpoint vertex v on a path is said to be a col-
lider if two arrowheads meet at v, i.e. −−−Âv≺−−−;
all other non-endpoint vertices on a path are non-
colliders, i.e. −−−Âv−−−Â, ≺−−−v−−−Â. The indepen-
dence relations entailed by a DAG can be determined
through d-separation.

Definition 2.1 In a directed acyclic graph, a path π
between α and β is said to be d-connecting given Z if
the following hold:

(i) No non-collider on π is in Z;
(ii) Every collider on π is an ancestor of a vertex in Z.

Two vertices α and β are said to be d-separated given
Z if there is no path d-connecting α and β given Z.

In particular, if vertices α and β are d-separated given
Z, then α is independent of β conditional on Z. How-
ever, for processes in which (a) some variables in the
DAG are not observed (‘latent’); or (b) other vari-
ables, specifying the specific subpopulation from which
our data is sampled, are conditioned upon (‘selection
variables’); the independence model obtained by con-
ditioning on the selection variables and marginaliz-
ing over the latent variables cannot be represented by
a DAG, in general, even though the full underlying
model can.
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Figure 1: (i) A DAG with a latent variable H. (ii) The

ancestral graph resulting from marginalizing over H adds

a bi-directed edge between Pcp and CD4.

The DAG in Figure 1(i) entails the relation
that Azt⊥⊥CD4|φ; but Azt 6⊥⊥CD4|Pcp. Similarly,
Ap⊥⊥Pcp|φ; but Ap6⊥⊥Pcp|CD4. There is no DAG over
the variables {Azt, Pcp, Ap,CD4} that can simultane-
ously encode these relations.

However, ancestral graphs enable one to focus on the
independence structure over the observed variables
that results from the presence of latent variables with-
out explicitly including latent variables in the model.
Permitting bi-directed (≺−−Â) edges in the graph al-
lows one to graphically represent the existence of an
unobserved common cause of observed variables. For
Figure 1(i) this corresponds to removing H from the
graph and adding a bi-directed edge between Pcp and
CD4. Undirected edges (−−−−) are also introduced to
represent other unobserved (selection) variables that
have been conditioned on. See Richardson and Spirtes
(2003) for a detailed discussion on the interpretation
of edges in an ancestral graph.

2.2.2 Ancestral Graphs

Definition 2.2 A graph, which may contain undi-
rected (−−−−), directed (−−−Â) and bi-directed edges
(≺−−Â) is ancestral if:

(a) there are no directed cycles;
(b) whenever an edge x≺−−Ây is in the graph, then x

is not an ancestor of y, (and vice versa);
(c) if there is an undirected edge x−−−−y then x and

y have no spouses or parents.

The term ‘ancestral’ is motivated by conditions (a)
and (b), which state that if x and y are joined by
an edge and there is an arrowhead at x, then x is
not an ancestor of y. Condition (c) ensures that
undirected edges never meet arrowheads (−−−Âγ−−−−,
≺−−Âγ−−−−) in an ancestral graph. DAGs and undi-
rected graphs form subclasses of ancestral graphs.

Given an ancestral graph G with vertex set V , for
arbitrary disjoint sets S, L (both possibly empty)
Richardson and Spirtes (2002) defined a graphical
transformation such that the independence model
corresponding to the transformed graph will be the
independence model obtained by marginalizing over
L and conditioning on S in the independence model
of the original graph. Though this transformation is



defined for any ancestral graph G, the primary moti-
vation is the case in which G is an underlying (causal)
DAG that is partially observed. For ancestral graphs,
a natural extension of the notion of ’collider’ and ’non-
collider’ allows for the presence of undirected and
bi-directed edges, i.e. {−−−Âv≺−−−, ≺−−Âv≺−−Â,
≺−−Âv≺−−−, −−−Âv≺−−Â}; and {−−−−v−−−−,
−−−−v−−−Â, −−−Âv−−−Â, ≺−−−v−−−Â} respectively.

Hence a natural extension of Pearl’s d-separation cri-
terion may be applied to ancestral graphs. In par-
ticular, m-connection and m-separation for ancestral
graphs read like Definition 2.1 where ‘collider’ and
‘non-collider’ are as defined in the previous paragraph.
Further, if x is m-separated from y given Z in an
ancestral graph, then we write x⊥⊥my|Z. Since m-
separation characterizes the independence model en-
tailed by an ancestral graph, tests of m-separation can
be used to determine when graphs are Markov equiv-
alent to each other (see Section 2.3).

