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SUMMARY

Some simple heuristic properties of conditional independence are shown to form a
conceptual framework for much of the theory of statistical inference. This frame-
work is illustrated by an examination of the réle of conditional independence in
several diverse areas of the field of statistics. Topics covered include sufficiency and
ancillarity, parameter identification, causal inference, prediction sufficiency, data
selection mechanisms, invariant statistical models and a subjectivist approach to
model-building.

Keywords: INDEPENDENCE; CONDITIONAL INDEPENDENCE; MARKOV CHAINS; SUFFICIENCY;
ANCILLARITY; IDENTIFICATION; SIMPSON’S PARADOX; INVARIANCE; BAYESIAN
INFERENCE; PREDICTION; ADEQUACY; TRANSITIVITY; TOTAL SUFFICIENCY; DATA
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1. INTRODUCTION
INDEPENDENCE and conditional independence are familiar concepts of probability theory,
where they form the basis of several areas of study, such as limit theorems and Markov
chains. It is the aim of this paper to show that independence and (more particularly)
conditional independence are equally fundamental in the theory of statistical inference.

It transpires that many of the important concepts of statistics (sufficiency, ancillarity,
etc.) can be regarded as expressions of conditional independence, and that many results and
theorems concerning these concepts are just applications of some simple general properties
of conditional independence. By taking conditional independence as basic, and expressing
other properties in terms of it, we achieve a unification of many areas of statistics which appear,
at first sight, to be entirely unrelated. This unification in its turn promotes cross-fertilization:
when two different areas of study are found to be isomorphic, known results in one area
immediately become available for use in the other. Thus I would claim that, rather than just
being another useful tool in the statistician’s kitbag, conditional independence offers a new
language for the expression of statistical concepts and a framework for their study.

The above claim is a big one, and the reader must determine for himself whether he feels
it is substantiated by this paper. My plan has been to take several areas of statistics, express
them in terms of conditional independence and examine the consequences of this point of view.
Most (though not all) of the results are well known, but have not before been considered
from this angle. (Notable exceptions are Hall et al., 1965; Pitman and Speed, 1973; and to
some extent Lauritzen, 1974; who have made fundamental use of conditional independence
in their work.) Some of the areas studied may seem entirely unconnected with each other:
this goes to illustrate the power and scope of the underlying structure.

One theme which runs through much of the material here is the simple way in which
Bayesian results can be “read off”” as consequences of sampling theory properties, as soon as
these have been expressed in terms of conditional independence. The theory is particularly
useful for a Bayesian, as in it the distinction between data and parameters is largely irrelevant.
Nevertheless, the theory also has important applications outside Bayesian inference, and must
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be regarded as philosophically neutral in the arguments between the various competitive
viewpoints on inference.

No attempt has been made in this paper to give rigorous statements or proofs. A general
treatment of conditional independence, in terms broad enough to cover all the applications
considered here, seems to require some specialized mathematics: details may be found in
Dawid (1980). However, the principal notions are easy to express and work with heuris-
tically. It is my hope that others will find these heuristics as fruitful in their own investigations
as I have done.

Sections 2, 3 and 4 below introduce and develop some basic general properties o
conditional independence. The next five sections can be read largely independently of one
another. Section 5 treats the use of covariates in causal inference ; Section 6 considers problems
of statistical prediction; Section 7 deals with processes which bias the observation of data;
Section 8 provides a unifying treatment of various results on invariance; and Section 9 presents
the rudiments of a subjectivist theory of model-building.

2. INDEPENDENCE
2.1. Definitions

Let X and Y be random variables. We denote by p(x, ), p(x) and p(x|y), respectively,
the joint density of (X, Y), the marginal density of X, and the conditional density of X given
Y=y; and so on.

We write X 1LY to denote that X and Y are independent. The usual mathematical
expression of this property, in terms of densities, is

(I2) p(x,) = p(x) p(y).

However, while this factorization forms the basis of further development of the probability
theory (for example extensions to several variables), it is itself a derivative of a more basic,
though mathematically equivalent, formulation. Intuitively, XILY if any information
received about Y does not alter uncertainty about X; that is

(Ta) p(x|y) = p().

There are other, seemingly weaker but in fact equivalent, formulations. Thus instead of (la)
we may require

(Ib) p(x,y) = a(x) b(y),

expressing a factorization of p(x, y), but not insisting that the factors be the marginal densities.
In place of (IIa) we may similarly substitute

(IIb) p(x]y) = a(x),

expressing the fact that the distributions of X given ¥ do not depend on the value at which
the conditioning variable is fixed, but not insisting that the common conditional distribution
should be the marginal distribution of X.

It is a matter of trivial mathematics to verify the equivalence of the above four formulations
of the property XL Y. Nevertheless, this equivalence is, to be at any rate, somewhat
surprising. The intuitive notion captured by (II)(a or b) appears non-symmetrical, treating
X and Y on quite different footings. However, (I) shows that the property really is symmetrical,

after all. Thus, if we take (II)(a or b) as the definition of X_IL ¥, the following result is by no
means vacuous.

Theorem 2.1. If X 1Y, then Y X,
An example of the use of Theorem 2.1 arises in retrospective studies. Let X denote exposure
(X =1) or non-exposure (X =0) to some possibly carcinogenic agent, and let Y indicate



1979] DAwID — Conditional Independence in Statistical Theory 3

development (Y = 1) or non-development (¥ = 0) of a certain kind of cancer. It may be
important to investigate whether or not Y_IL X in the sense of (IIb): that is, whether or not the
incidence of cancer is the same in those who were, and in those who were not, exposed to the
agent. It is common to collect two groups of subjects, one in which the subjects developed the
cancer (Y = 1) and a control group of those who did not (¥ = 0), and investigate whether or
not the proportion exposed to the agent is the same in both groups. Thus the data throw
light directly on whether or not Xl ¥, and hence, by means of Theorem 2.1, indirectly on
whether or not Y.L X,

2.2. Introduction of Parameters

One advantage of expressing X_IL Y in terms of (IIb) is that the concept it expresses extends
to cases where the variables do not have a joint probability distribution. For example, suppose
we have a statistical model in which the distributions of the data X are determined by the
value of a parameter 0, and let S be a function of X. Then, given only this structure, it makes
sense to talk about the conditional distribution of S, given ® = 6, but not so of the joint
distribution of S and ®, nor of the marginal distribution of S. We can still write S0,
if we interpret this in the sense of (IIb), although the other characterizations are now meaning-
less. With this understanding, S_L.® expresses the fact that the sampling distribution of S is
the same for all values of @; that is, in the usual statistical terminology, S is an ancillary
statistic.

We cannot apply Theorem 2.1 in this case, since it depends on the existence of a joint
distribution. However, if we add further structure, in the form of a (prior) distribution for @,
such a joint distribution is created, and it therefore follows that ®_LS, for any ancillary
statistic S. That is, by (IIa), p(8|s) = p(6), or, the distribution of ® posterior to observing S
is unchanged from that in the prior distribution. This is a well-known result in Bayesian
statistics: the above proof is perhaps marginally more trivial than any other.

Even without taking a Bayesian viewpoint, one could interpret ®_LS as saying that S
provides no information about ®, thus turning Theorem 2.1 into a principle of inference:
no information about ® can be extracted from observing an ancillary statistic. This is very
close to being a statement of the conditionality principle (Birnbaum, 1962).