Independence models described by DAGs satisfy pair-
wise Markov properties such that every missing edge
corresponds to a conditional independence relation.
In general, this property does not apply to ancestral
graphs. For example, there is no set which m-separates
γ and δ in the graph in Figure 2(a), which motivates
the following definition:

Definition 2.3 An ancestral graph G is said to be
“maximal” if, for every pair of non-adjacent vertices
α, β there exists a set Z, ({α, β} /∈ Z), such that α
and β are m-separated conditional on Z.

These graphs are termed maximal in the sense that no
additional edge may be added to the graph without
changing the associated independence model. It has
been shown in Richardson and Spirtes (2002) that if
an ancestral graph is not maximal, then there exists
at least one pair of non-adjacent vertices {α, β}, for
which there is an “inducing path” between α and β
where:

Definition 2.4 An inducing path π is a path in a
graph such that every non-endpoint vertex is a collider
on the path, and an ancestor of at least one endpoint.
If π is the shortest inducing path, then π is minimal.

By definition, inducing paths always consist of a single
edge in DAGs and in undirected graphs; hence, such
graphs are always maximal. By adding a bi-directed
edge between γ and δ, the non-maximal graph in Fig-
ure 2(a) can be made maximal, as shown in Figure
2(b). In the remainder of this paper, we focus on max-
imal ancestral graphs since every non-maximal ances-
tral graph can uniquely be associated with a Markov
equivalent maximal ancestral graph.

α

δγ

β
(b)(a)

α

δγ

β

Figure 2: (a) The path {γ, β, α, δ} is an example of

an inducing path in an ancestral graph. (b) A maximal

ancestral graph Markov equivalent to (a).

2.3 MARKOV EQUIVALENCE

Definition 2.5 Two graphs G1 and G2 are said to be
Markov equivalent if for all disjoint sets A,B, Z (where
Z may be empty), A and B are m-separated given Z
in G1 if and only if A and B are m-separated given Z
in G2.

We say that graphs G1 and G2 are Markov equivalent
if they entail the same independence model. If G is a
maximal ancestral graph then we define [G] to be the
class of maximal ancestral graphs Markov equivalent
to G, i.e. a Markov equivalence class. The skeleton
of a graph is an undirected graph with the same
adjacencies. Verma and Pearl (1991) proved that:

Theorem 2.1 (DAG Equivalence) Directed acyclic
graphs D1 and D2 are Markov equivalent if and only
if D1 and D2 have the same skeleton and the same
unshielded colliders.

A key difference between DAGs and ancestral graphs
is that having the same adjacencies and unshielded col-
liders, though necessary, are not sufficient for Markov
equivalence of ancestral graphs.

Consider the graphs shown in Figure 3: G1 and G3

contain the same adjacencies and the same unshielded
colliders, but these two graphs are not Markov equiva-
lent to each other: In G1, x⊥⊥my|q; but in G3, x6⊥⊥my|q.
In fact in any graph Markov equivalent to G1, 〈q, β, y〉
forms a shielded collider. (There is only one such
graph, G2, so {G1,G2} forms a Markov equivalence
class.) However, in general, it is clearly not neces-
sary that two graphs entail all of the same shielded
colliders in order for them to be Markov equivalent.
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Figure 3: G1, G2, G3 have the same adjacencies and the

same unshielded colliders, but G1 and G3 are not Markov

equivalent. 〈x, q, β, y〉 forms a discriminating path for β in

every graphs.



Discriminating paths are special paths that, if present
in two Markov equivalent graphs, imply that certain
shielded colliders (or non-colliders) will be present in
both graphs:

Definition 2.6 A path π = 〈x, q1, q2, . . . , qp, β, y〉,
with x not adjacent to y, is a discriminating path for
〈qp, β, y〉 in an ancestral graph G if and only if for
every vertex qi, 1 ≤ i ≤ p on π, (i.e. excluding x, y,
and β):

(i) qi is a collider on π; and
(ii) qi−−−Ây, hence forming a non-collider along the

path 〈x, q1, . . . , qi, y〉.

Given a set Z, if Z does not contain all qi, 1 ≤ i ≤ p,
then the path π = 〈x, q1, . . . , qj , y〉 is m-connecting
where qj /∈ Z and qi ∈ Z for all i < j. If Z contains
{q1, . . . , qp} and β is a collider on the path π in the
graph G, then β /∈ Z if Z m-separates x and y. Con-
sequently, in any graph Markov equivalent to G con-
taining the discriminating path π, β is also a collider
on π. Conversely, if β is a non-collider on the path π
then β is a member of any set that m-separates x and
y, and β is a non-collider on π in any graph Markov
equivalent to G containing π. In other words, β is “dis-
criminated” to be either a collider or a non-collider on
the path π in any graph Markov equivalent to G in
which π forms a discriminating path, even though it
is shielded. The paths 〈x, q, β, y〉 in G1 and G2 from
Figure 3 are examples of discriminating paths for β.

It is clear that discriminating paths, when present in
both graphs, lead directly to necessary conditions for
Markov equivalence. However, a discriminating path
for a given triple may not be present in all graphs
within a Markov equivalence class. We avoid this prob-
lem by identifying, via a recursive definition, a sub-
class of discriminating paths (those ‘with order’) which
are always present. In particular, define a hierarchy of
triples as follows:

Definition 2.7 Let Oi (i ≥ 0) be the set of triples of
order i, defined recursively as follows:

Order 0: A triple 〈α, β, γ〉 ∈ O0 if α and γ are
not adjacent in G.

Order i + 1: A triple 〈α, β, γ〉 ∈ Oi+1 if

(1) 〈α, β, γ〉 /∈ Oj, for some j < i + 1 and
(2) there exists a discriminating path π =

〈x, q1, . . . , qp = α, β, γ〉 for β in G, and each
of the colliders on the path:
〈x, q1, q2〉, . . . 〈qp−1, qp, β〉 ∈

⋃
j≤i Oj .

If 〈α, β, γ〉 ∈ Oi then the triple is said to have order i.
A discriminating path is said to have order i if every

triple on the path has order at most i, and at least one
triple has order i. If a triple has order i for some i,
then we will say that the triple has order, likewise for
discriminating paths.

In each graph in Figure 3, the triple 〈x, q, β〉 has order
0, while 〈q, β, y〉 has order 1. It is important to note
that not every triple in a graph will have an order. For
example, no triple in Figure 2(b) has order. Ali et al.
(2004) proved the following Markov equivalence result
for maximal ancestral graphs.

Theorem 2.2 Maximal ancestral graphs G1 and G2

are Markov equivalent if and only if G1 and G2 have
the same adjacencies and colliders with order.

3 JOINED GRAPHS

Andersson et al. (1997) constructed the essential
graph, a Markov equivalence class representation for
DAGs, by retaining all edges common to every member
of the equivalence class. In other words, the essential
graph associated with DAG D is a partially directed
graph with the same skeleton as D such that an edge
along a particular path is oriented if and only the edge
has the same orientation along the analogous path in
every DAG in the equivalence class. Also, the essential
graph [D] is Markov equivalent to every DAG in the
equivalence class.

Note that the arrowheads in the essential graph form
a subset of the arrowheads that were present in D.
Suppose that one could correctly specify the essen-
tial graph associated with some DAG. One may sub-
sequently worry that if we allow for the presence of la-
tent variables, then the essential graph may no longer
entail all and only the arrowheads present in the en-
tire equivalence class. However, it turns out that even
in the presence of latent variables, the essential graph
remains correct (see Theorem 4.3).

The join operation identifies the features common to a
set of Markov equivalent ancestral graphs and can be
thought of as an AND operation on the “arrowheads”
of the set of graphs being joined, and an OR operation
on the “tails” of these graphs. Following Andersson
et al. (1997), Ali and Richardson (2002) made the fol-
lowing definition to join two maximal ancestral graphs:

Definition 3.1 If G1 and G2 are two graphs with the
same adjacencies then define G1∨G2 to be a graph with
the same adjacencies such that, on an edge between
α and β, there is an arrowhead at β in G1 ∨ G2 if
and only if there is an arrowhead at β in G1 and in G2.

Note that if two maximal ancestral graphs are Markov
equivalent, then by Theorem 2.2 they will have the



same adjacencies. We also define:

sup[G] =
∨

G′∈[G]

G′.

Hence sup[G] is a simple representation of Markov
equivalence classes for maximal ancestral graphs. Ali
and Richardson (2002) and Ali and Richardson (2004)
defined Markov properties for joined graphs and
proved that sup[G] is in fact Markov equivalent to ev-
ery ancestral graph in the equivalence class. In gen-
eral, joined graphs are not ancestral.