3. CoONDITIONAL INDEPENDENCE
3.1. Definitions
We now introduce a further variable Z, and write Xl Y|Z to denote that X and ¥ are

independent in their joint distribution given Z = z, for any value of z. Once again, this
property has several equivalent expressions in terms of density functions:

(12) p(x,y|2) = p(x|2) p(¥|2);  (2a) p(x|y,2) = p(x|2);
(lb) p(x,y|z) = a(x9z)b(y’ Z); (2b) P(xIJ’,Z) = a(x, Z).

A caution is called for here concerning the use (for example in pseudo-Bayesian theory)
of improper distributions for random variables. It is shown in Dawid et al. (1973) that, in such
circumstances, it is possible for (2b) to hold and, at the same time, for (2a) to fail; this is
referred to as the marginalization paradox. However, such behaviour cannot occur when
only proper distributions are admitted, which we henceforth assume. The fact that (2b)
implies (2a) gives a useful trick for finding conditional distributions: see, for example,
Dempster (1969, Theorem 13.4.2) and Dawid (1977b, Theorem 3).

To my mind, the intuitive (and non-symmetrical) content of X_ll ¥|Z is best captured by
(2b), which says that the conditional distribution of X, given Y and Z, is in fact completely
determined by the value of Z alone, Y being superfluous once Z is given.

In parallel with Theorem 2.1, and equally non-vacuous for the interpretation (2)(a or b),
we have
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Theorem 3.1. If X1 Y|Z, then Y1 X|Z.

As a possible application of this result, consider the problem of operating a “fair”
procedure for the selection of minority group members for university admission (Cole, 1973;
Bickel et al., 1977). One solution is to require that the probability of such selection should
depend only on the academic promise of the candidates, and not-on race, sex and so on.
Let X denote selection (X = 1) or rejection (X = 0), let Y denote (say) sex, and let Z be a
test-score regarded as a good assessment of academic promise. It is intended that X_L Y|Z.
This could be monitored by checking whether or not Y1 X|Z: that is to say by taking two
test-groups, one of successful and another of unsuccessful candidates, and looking to see
whether the proportions of those getting any particular Z-score who are male are the same in
both groups. (Further aspects of this problem are discussed in Section 5 below.)

Once again, it is not necessary for the concept of conditional independence that X, ¥ and
Z have a joint distribution. Any of the expressions of X_l Y|® makes sense, where X and Y
are random variables with a joint distribution governed by the value of the parameter ©.

3.2. Sufficiency

Likewise, if ® governs the distribution of X, and T'is a function of X, the property X_1LO|T
is meaningful in the sense of (2b), and expresses the fact that the conditional sampling
distributions of X given T are the same for all values of the parameter: that is, T is a sufficient
statistic. Application of Theorem 3.1 to the case where @ is given a prior distribution produces
another important result in Bayesian inference: @_LX|T says that p(8|x) = p(6|¢), that is,
the posterior distribution based on the full data is the same as that based only on a sufficient
statistic.

For a non-Bayesian, ®_IL X| T encapsulates the sufficiency principle: no information about
O is contained in X over and above that contained in 7.

3.3. Identification

Now let the distribution of X be determined by a pair of parameters (®,®). Then we
can interpret XL ®|® in the sense of (2b). This says that the distributions of X are in fact
completely determined by the value of ®, @ being redundant once ® is known. A familiar
example is given by the estimable functions in the normal linear model of less than full rank:
X=TIB+e, e~N(0,0%I). Two different values of B can yield the same value of I'8, and
hence the same distribution for X. We can take ® = (I'8, ¢%), and @ any set of parameters
which, together with @, determine B: for example ® = (I—I'-T') 8, where I' is a fixed g-inverse
of T'; or we could even take @ to be the full parameter (,0%). Other important examples
occur in econometric simultaneous equation models (Dréze, 1974) and the linear structural
relationship (Reiersel, 1950) under normality.

In the above situation, the full parameter (O, ®) is said not to be identified. Barankin
(1961) terms O a sufficient parameter. The concepts of sufficient statistic and sufficient
parameter are, in fact, very closely related: both have similar expressions in terms of
conditional independence (Picci, 1977). This relationship is just one aspect of a fuller duality
that exists between data and parameter in a statistical model;.see, for example, Kudo (1967)
and Florens and Mouchart (1977).

If @ is a sufficient parameter, so that X1 ®|®, and the parameters have a prior
distribution, then ®_ X|©, so that p(¢|x,0) =p($|6). We see that the conditional.
distribution for the redundant part ® of the parameter, given the sufficient parameter ©,
is the same in the posterior distribution as in the prior: once we have learned about ® from
the data, we can learn nothing more about ®, over and above what we knew already. This
result, although easy to prove and long a part of the folk-lore of Bayesian statistics, is hard
to trace in the literature. Dréze (1974) gives it in the particular context of simultaneous
equation models. Theorem 5 of Kadane (1974) comes very close to this result.
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4. ELEMENTARY PROPERTIES

We have so far needed only the symmetry property of conditional independence. Some
further simple general results are the following.

Lemma 4.1. XL Y|Z if and only if (X,Z)1(Y,Z)|Z.

Lemma 4.2. If XL Y|Z, and U is a function of X, then
(i) UL Y|Z and (ii) XL Y|(Z, U).

Lemma 4.3. If X1 Y|Z and XL W|(Y,2), then X1L(W, Y)|Z.

Important special cases of Lemmas 4.2 and 4.3 arise when the conditioning on Z is absent.
Note that the converse of Lemma 4.3 holds, by Lemma 4.2 and the symmetry property.

We can define the joint independence of n random variables Xj, ..., X,,, denoted ®%, X;,
inductively as follows:

JLX,@XI_[LX,, and ;ll_X,<>(.ILX, and (X, ... ,,_I)_ILX,,) #>2).
1 =1

It is an easy exercise to show, using the properties already established, that this property
does not depend on the ordering of the X’s.

Many derivations in probability theory and statistics may be conveniently stated and
performed using the notation and general results of conditional independence. As an example,
suppose (X)) is a discrete-time Markov chain. Denote by Y,= (X, X,,4,...) the future at time
t,and by Z, = (..., X,_4, X)) the past at time ¢. (It is convenient, but not necessary, to consider
the present state X, as part of both the past and the future). Then the Markov property is
expressible in terms of conditional independence: for all ¢, Y, L Z,| X,.

In particular, (X, X;,1)1LZ, ,|X,_,, by Lemma 4.2 (i), and so, by Lemma 4.2 again,

XA Z, 5 |(Xiog, Xiyo)- @1
Also, (Z,_y, X) LY, ;| X4, so that
XA Y| Xy X2, Z, o) @2
Combining (4.1) and (4.2) by means of Lemma 4.3 yields
XA (Z, 3, Y| (Xizy Xip). “43)

Thus we have demonstrated the rearest-neighbour property of a Markov chain: given the
states at all times other than ¢, the conditional distribution of X; is in fact determined by the
states at times (#—1) and (¢+1) only.

Numerous further examples of the application of these simple properties of conditional
independence will be found throughout the rest of this paper.