3.1 INFERRING EDGE ENDS
We now define “invariance” and present results used
to prove the results in Section 4.

Definition 3.2 If the edge end at b, on an edge (a, b)
in a maximal ancestral graph, is of the same type
(tail, arrowhead) in every graph in the equivalence
class, then the edge end at b is “invariant”. If the
edge ends at a and b are invariant, then we say that
the (a, b) edge is invariant.

Partial characterizations of Markov equivalence classes
for ancestral graphs have been obtained using PAGs
by Richardson and Spirtes (2003) and Spirtes et al.
(1993). Unlike joined graphs, PAGs track both arrow-
heads and tails that are invariant in an equivalence
class. Spirtes et al. (1999) also developed the Fast
Causal Inference (FCI) algorithm to construct a PAG
to represent a set of features common to every graph
in [G], but this algorithm is not complete.

We use the following notation for edge ends, say of
an (a, b) edge, in either an ancestral graph or a joined
graph:

1. “a−−−?b” denotes that there is a tail at a, and
either a tail or arrowhead at b.

2. “a≺−−?b” denotes that there is an arrowhead at a,
and either a tail or arrowhead at b.

3. “a?−−?b” denotes that there is either a tail or
arrowhead at either edge end.

Note that the above notation is merely a shorthand
since we only consider graphs with edges that are di-
rected, bi-directed and undirected. The following re-
sults infer arrowheads or tails in ancestral graphs.

Lemma 3.1 Let G be an ancestral graph contain-
ing vertices {a, b, c}. If, in G, a?−−Âb−−−Âc?−−?a, or
a−−−Âb?−−Âc?−−?a then c≺−−?a.

Proof: If c−−−?a in G, then a?−−Âb−−−Âc−−−?a or
a−−−Âb?−−Âc−−−?a violates the ancestral property. 2

Lemma 3.2 If π = 〈x, q1, . . . , qp, b, y〉 forms a dis-
criminating path for b given Z in an ancestral graph
G, and 〈qp, b, y〉 is a non-collider, then b−−−Ây in G.

Proof: Since π forms a discriminating path for b given
Z, b?−−Âqp−−−Ây?−−?b is in G. By Lemma 3.1, b?−−Ây;
and since 〈qp, b, y〉 is a non-collider, b≺−−Ây is ruled
out: y≺−−Âb−−−Âqp−−−Ây violates the ancestral prop-
erty. Hence b−−−Ây in G. 2

Corollary 3.1 If π = 〈x, q1, . . . , qp, b, y〉 forms a dis-
criminating path with order for b in a maximal an-
cestral graph G, and 〈qp, b, y〉 is a non-collider in G,
then b−−−Ây in every maximal ancestral graph Markov
equivalent to G and the (b, y) edge is invariant.

Proof: By Markov equivalence, the path analogous to
π forms a discriminating path for b and 〈qp, b, y〉 is a
non-collider in every graph in the equivalence class. By
Lemma 3.2 b−−−Ây in every maximal ancestral graph
Markov equivalent to G. 2

Lemma 3.3 If 〈u, a, w〉 is a collider in the ancestral
graph G, 〈u, b, w〉 is a non-collider in G, and a is ad-
jacent to b, then a≺−−?b in G.

Proof: Since 〈u, b, w〉 is a non-collider, either
b−−−Âu?−−Âa?−−?b or b−−−Âw?−−Âa?−−?b in G and by
Lemma 3.1 a≺−−?b. 2

4 CONSTRUCTING sup[G]

Meek (1995) presented a set of orientation rules that
could be applied to a DAG to construct its associated
essential graph. We now define a set of orientation
rules that can be applied to a maximal ancestral
graph G to construct sup[G]. See Ali et al. (2005) for
full proofs of all results presented in this section.

Orientation Procedure

(S1) Let H be the skeleton of G.

(S2) For all triples x, y, z, if 〈x, y, z〉 forms an un-
shielded collider in G, then orient x?−−Ây≺−−?z in
H.

(S3) If 〈x, q1, . . . qp, b, y〉 forms a discriminating path
for b in H, and 〈qp, b, y〉 forms a collider in G then
then qp?−−Âb≺−−?y in H.

(S4) If 〈u, a, v〉 forms an unshielded collider in H, and
〈u, b, v〉 forms an unshielded non-collider in H,
and a and b are adjacent then add an arrowhead
at a to the (a, b) edge in H: a≺−−?b.