5. CAUSAL INFERENCE AND SIMPSON’S PARADOX

Simpson’s paradox (Simpson, 1951) has been much discussed (see, for example, Blyth,
1972; Lindley and Novick, 1979) but continues to trap the unwary. Conditional independence
proves to be helpful in resolving the paradox and in setting up meaningful null hypotheses
for testing causal effects.

Consider a population of experimental units. Several treatments, labelled by X, are
available for application to any unit, and interest revolves around their differential effects
on a response variable Y. Also available is information on a set of covariates, denoted by Z.
In its simplest form, Simpson’s paradox arises because it is possible to have Y1 X|Z
without YILX, and conversely. For example, with X taking values T (treatment) or 7'
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(control), Y taking values R (recovery) or R (no recovery), and Z indexing sex, the data of
Table 1 seem to exhibit a beneficial effect of treatment for either sex, which disappears when
the table is collapsed over sex; the opposite effect occurs with Table 2.

TABLE 1
Male Female
R R R R
T 100 50 100 150
T 160 120 20 60
TABLE 2
Male Female
R R R R
T 20 40 100 50
T 20 40 20 10

It is not difficult to fabricate examples involving several covariates, where the treatment
effect appears to come and go as each new covariate is taken into account. Similar behaviour
can occur in the linear model. What is an appropriate inference in such a case?

Let us label the individual units of the population by a variable I. We can consider the
family of distributions for the response Y on unit I when treatment X is applied, as / and X
vary. This is largely a conceptual entity, since only one treatment can in fact be applied to
any unit.

The hypothesis of no treatment effect, at the level of individual units, can be written as

YAX|I (5.1)

Without further input, however, (5.1) is a conceptual, untestable assertion. Rubin (1978)
considers a subjectivist Bayesian approach to inference about (5.1), in a framework which
differs slightly from ours. We shall take a more standard view.

Suppose that we have a set of covariates Z (a function of I).

Definition. We say that Z is a sufficient set of covariates if
YUI|(X,Z). (5.2
If (5.2) holds, then any further information about Iis irrelevant to the response distribution,

for any treatment, when Z is known.

If Z is sufficient, then it is meaningful to discuss the distribution of Y given (X, Z). In
particular, a meaningful statement is

YL X|Z. (5.3

Moreover (5.3) is, in principle, testable by standard statistical methods (although the practical
difficulties increase with the dimensionality of Z).

Now if (5.2) and (5.3) hold, then, by Lemma 4.3, Y (I, X)|Z, whence in particular
YL X|(I, Z), which is (5.1). Conversely, if (5.2) and (5.1) hold then, within the sub-
population of units having a fixed value of Z, the distribution of Y given (7, X) depends
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neither on I, for known X, nor on X, for known I. Since any combination of I and X is
conceptually possible, we must have Y_L(J, X)|Z, so that (5.3) holds.

We therefore find that, so long as Z is a sufficient set of covariates, (5.1) and (5.3) are
logically equivalent, and it is valid to base inference about the existence of differential treat-
ment effects on a test of (5.3). However, the equivalence breaks down for insufficient covariates.
In particular, one must not ignore covariates altogether unless the population is homogeneous
(so that Y| X).

How can one be certain that (5.2) holds? If it does, and W is another set of covariates,
then

YL W|(X,Z) (5.4)

and (5.4) may be testable. If (5.4) is rejected, then so is (5.2). However, (5.4) does not imply
(5.2), so that its acceptance does not automatically justify that of (5.2). At some stage it is
necessary to make a subjective judgement that a set of covariates Z* is sufficient. Usually
Z* will be of high dimension, and it is desirable, in the interests of efficiency and parsimony,
to find a sufficient subset of Z*. It is easy to show that Z forms such a reduction if and only
if (5.4) holds, with Z* = (Z, W).

In the situation of Table 1, we might be willing to suppose that sex is a sufficient covariate.
The significant differences in recovery rates for the two sexes, on either treatment, indicate
that this covariate cannot be discarded, so that the appropriate inference is that the treatment
is beneficial. By the same argument, the treatment would be judged valueless for Table 2.
The assumption that sex is sufficient could be examined by introducing more covariates, but
at some stage this process must stop, leaving a weak link at the very beginning of the chain
of inference, which can only be reinforced by the statistician’s informed judgement that the
sufficiency condition is met. (This may be regarded as a judgement of partial exchangeability:
see Lindley and Novick, 1979.)

Throughout the above analysis, we have supposed the covariates to be completely deter-
mined by /. This assumption is essential to the argument. For example, if it fails, then from
(5.2) and (5.3) we can still deduce Y.l X|(/,Z), but this is no longer equivalent to (5.1) and
may not be interesting. Lindley and Novick give a thorough discussion of these points. Note
that the inference (5.1) will still be possible in this case if also Z_Il X|/: that is, if there is no
effect of treatment on the covariates.

Another variant of the above analysis arises when it is not possible to assign treatments to
units arbitrarily. For example, Bickel et al. (1977) examine whether there is any effect
ascribable to sex (X) on the probability of acceptance (Y) onto a graduate programme. It is
not even conceptually possible to vary X for a given individual application I, so that (5.1)
becomes meaningless and some other interpretation of “no sex effect” is necessary. We can
still define a sufficient set of covariates by (5.2), expressing the fact that the response distribution
is the same for all individuals having the same value for (X,Z). Then it is easy to see that
(5.3) is equivalent to

Y11|Z. (5.5

This says that Z (without X) is sufficient information on an individual to predict Y.
(If (5.5) holds, then so does (5.2) automatically.) If this is regarded as an adequate interpre-
tation of “no sex effect”, this may again be tested by means of (5.3), always assuming Z is
sufficient. ,

The adequacy of (5.5) must depend on the context. In particular, it is difficult to formalize
the notion that X does not enter into Z (what if Z includes information on whether the
candidate was of the same sex as the interviewer?). Or it might be that Z included height,
and that women tend to be smaller than men. Should use of height in deciding on admission
be regarded as a form of sexual discrimination ?
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6. PREDICTION SUFFICIENCY
6.1. Adequacy

Let X represent the data from an experiment, and let Y denote the outcome of a further
experiment, about which prediction is required. We suppose (X, Y) to have a joint sampling
distribution depending on a parameter ©.

Let T be a function of X. Then T is adequate (Skibinsky, 1967) for this prediction problem
if (i) T is sufficient for ® based on X, and (ii) in the sampling distributions, the distribution
of Y given X depends on T alone. That is to say, (i) X1L®|T, and (ii) YL X|(7,0). An
equivalent single condition is, of course, X_IL(Y, ®)|T. If ® has an arbitrary prior distribution,
then (X, Y, ©) has an induced joint distribution still satisfying X_L (Y, ®)|T, so that Y I X|T.
That is, in the unconditional joint distribution of (X, Y), T is all that need be retained of X
for the purpose of predicting Y.

Consider again the adequacy condition X_L(Y,®)|T. We may construct the family of
distributions of X given Y and O, and this property says that T is a sufficient statistic for this
family. A rigorous statement and proof of this result may be found in the paper by Skibinsky.
As he notes, an immediate consequence of this is that, under regularity conditions, there
exists a minimal sufficient statistic for this extended family of distributions, that is to say, a
minimal adequate statistic T*, which is all that need be retained of X for prediction of Y.