(S5) If either of the following hold:

(S5i) 〈a, b, c〉 forms an unshielded non-collider in G,
and a?−−Âb in H; or

(S5ii) 〈x, q1, . . . qp ≡ a, b, c〉 forms a discriminating
path for b in H and 〈a, b, c〉 forms a non-
collider in G;



then perform the following orientations in H:

(S5a) Orient b−−−Âc.
(S5b) For every vertex z adjacent to b and c, if

b≺−−?z in H, then orient z?−−Âc.
(S5c) For every vertex z adjacent to b and c, if

c?−−Âz in H, then orient z≺−−?b.

(S6) Iterate steps (S3) to (S5) until no further arrow-
heads are added.

Theorem 4.1 The orientation procedure is sound.

The proof proceeds by showing that all arrowheads
introduced by the orientation procedure are invariant
in [G]. By definition, the graph resulting from joining
the entire equivalence class will also contain these ar-
rowheads. Hence sup[G] contains all the arrowheads
introduced by the orientation procedure and the pro-
cedure is sound.

The following concept is central to showing that the
orientation procedure is complete (see Theorem 4.2).

Definition 4.1 (Balanced) A triangle with vertex
set {x, y, z} is said to be balanced at x if one
of the following holds: (i) y?−−Âx≺−−?z?−−?y; (ii)
y?−−−x−−−?z?−−?y; or (iii) y?−−Âx−−−?z≺−−?y.

In summary, the triangle is balanced at x if the edge
ends at x are of the same type (arrowhead or tail). If
the edge ends differ, then the triangle is balanced if
(iii) holds. If every vertex in a triangle is balanced,
then the triangle is balanced. A graph containing di-
rected, undirected and bi-directed edges will be said
to be balanced if every triangle in the graph is bal-
anced. It can easily be verified that ancestral graphs
and DAGs are balanced.

Lemma 4.1 The graph H produced by the orientation
procedure is balanced.

Suppose that H is not balanced. Then there is some
triangle 〈x, y, z〉 in H in which x?−−Ây−−−?z−−−?x.
The proof proceeds by considering the first arrowhead
x?−−Ây introduced by the orientation procedure into a
triangle 〈x, y, z〉 which remains unbalanced after the
procedure has completed. We will show that each
step of the procedure either could not have introduced
an arrowhead into a triangle which remained unbal-
anced, or that the supposition that it did implies that
there was already an arrowhead that had been intro-
duced earlier into a triangle which remained unbal-
anced, which is also a contradiction.

Corollary 4.1 Let H be the graph produced by the ori-
entation rules. If in H either i) a−−−Âb−−−−c, or ii)
a≺−−Âb−−−−, then a−−−Âc or a≺−−Âc respectively.

Proof: a is adjacent to c else edge b−−−−c contradicts
Step (S5a) of the orientation rules. The triangle is
balanced at b hence a?−−Âc inH. Similarly, the triangle
is balanced at b hence a≺−−Âc if and only if a≺−−Âb. 2

Another key concept required to prove that the orien-
tation rules are complete involves defining an order on
the variables in a graph. A graph is chordal if and only
if every cycle over four or more vertices has an edge
between two non-adjacent vertices, i.e. has a chord.
A partial order (≺) for a graph induces an orientation
such that if x ≺ y, then there is no directed path from
y to x (y is not an ancestor of x). For an undirected
graph U , a total order induces an orientation such that
for {x, y} adjacent, x−−−Ây if and only if x ≺ y. Let
Uα be the induced directed graph obtained by a total
order α. Then we say that U has a consistent order α
if and only if Uα has no unshielded colliders. We make
use of Meek’s (1995) results for undirected graphs.

Lemma 4.2 For undirected graphs, only chordal
graphs have consistent orderings.

Lemma 4.3 (Orienting chordal graphs) Let U be an
undirected chordal graph. For all pairs of adjacent ver-
tices x and y in U there exist total orderings α and γ
which are consistent with respect to U and such that
x−−−Ây is in Uα and y−−−Âx is in Uγ .

Theorem 4.2 The orientation procedure is arrow-
head complete.