6.2. Decision Problems

If, marginally for any prior distribution on ®, YL X|T (as holds if, for instance, T is
adequate), then all information about X, other than T, may be lost, without destroying the
ability to predict Y. Thus, given any decision problem based on data X, with loss determined
by Y only, one might expect the decision rules based on T to form an essentially complete
class. This is proved by Torgersen (1977). Conversely, if this essential completeness holds for
all such problems, then YL X|T for any prior distribution.

We have already seen that adequacy of T (X1(Y,®)|7T) is sufficient to ensure that
YL X| T holds for any prior, but it is not necessary. For example, another sufficient condition
is Y (X, ®)| T, expressing the conditional independence of X and Y given T in the sampling
distributions (YL X|(®,T)) together with the condition that the distribution of Y given T
is completely known (YI®|T). We could also have a mixture of these conditions:
X (Y, ®)| T for some values of T, and Y_L (X, ®)|T for the remainder. Torgersen shows that
this mixture is the most general situation under which Y_Il X|T for any prior.

However, if the loss function is allowed to depend on ® as well as on Y, then the set of
decision rules based on T forms an essentially complete class, for every such decision problem,
if and only if T is adequate for Y based on X (so that T is “sufficient” for the “parameter”
(0, Y): Takeuchi and Akahira, 1975).

6.3. Transitivity

- Closely related to adequacy are the concepts of tranmsitivity (Bahadur, 1954; Hall et al.,
1965) and total sufficiency (Lauritzen, 1974) in sequential experiments. Let X = (X}, X,,...)
have a joint distribution depending on ®, and for each »n let T, be a function of
X = (X1, X5, ..., X,,). The sequence (T;,) is transitive if Ty, 3 L X ()| (T, ®). Of particular
interest are transitive sequences that are also sufficient, that is, 7, is sufficient for ® based on
X(n). Then X, (T,,.1,0)|T,; that is, T, is adequate for T,,, based on X(,. Bahadur
shows that, for any sequential decision problem with loss determined by ®, attention may be
restricted to rules based on a sufficient and transitive sequence.

Hall et al. consider a slightly more general notion of transitivity, in which £,, the data
available at stage n, need not necessarily be the whole of X,,. The same definition applies:
(T,) is transitive for (£,) if T, is a function of £, and T, ;1 £, |(T,,, ©). They derive a number
of results about transitivity using conditional independence. An example is their Theorem 4.2,
which may be stated as follows.
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Theorem. Suppose (T,,) is transitive for (£,), and let (W,,), (1, be further sequences such
that 7, is a function of ¢,, and W, is simultaneously a function of T,, and (separately) of 7,,.
Suppose further that 7, ILT,|W, (in the sampling distributions). Then (W,) is transitive
for (1)

Proof. We have (all the time given @): T, ,, L £,|T,, by transitivity, whence, since W,,,,
is a function of T, and 7, a function of &,, W, Ln,|T,. Hence W, ., Ln,|(T,,W,), as
W, is a function of 7,. We also have T, 7,|W,, which together with the previous result
yields (T, Wy, )AL n, | W, so that W, Ly, |W,, and (W,,) is transitive for (»,,).

6.4. Total Sufficiency

Lauritzen (1974) calls a function S, of X, totally sufficient if S, is adequate for
(X415 Xy y0, .-.) based on X,); a sequence (S,) is totally sufficient if each S, is. A sequence
may be sufficient and transitive without being totally sufficient, and vice versa. Suppose,
however, that (S,,) is totally sufficient, and each S, can be expressed as a function of S, and
X,41. Then, in the sampling distributions, S, .3 X(,)|(X,41,S,) (the distributions are
degenerate!), while also X, ;L X(,,)| Sp. Thus (Sy13, Xp42)L Xy | S Whence Sy, 431 X | S
so that (S,,) is (sufficient and) transitive.

In particular, suppose S, is minimal totally sufficient, for each n. We have

X(n)-‘“—(Xn+1’ Xn+2’ sy G)I Sm
whence
X(,,,)_U_(X,,,_,_z, Xn-{-a, eeey ®)| (Sm Xn+1)’
and so

X(n+1)JL(Xn+2’ Xn+8’ eoes G)I (Sm Xn+1)'

S0 (Sp, X,,41) is totally sufficient based on X, ,,), and hence, by minimality, S, ,, is a function
of S, and X,,.,. The previous paragraph therefore applies: (S,) is sufficient and transitive.

(More generally, it is easy to show that, if (X, Y, Z) have a joint distribution, if S is adequate
for (Y,Z) based on X and T adequate for (X,Z) based on ¥, then (S, T) is adequate for Z
based on (X, Y).)

We further have, for a minimal totally sufficient sequence (S,,), X411 X(n)| (S», ®), whence
(Sps Xp )L X ()| (Sp, ®). Since S, ,, is a function of (S,, X,,1), and S(,) = (Sy,Sz; -+, Sp)
a function of X, we get S,,;1.S,,)|(S,, ®). That is, in the sampling distributions, the
sequence (S,,) is a Markov chain. It follows that S(,)IL(Sy 11, Spies ---)| (S, ®), while we know
SmALO|S, by sufficiency. Hence S(,)L(Sy 15Sn19---s9)|S, (and thus (S,) is totally
sufficient with respect to itself). We deduce that S,,_; L ®|S,, so that the backward transition
distributions of the Markov chain (S,,) are completely known, independently of the parameter.
Also, for any prior distribution on ®, S()lL(Sy41,Sn+e---)|Sns s0 that (S,) remains a
Markov chain in its marginal distribution. It is clear that the same backward transition
distributions apply to this marginal chain.

The above theory has been used by Lauritzen (1974) in an approach to model-building.
Starting with a given backward transition structure for a Markov chain (S,,), he investigates
the class of all possible distributions for (S,) consistent with this. This class is convex, and
the extremal elements are taken as constituting the appropriate family of sampling distributions.

7. DATA SELECTION PROCESSES
7.1. Introduction
There are many situations in which data arise from some random process, but observation
of these data is biased by selection effects, so that not every outcome is equally likely to be
observed. The simplest case is truncation, where a generated outcome X is observed if and
only if X falls in some pre-assigned set 4. The distribution after truncation will differ from
the untruncated distribution, but the conditional distributions, given that X e 4, will agree.
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More generally, let Y be a function of X, and suppose the probability that the generated
outcome X is selected for observation is determined by Y alone. We can express this in terms
of conditional independence by defining an indicator variable Q, with Q = 1 if the outcome
is selected, Q = 0 otherwise. Then we are supposing QL X| Y. It then follows trivially that
X1 Q| Y, which may be interpreted, in terms of (2a) of Section 3, as saying that the
distribution of X given Y is the same for both the selected and unselected data. In particular,
estimation of this distribution from selected data may proceed without the need for any
corrective adjustment.

7.2. Diagnosis

An application of the above arises in a statistical approach to medical diagnosis (Dawid,
1976). With each individual in a population is associated a pair (S, D), where D signifies
his disease, and S the full set of symptoms, signs, etc. on which diagnosis is to be based. The
selection variable Q represents admission to the centre in which the data are collected. This
selection is supposed to be governed entirely by the presenting symptoms S,, a subset of S,
together with further non-medical personal information G. Thus QL (S, D)|(S,, G).

The non-medical nature of G may be formalized as G D|S, expressing the fact that, for
inference about D from (S, G), S is sufficient.

We therefore have QL D|(S, Sy, G) (where S, is redundant), and G D|S, which together
give (Q,G)ALD|S, so that DU Q|S. It follows that the distributions of D given S are un-
affected by selection and, in the absence of any further biases, may be estimated directly.
This contrasts with a widespread emphasis on estimation of the distributions of S given D:
distributions which are subject to distortion by selection bias.

Another application of the general result arises in regression analysis, in which the
regression of a response variable on the explanatory variables is the same, no matter whether
these explanatory variables arise at random, or are selected in any way, so long as such a
selection does not involve the response.

7.3. Sufficiency and Adequacy

Let the distribution of X be governed by a parameter ®, and suppose Q1 @| X, so that
selection only depends on the data. If T is sufficient before selection then X_1L®|7. Since
QUL 0|(X,T), we get (0, X)1LO|T, and so X1 O|(Q,T). That is, T remains sufficient in
the selected distributions (Tukey, 1949).

For a Bayesian, Q1 ©| X immediately yields ®_LQ| X, so the selection may be ignored
when forming posterior distributions based on the full data X.

Now suppose (X, ¥) have a joint distribution depending on ©, and that T is adequate for
predicting Y from X: X1 (@, Y)|T. Let selection be governed purely by the value of X:
01(0, Y)|X. We derive (Q,X)1(0, Y)|T (remember T is a function of X), so that
X1.(0O, Y)|(Q,T), and T remains adequate after selection (Padmanabhan, 1972). For a
Bayesian, Y_L(X,Q)|T: both the fact of selection and the value of X are irrelevant to
prediction when T is known.

In contrast to the above results, Padmanabhan shows that a statistic ancillary before
selection is not generally ancillary afterwards.

7.4. Sequential Sampling
Suppose the components of X = (X, X,,...) are observed sequentially, until the process
terminates by the operation of a deterministic stopping-time. Thus if N denotes the number
of observations made, the event A4,, that N = n, is completely determined by the value of
Xm = (X3, Xy, ..., X,,)). Such stopping times are of importance both in practice (since they
often operate) and in theory (for example, optional stopping of Markov processes or martin-

gales).
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Several extensions of this notion to the non-deterministic case have been suggested
(Bahadur, 1954; Kemperman, 1961; Siegmund, 1967). Pitman and Speed (1973) show,
using simple properties of conditional independence, that these various definitions are all
equivalent to (or special cases of) the following

Definition. N is a randomized stopping time for X if, for all n, 4, 1 X| X

They go on to show that N can be considered as a deterministic stopping time on a suitable
sequence of o-fields and that the Markov or martingale properties carry over when X is
regarded as adapted to this sequence. Thus the theory of randomized stopping times may be
studied by means of the well-known established theory of deterministic stopping times.

Suppose now that the distribution of X depends on a parameter ®. The stopping-time
property is extended to: A4, (X, ®)| X, and the observed data may be represented by
(4ps X)) Let T, be sufficient for ® based on X,. Then X, @|T,, and since
A, LO|(X(n), T,) it easily follows that (4,, X,))LO|T,, so that T, is a sufficient summary
of the observed data in the stopped experiment. Likewise, the properties of transitivity and
total sufficiency are preserved by such optional stopping.

For a Bayesian, Ol 4, | X(,). Thus the posterior distribution based on the data of the
stopped experiment is the same as that based on the experiment which always produces X,.
(This is a reflection of the fact that a stopping-time does not alter likelihood-ratios.)

Similarly, for a Bayesian, (X1, Xp425 ---)1L4,| Xy, SO that prediction is unaffected by
optional stopping.

The above theory can be applied in non-sequential situations in which the observed set
of data may be a selected subset of the full data X, for example missing-data problems. More
details may be found in Rubin (1976) and Dawid and Dickey (1977).

8. CONDITIONAL INDEPENDENCE AND INVARIANCE
8.1. Invariance in Parametric Models

It is useful to have some theory which gives us conditions under which we shall have
conditional independence. Consider first a statistical model in which the distributions of X
are governed by 0, and suppose these distributions are equivariant under the action of trans-
formation groups G on X and G = {g: g€ G} on O: that is, for each g e G, the distribution of
gX, given O = 0, is the same as that of X given ©® = g6. It is then easy to show (see, for
example, p. 220 of Lehmann, 1959) that, if Z is a maximal invariant function of X under G,
and V' a maximal invariant function of ® under G, then the distribution of Z depends on ¥ alone.

The above result may be expressed in terms of conditional independence:

Z10|VY. (8.1)

8.2. Sufficiency and Invariance :
Now consider a sufficient statistic S in the above model, and suppose that G acts on S
in the sense that, if S(x,) = S(x,), then S(gx,) = S(gx,). (This will be true if S is minimal
sufficient: Fraser, 1966.) For geG, we get g* acting on S defined by: g*(S(x)) = S(g(x)).
The distributions of X given S do not depend on ©®, and may themselves be considered as
a parametric family of distributions, with S now playing the réle of the parameter. Moreover,
this family is easily seen to be equivariant under the action of G on X and G* = {g*: geG}
on S. Let U be a maximal invariant function of S under G*. Then the previous result may be
directly applied, to yield
Zl1S|U. 8.2

(This is made precise in Hall ez al., 1965.) Since S is sufficient, Z_1L @| S, whence Z_ L ®|(S, U)
(U is a function of S). Taking this together with (8.2), Lemma 4.3 yields Z_L (S, ®)| U; that
is to say, U is adequate for S based on Z. In particular, Z_Il ®| U, so that U is sufficient for ®
based on Z. Hall et al. call U invariantly sufficient.
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Example 8.1 (Fraser, 1966). Let X = (X;,..., X,,) be a random sample from N(®, o3
(o? known) and let G be the location group with typical member

(X1 Xgy oees Xp) —2—> (X1 +a, X5+ 4y ...y X, + Q).

The parameter transforms as 6 +—2—0+a; and the minimal sufficient statistic is S = X,
transforming by s -~ s+a. We have Z = (X;— X, ..., X,,— X), and U is trivial. We deduce
that X and (X;— X, ..., X,,— X) are independent given @.

A similar argument, using the scale group, shows that if X =(Xi,...,X,), with
X;~T'(A;, B) independently, then S= X X; is independent of (X;/S, ..., X,/S).

Example 8.2. For a case where U is non-trivial, let X = (Xy,X,,...,X,) be a random
sample from the Fisher-von Mises distribution on the circle. Thus X; is a unit vector in the
plane, whose density (with respect to Lebesgue measure on the circumference of the unit
circle) is given by c(]|0]|)exp(6’x;). Here the parameter-value 0 is an arbitrary vector. A
minimal sufficient statistic is S = £ X, summing over i from 1 to n.

We take, as a typical element g of G, a rotation of each X; through the same angle .
Then g operates on @, and g* on S, by means of the same rotation. We may take Z to consist
of the configuration of the X;’s, that is, the set of angular distances between them, while
¥ =||®| and U =||S|. We therefore find: (i) the distribution of the configuration Z depends
only on ||@®||, and (ii) given ||S|l, the configuration Z is independent of (the orientation of) S.

Example 8.3. As an extension of the above, suppose that the sample size 7 is chosen by a
random process, with known probabilities, before the experiment is performed. If ¥ =||@||
is regarded as fixed, then S is still minimal sufficient (in particular, the value of » is not required
for inference). The only change is that n must be appended to Z. We thus find, in particular,
that the distribution of (the orientation of) S = ZX,, given # and ||S|| (and the parameters),
is the same for all n.