Proof: There are four steps to the proof.
I. Removing the undirected edges in H leaves a disjoint
union of maximal ancestral graphs. Let H∗ be the
graph resulting from removing the undirected edges
in H. Suppose for a contradiction that H∗ contains
a non-ancestral configuration. By construction, there
are no undirected edges in H∗. Hence configurations
such as a?−−Âb−−−−c or a?−−Âb−−−−c−−−−d−−−Âa do
not occur inH∗. ThenH∗ contains a partially directed
k-cycle of the form q1?−−Âq2−−−Â · · · −−−Âqk−−−Âq1.

Consider k = 3. By Lemma 4.1, there are no par-
tially directed cycles involving only three vertices in
H∗. By induction, H∗ contains no partially directed
k-cycles: any ancestral graph G that gave rise to H∗
would include at least one collider in a k-cycle, hence
at least one triple in the k-cycle is shielded in G. Sup-
pose triple {qi−1, qi, qi+1} is shielded, 1 < i < k. By
Lemma 4.1, qi−1?−−Âqi+1 in H, and thus in H∗ too.
But then {q1, q2, . . . , qi−1, qi+1, . . . , qk, q1} forms a (k-
1)-cycle in H∗, which is a contradiction.

Suppose for a contradiction that H∗ contains an in-
ducing path with non-adjacent endpoints. Let π =
{q1, q2, . . . , qn} be the shortest such path in H∗ (i.e. π
is minimal). Then every non-endpoint of π is a col-



lider, q2−−−Âqn and q1≺−−−qn−1 in H∗. Suppose:

(a) q1−−−−qn in H. Then triangle 〈q1, q2, qn〉 is not
balanced at q2 and similarly triangle 〈qn−1, qn, q1〉 is
not balanced at qn−1 in H, violating Lemma 4.1.

(b) There is no (q1, qn) edge in H. By Theorem 4.1,
all arrowheads in H∗ are invariant. Hence, at least
one tail on an edge from vertex qi to an endpoint is
not invariant. Since 〈q1, q2, qn〉 forms an unshielded
non-collider, the tail on the q2−−−Âqn edge is invariant.
Similarly, since 〈qn, qn−1, q1〉 forms an unshielded non-
collider, edge q1≺−−−qn−1 is invariant.

Without loss of generality, suppose that there is some
edge qi≺−−−qn−1 in H∗ that is not invariant, 3 ≤ i <
(n−1). Consider the largest i, such that edge qi−−−Âqn

is not invariant. Then 〈qi−1, qi, qn〉 is shielded. Fur-
ther, qi−1−−−Âqn because qi−1≺−−?qn violates the min-
imality of π, and qi−1?−−−qn violates the balanced
property. By assumption, edge qi−1−−−Âqn is invari-
ant. By induction, we have each of {q2, q3, . . . , qi} is a
parent of qn in H∗: for 3 ≤ j < i, qj is adjacent to qn

else 〈qj , . . . , qi−1, qi, qn〉 discriminates 〈qi−1, qi, qn〉 to
be a non-collider. Further, qj−−−Âqn because qj≺−−?qn

violates the minimality of π, and qj ?−−−qn violates the
balanced property. By assumption, edge qj−−−Âqn is
invariant. But then 〈q1, q2, . . . , qi−1, qi, qn〉 forms a dis-
criminating path for qi in G and edge qi−−−Âqn is in-
variant which is a contradiction. Hence, H∗ forms a
maximal ancestral graph (with no undirected edges).

II. No orientation of the undirected edges in H will give
rise to a partially directed cycle, an unshielded collider,
a collider with order, or an inducing path with non-
adjacent endpoints, that includes an edge previously
directed by the orientation rules. By Corollary 4.1, no
orientation of the undirected edges inH will give rise to
a partially directed cycle. Suppose for a contradiction
that there exists an orientation of an undirected block
in H such that triple {a, b, c} forms a shielded col-
lider with order, edge (a, b) is in the undirected block
and edge (b, c) was already oriented by the orientation
procedure. Call this graph H∗. Then triple {a, b, c}
appears at the end of a discriminating path with or-
der, say π, and a≺−−Âb≺−−Âc. Since edge (a, b) is part
of the undirected block, by Corollary 4.1 a≺−−Âc in H,
which contradicts π being a discriminating path.

Suppose for a contradiction that there exists an
orientation of an undirected block in H that forms
an inducing path with non-adjacent endpoints, and
the path includes edges previously oriented by the
orientation procedure. Let π∗ = 〈x0, x1, . . . , xn〉 be
the shortest such path; so π∗ is minimal. If:

(a) xi−1?−−Âxi−−−−xn in H, 1 ≤ i < (n − 1) (i.e.
the (xi−1, xi) edge was previously oriented).
By Corollary 4.1 xi−1?−−Âxn in H. If i = 1

then the endpoints are adjacent, which is a
contradiction. If 2 ≤ i ≤ (n− 2) then xi−1≺−−Âxi

in H and by Corollary 4.1, xi−1≺−−Âxn, and
〈x0, x1, . . . , xi−1, xn〉 contradicts the minimality
of π∗.

(b) xi−1−−−−xi≺−−?xi+1 in H, 1 ≤ i ≤ (n − 1) (i.e.
the (xi, xi+1) edge was previously oriented). By
Corollary 4.1 xi−1≺−−?xi+1. If i = (n − 1) then
〈x0, x1, . . . , xn−2, xn〉 contradicts the minimality
of π∗. If 1 ≤ i ≤ (n− 2) then xi≺−−Âxi+1 else π∗

is not inducing. By Corollary 4.1, xi−1≺−−Âxi+1,
and again 〈x0, x1, . . . , xi−1, xn〉 contradicts the
minimality of π∗.

III. Let U be the induced undirected graph obtained by
removing the directed and bi-directed edges from H as
well as those edges from H that were undirected in
G. Then U is a disjoint union of chordal undirected
graphs. Suppose for a contradiction that U is not de-
composable. Then all total orderings of U lead to
a non-ancestral configuration. Let H∗ be the graph
obtained by removing the undirected edges from H.
Then H = U ∨ H∗. By II., we know that no orien-
tation of the undirected blocks gives rise to a collider
with order or an inducing path with non-adjacent end-
points involving the edges oriented by the procedure.
Consider U ′, the subgraph of G analogous to U . By
Theorem 4.1, U ′ does not contain any colliders with
order. By the maximality of G, U ′ does not contain
any inducing paths with non-adjacent endpoints.

Let D be the skeleton of U ′. Construct a total order
for D as follows: remove all bi-directed edges from U ′,
which leaves a DAG. Find a total ordering compatible
with this DAG and orient, as directed edges, the edges
in D according to this ordering. Note that every ar-
rowhead in D corresponds to either a directed edge in
U ′, oriented in the same direction, or to a bi-directed
edge in U ′. If U is not chordal, then D contains an un-
shielded collider. But this unshielded collider is also
present in G, which is a contradiction.

IV. By Lemma 4.3 there are at least two such order-
ings for every (x, y) edge in U : one in which x−−−Ây
and another in which x≺−−−y. Hence, H is maximally
oriented and therefore the orientation rules are arrow-
head complete. 2

Theorem 4.3 Let D be a DAG containing only
observed variables O, and G be a maximal ancestral
graph over the same observed variables. Further let H
be the graph resulting from applying the orientation
procedure to G, and E be the graph resulting from
applying Meek’s rules for DAGs to D. If D ∼ G then
E = sup[G].

By Markov equivalence, D and G entail the same set
of unshielded colliders. Further, since D contains no



bi-directed edges: (i) all discriminating paths in D
discriminate non-colliders; and (ii) any discriminating
path with order has order of at most one. The proof of
Theorem 4.3 proceeds by showing that the operations
performed on the skeleton of G are equivalent to the
steps performed on the skeleton of D.

5 CONCLUSIONS

Ancestral graphs are a class of graphs that can rep-
resent the independence relations holding among the
observed variables of a DAG model with latent and
selection variables. Unfortunately, as with DAG mod-
els, there often are a number of ancestral graphs that
can encode the same independence model. Joined
graphs, which can extract the arrowheads common
to Markov equivalent graphs, allow one to associate
a unique graph with each ancestral graph equivalence
class. In this paper we have presented an orientation
procedure that constructs the joined graph for an en-
tire equivalence class based on a single ancestral graph
G. Further, we have shown that if [G] contains a DAG
D, then sup[G] equals the essential graph for D.

The completeness proof shows that sup[G] can be de-
composed into a maximal ancestral graph with no
undirected edges, and a chordal undirected graph. It
also suggests a way to construct a member of the equiv-
alence class that contains the minimal number of ar-
rowheads. Also, Drton and Richardson (2004) pre-
sented an algorithm for fitting graphs with bi-directed
edges. Hence we have the framework for conducting
an efficient equivalence class search across maximal an-
cestral graphs. The authors are currently working on
this problem.
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