Now when ¥ = ||@®|| is known, U = ||S|| is ancillary. This suggests that inference about @
might then be based on the distribution of S given ||S||. Apart from any theoretical arguments
for this, the above result shows that this distribution is not affected by the randomness of n.
In contrast, the full distribution of S does depend on the distribution of n. Although the
information about 7 is discarded in the reduction to the minimal sufficient statistic S, many
statisticians would like to condition on its value. The conditioning on ||S|| is an alternative
which accomplishes this end.

For a general discussion of problems of inference raised by examples such as this, see
Dawid (1975).

8.3. Bayesian Invariance
Consider again the equivariant sampling model of Section 8.1, and suppose that the
parameter © has a prior distribution that is invariant under G. That is, for g€ G, g0 has the
same distribution as @. It follows easily (Dawid, 1977a: Appendix) that the family of posterior
distributions for © given X is equivariant under the action G on ® and G on X (we are now
considering ® as a random variable with distributions governed by the “parameter” X).
By the same argument that yielded (8.1), we have

v X|Z. 8.3

It follows that the posterior distribution of ¥ depends on the data X through the value
of Z alone.

An important special case arises when G consists of the identity transformation alone.
In this case, any of the sampling distributions of X given © is unchanged by any trans-
formation g € G operating on X. Then ¥ = ©, and any prior distribution for © is invariant
under G. From (8.3), ©®_L X| Z for any prior, so that the posterior distribution depends on the
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data through Z alone, which is therefore Bayesian sufficient for ®. Under regularity conditions,
this is equivalent to ordinary sufficiency:

X10|z. (8.4)

We have therefore derived the following result: if every member of the family of sampling
distributions is invariant under the group G, then the maximal invariant under G is sufficient.
(For a rigorous statement and proof, see Farrell, 1962).

Example 8.4 (Basu, 1970). Let X = (X}, X,, ..., X,,)’ be a random sample from N(u,o?),
with both parameters unknown. A typical element of G takes X into Y = AX, where A is
an orthogonal matrix such that A1 =1. Then Y has the same distribution as X for every
(4, 0®). A maximal invariant under G is (Z X;, 2 X?), which is therefore sufficient.

9. INTERSUBJECTIVE MODELS

From the point of view of de Finetti’s theory of subjective probability (1975), there is no
need for parametric (or non-parametric!) statistical models. Let Y represent the whole class
of observables with which a subjectivist is concerned in a particular application. (This will
include variables about which prediction may be required, as well as X, the data to be collected.)
Then such an individual is supposed to have a joint subjective distribution over Y, which is
completely known to him. After observing X, he has a new distribution, derived by simple
conditioning, which is now relevant for prediction.

Consider now a collection of such individuals A = {A}, all concerned with the same
variables Y. Each A will have his own subjective distribution Q, for Y. The family
2 ={Q,: AeA} looks like a statistical model for ¥, with A as the parameter, although its
interpretation is really very different. Nevertheless, we can apply standard statistical concepts
to this family. For example, suppose a variable © (a function of Y) is sufficient for 2. Then
all the subjectivists agree about the distribution of Y given ®. This motivates the following
definition, in which *“I”* denotes “intersubjective’:

Definition 9.1. If O is sufficient for 2, we call ® an I-parameter; the (common) distributions
of Y given O constitute an I-model.

There is, of course, some arbitrariness about what is included in ¥, but once this is settled
we can introduce the concept of a minimal I-parameter, corresponding to a minimal sufficient
statistic for 2.

Example 9.1. Let Y = (Y}, Yy, ..., Yy), where each Y, is the outcome of a toss of the same
coin, coded 0 or 1. Suppose every individual agrees that the Y;’s are exchangeable, so that
each distribution Q, is unchanged when the components of Y undergo an arbitrary
permutation. It follows easily that Ty = XY, Y, is sufficient for 2, and can be taken as the
I-parameter. All individuals agree on the /-model: given Ty, all possible sequences of Y’s
are equally likely; although they may disagree about the marginal distribution for Ty,.

Example 9.2. To continue from the previous example: if all individuals agree that
(conceptually at least) the coin may be tossed infinitely often, while exchangeability is retained,
then they might try to model the larger world, consisting of Y* = (Y,,Y,,...,ad inf)). By
de Finetti’s celebrated theorem (1937), each O, may be represented as a mixture of Bernoulli
sequences for Y*, with probability £, where ¢ has some distribution =, over [0,1]. In fact
more is true (Kendall, 1967). Define © = lim,,_,,,n"12Y;, (summing over i from 1 to ») if this
exists, ©® = 0 (say) otherwise. The limit exists with probability one for each Q,, and we may
identify ©@ with £. For each Q,, the distribution of Y* given ® may be taken as Bernoulli
trials with probability ®. Thus © is an I-parameter for Y*, and the I-model is just that of
Bernoulli trials. We have therefore derived the traditional model which forms the starting
point of most investigations of Y*, as an agreed intersubjective model for all those individuals
who are willing to accept exchangeability.

Once we have the concept of an I-parameter, we can introduce appropriate versions of
other statistical concepts. For example, a statistic T'(a function of X) is I-sufficient if X 1 ©|T.
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(Note that the distributions of X given ®, and hence of X given ©® and T, are well defined in
the sense that they are the same for every Q,.) Similarly, S is I-ancillary if S ®. We can go
on to introduce I-adequacy, and all the other statistical concepts which may be expressed in
terms of conditional independence. The classical results will continue to hold.

It is important not to confuse the technical and intuitive contents of such concepts. For
example, an /-parameter is technically sufficient for 2; an I-sufficient statistic is not. It is,
however easy to show that an /-sufficient statistic is also technically sufficient based on X
alone, and so can serve as an J-parameter for X.

The technical concept of adequacy was used in Dawid (1980) in an investigation of the
general structure of conditional independence. Again, this use must be distinguished from the
intuitive concept, now re-expressed as I-adequacy.

In the new framework, no real distinction is made between data and parameters: all are
random variables. Many statistical definitions and properties become simple expressions of
conditional independence. In this way the duality between data and parameters, touched upon
in Section 3.2, is seen to be inevitable. For example, an I-parameter © is identified if and only
if it is technically minimal sufficient for 2.

The invariance (under permutations) of the distribution of ¥ or Y* in Examples 9.1 and
9.2 is the key property which generates the relevant -models. Such an argument, based on the
theory of Section 8, is applicable in many other circumstances. It is hoped to investigate this
approach to model-building (which has close ties with that of Lauritzen, 1974) in a future

paper.

10. CONCLUSION

Although it may not appear so, I have resisted the temptation to say everything I can
think of about conditional independence in this paper. Apart from containing a more mathe-
matical development of the simple properties considered here, another paper (Dawid, 1980)
investigates further problems, such as the implications of the pairs of properties: (i) XL Y|Z
and XL.Z|Y; or (ii) XL Y|Z and X_IL Y. Application of these results in a paper of mine as
yet unpublished is shown to lead to corrected forms for a number of fallacious arguments
which do not, on the face of it, appear to have anything in common—until their structure is
expressed in terms of conditional independence.

Another paper, by Dawid and Dickey, not published yet, expresses various concepts of
“partial sufficiency in the presence of nuisance parameters” in terms of conditional
independence, and uses the general results to obtain connections between them.

The present paper has, I hope, given some support to my claim that ideas of conditional
independence pervade statistical theory, and that it might be illuminating to focus their light
on all aspects and into all corners of the subject. I have no doubt that further applications
and examples of conditional independence could be found in profusion, and I look forward
to learning of such discovery at the hands of others.
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DiscussioN oF PROFESSOR DAwID’s PAPER
Professor D. V. LINDLEY: To unite several different ideas through a single concept is a valuable
notion and Dawid’s use of independence is a notable example of this. But is independence the
most satisfactory concept to use, for there are several difficulties with it? Firstly, it rarely exists:
it is hard to find things that are truly independent. I had an example of this recently when I misread
an Ordnance Survey map because the spot heights were in metres but the contour lines were at
50-foot intervals. Presumably we have gone metric because our screws won’t work overseas, sO
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my country walks are dependent on some features of the engineering industry. Secondly, inde-
pendence is too closely related to hypothesis-testing for my taste. This is brought out in the
discussion of Simpson’s paradox, which, to my mind, is concerned with the behaviour of measures
of association and not with the narrower point of whether or not that measure is zero. A third
point is that independence is not just a relation between pairs of random variables but between
members of a set. The basic idea is I (X;, Xy, ..., X,), not X, 1 X, and the definition of the
former in terms of the latter is cumbersome. A fourth point concerns the difficulty of the concept
of independence itself. It is such an elusive concept: for example, in pairwise independence not
implying independence. But perhaps these four objections are not real objections because the ideas
that independence is meant to unite are themselves difficult. So let me turn to these ideas, like
sufficiency and ancillarity.

Are these ideas important in the Bayesian view? I suggest much less so than in the sampling-
theory view. In the coherent approach one has data x and parameters 6 of interest, and A nuisance.
One needs to evaluate p(6] x) and the only tools available for this are the rules of the probability
calculus. If #,(x) is sufficient for (6, A), then this will come out in the analysis: or we may get #,(x)
marginally sufficient for 6 for the specific marginal p(A| 6) that is being used—a difficult concept
outside the Bayesian view. In other words, the calculus provides the answer and no tricks of
sufficiency are required. At best they may be helpful. In the Bayesian view it is nearly as easy to
investigate samples from a #-distribution as it is a normal one, despite the fact that a three-
dimensional sufficient statistic (n, %, s?) exists for the latter but not the former. Such difficulties as
do arise are numerical, not inferential.

In the paper it is suggested that X Il 6 can be useful when 6 is not a random variable but a
fixed quantity. This can be dangerous when allied to other ideas. Suppose 6 is 0 or 1, and X is
0, 1 or 2; the distribution of X having p(X = 0) = p(X = 1) = a, for some 0<a<3}, for both
O-values. Then g(X, 0) =0 if X = 0, and 1 otherwise, is a pivot, so that X = 0 gives 0 =0 a
probability of a, despite X and 6 being independent; and this for any a. It may legitimately be said
that this is a criticism of pivots and not independence. Godambe has given more complicated,
practical examples.

Finally, some remarks about Simpson’s paradox. It is usual to employ randomization in experi-
mental design, which, in the notation of the paper, presumably means X_Il 1| Z. The strength of
this is that if it is not true that X . ¥| Z, then it cannot happen that X L ¥ | I: that is, the observed
dependence is real. This result can be strengthened by using a measure of association rather than
dependence. Novick and Iin our study of the paradox felt that we did not gain a proper appreciation
of it until we had changed the random variables into uncertain quantities: until we had thought
about the effect of a treatment on a particular person, You. Random variables, with their essential,
allied notion of a population, did not seem adequate fully to explain the paradox. Consider two
cases:

X = treatment, Y = recovery, Z = sex, and
X = variety, Y = yield, Z = height,

with identical data in the two cases exhibiting the paradox, having positive association for all Z, and
negative unconditionally. Then in the first case, for a given person, where Y is uncertain, one would
increase X (that is, the positive association is the real one) whereas in the other one would choose
the variety with least X (the negative, unconditional association is the real one). The same applies
with the weaker concept of independence and I feel that X Il ¥ for random variables that makes no
mention of the population is less satisfactory than X, Il ¥;, where X is the treatment for You,
and Y; is Your recovery.

These comments do not detract from a remarkable paper. I am enormously impressed by
Dawid’s scholarship. He seems to have read everything and knitted it into his thesis. That alone
demonstrates the power of his approach. If a Bayesian thinks it good, then a sampling-theorist, to
whom independence is more important, must find it superb. Perhaps he could even use it to find
out which ancillary to condition on. It is a real pleasure to propose the vote of thanks.

Mr A. D. McLAReN (University of Glasgow): We have had a very instructive paper tonight.
The author has combined erudition with a disarming simplicity to show us that much of what
appears in the journals is yet another example of conditional independence. I can certainly give
empirical confirmation, if any is needed, that conditional independence crops up regularly in
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practical statistical work. For instance it is now routine (Akhmeteli e# al., 1977) to calculate odds
that a woman with a family history of a sex-linked disease such as haemophilia is in fact a (symptom-
less) carrier of the disease. The calculation is based both on clinical tests on the woman, and
possibly her female relatives, and on analysis of her family tree including any descendants. This
purely genetical analysis can be complicated (Elston and Stewart, 1971; Lange and Elston, 1975)
if the pedigree is a long one, but it is much simplified by the fact that conditional on the woman’s
own genotype her descendants are independent of kin related to her through her parents. Indeed
the conditional independence of the development of the offspring and any characters acquired by
the parents, given their genotypes, comes close to defining the anti-Lamarckian view of heredity.

Another practical example is suggested by the paper’s mention of missing data (Section 7.4).
The key formula here is usually, in Bayesian notation, m(0 | 4) = Zy w(8 | 4, M) m(M | A), where
© are the parameters of interest and 4, M represent the available and missing parts of the data
respectively. The characteristic inferential, rather than computationa!, difficulty is posed by the
terms w(M | A). Suppose, for example as in McLaren (1967), that graduates of a training course
take a test (scores denoted S) at the end of the course and later only some of them take another
(scores denoted R) to see what knowledge they have retained. Thus 4 = (S,,R,, S;) and M = (R,).
Now w(M|A) = m(R;|S,, S1, Ry) = m(R;|S,), say. Can the function 7, be supplied from a
straightforward interpretation of the scatter diagram of R, against S,, perhaps using standard
prediction formulas? The answer is yes, provided the probability that a graduate goes on to take
the second test depends only on his score in the first test. This is merely an illustration of Section 7.2,
one of the simplest but most important in the whole paper.

Would the author like to clarify the relationship of Section 7.3, particularly the sentence “For
a Bayesian, . . . the selection may be ignored . . .”, to Section 7.2?

Section 5 of the paper is extremely interesting. After equation (5.4) we read: “At some stage it
is necessary to make a subjective judgement that a set of covariates Z* is sufficient.” Asa Bayesian
I must agree with this statement ; but practitioners will console themselves with the thought that this
subjective judgement can be made less painful if the usual random allocation X AL 1| Z of treatments
to units is made. Note, however, Jeffreys’ (1961, p. 243) caution against trying to randomize out a
covariate with a large effect.

Turning to the theoretical aspects of tonight’s paper, I found Theorem 2.1 both amusing and
thought-provoking. When two variables are associated it may be in a distinctly unsymmetrical
manner but, as the theorem states, if stochastic independence does strike it does so symmetrically.
Would it be interesting to consider weaker versions of (conditional) independence in the hope of
finding an unsymmetrical one? Suppose a vector random variable Y is said to be weakly independent
of another, X, if E(Y | X) does not depend on X. This definition is equivalent to demanding that
each component of Y is uncorrelated with any function of X. It does not imply that X is weakly
independent of Y: consider a bivariate example in which the joint density of X and Y is uniform
over an isosceles triangle with its odd side parallel to the Y-axis.

Another area of interest is the theory of partial sufficiency as developed by Kagan and Shalaevskii
(see Linnik, 1975, p. 4). Here one is concerned with statistics T such that E(f | T, 6) is free of 6 for
statistics f belonging to a specified linear space.

As indication that, even armed with the notion of conditional independence, one must still take
care, consider a statistic U known to be independent of a statistic T sufficient in the ordinary sense.
The consideration that p(U | ¢, 6) is free of @ (sufficiency) and free of ¢ (independence) might suggest
that U must be ancillary, but this is not so as the following artificial example (Basu, 1958) shows.
Let X; and X, be independent from a uniform distribution over [2u, 2p¢+ 1] where u is an unknown
integer. X is sufficient, in fact determining p precisely; however, the independent statistic X,, far
from being ancillary, is itself sufficient. The explanation of this “paradox” is in fact extremely
simple, as a moment’s reflection will show.

My own favourite example of conditional independence is as follows; no doubt Professor Dawid
knows it. Two statisticians start rival schools of inference. Colleagues are approached in turn and
each joins one school or the other. Of the first n approached (z = 1,2, ...) V,, join the first school.
If ¥, = v, the probability that the next statistician will join the first school is (v+ 1)/(n+2). What
happens to V,/n as n->? The author virtually gave the answer to-day in Example 9.2. The
process (¥, Vs, Vs, ...} is a Markov chain with non-stationary transition probabilities: (v+1)/(n+2),
the complementary probability, and zeros. It is therefore isomorphic to a process {Ry, Ry, R, ...}
where R, is the cumulative number of successes in a Bernoulli process whose success probability is
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itself unknown and is assigned a prior distribution uniform over [0, 1]. This may be verified by the
routine Bayesian calculation Pr(R,., =r+1|R, =r)= ... = (r+1)/(n+2). Hence the limiting
behaviour as n - o of V,/n is the same as that of R,/n, namely almost sure convergence to a limiting
random variable whose distribution is uniform over [0, 1].

I am sure that I have said enough to demonstrate that, conditional on the discussant, contri-
butions to these meetings may be independent of the paper. It only remains to second the vote
of thanks to our speaker for sharing his splendid insights with us tonight. We who are about to
dine salute you.

The vote of thanks was passed by acclamation.

Professor J. B. KADANE (Carnegie-Mellon University): Professor Dawid has given us a very
enlightening synthesis of concepts in his paper. It turns out that many of the key concepts in
statistical theory, such as ancillarity, sufficiency and identification, are special cases, and that
results thought to require individual proofs are special cases of very simple facts concerning
conditional independence. Thus an important unification is reported in this paper.

Another aspect of statistics that Professor Dawid’s paper illuminates is a duality between the
sample space and the parameter space. The relation among several concepts, such as sufficiency of a
statistic and sufficiency of a parameter, are made much clearer using the very general approach
suggested by this paper. Although he declares his paper to be philosopically neutral, several of
these dualities are expressible only in terms of a (proper) subjectivist view of probability theory.

This subjectivist view is strained in Professor Dawid’s treatment of Simpson’s paradox. How
are we to be sure, when considering some set of covariates Z* which we would like to believe is
sufficient, that tomorrow some brilliant scientist will not find an extremely good predictor of
treatment success and failure, one which was excluded from Z*? If we hold dogmatically to the
sufficiency of Z*, then, foolishly, we are unable to learn from the work of this hypothetical brilliant
scientist. Thus the flat declaration that I consider Z* to be a sufficient set of covariates (with
probability one) is more than I am willing to say of a set of covariates in any applied problem I
have encountered. I am, however, willing to specify a set of covariates and do an analysis as if I
believed them to be a sufficient set. In deciding to do such as an “as if*’ analysis, I take into account
my current beliefs about the phenomenon I am trying to predict, the sensitivity of the conclusions
I expect to draw to this assumption, and how serious that sensitivity is to my goal (that is, my
utility function enters importantly). A special case of this problem is the question of choosing
regressions in econometric models, for which see Kadane and Dickey (1979), where our views are
spelled out at greater length. But suffice it to say here that having a formal definition of the
sufficiency of a set of covariates Z* does not resolve Simpson’s paradox for a subjective Bayesian,
in my view. Thus I agree with Professor Dawid about a “weak link” at the very beginning of the
chain of analysis, but doubt that much reinforcement can come from a statistician’s informed
judgement that the condition is met. We make the assumption not because we believe it to be true,
but rather because we find it useful.

Professor J. M. Dickey (University College of Wales, Aberystwyth): It has seemed like full-time
activity lately just to keep informed on Professor Dawid’s work. The present paper is an important
product of years of his considering an apparent diversity of problems and theories which are now
unified through the view of conditional independence.

1 find the following heuristic way of thinking useful in considering the mathematical content of
conditional independence. The relation X I Y|Z requires that ordinary independence holds for
each of a family of joint distributions for X and Y. This family is formed from the conditional
distributions in an overall joint distribution for X, ¥, Z. However, the latter requirement can be
generalized to situations where Y and/or Z are not random variables, or are not jointly distributed
with X (Dawid, 1979).

The “elementary properties” of conditional independence are easily remembered in the following
forms:

Lemma 4.1 seems empty of content when stated in terms of sigma fields.

Lemmas 4.2 and 4.3 have fully equivalent forms stated without the conditioning on Z. They
hold identically as theorems without Z if and only if they hold as theorems for classes of distributions
defined by the values of a variable Z.

Lemma 4.2. If X 1l Y and U=(X), then (i) UL Y, (ii) XA Y| U.
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Lemma 4.3 has a similarly simplified statement. In the case that X and Y are joint random
variables, the converse of Lemma 4.2 is Lemma 4.3 under the identification

Lemma 4.2 Lemma 4.3

Y & X
X @,w
U Y

I was surprised to read that a statistic 7" sufficient for ® based on X remains sufficient for selected
data X| O (Section 7.3). However, note that this holds under the explicit assumption that selection
depends only on the data which form the basis for the report, QI ®| X. So T and Q are both
based on the same X. This excludes the common situations where Q selects a subset or other
distortion, Zy = Z¢(X), and then one wonders what to make of the data (Z,, Q). The sufficiency
or not of a statistic based on Zy will depend on the form of Q. For example, the number of successes
in a selected Bernoulli subsequence is not, in general, a sufficient function of the subsequence.
Dawid and Dickey (1977) treat such questions of distortion of the face-value inference by report-
selection processes. “Unknown’ selection processes are particularly important in practice.

Mr S. M. Rizvi (National Coal Board): In the fourth line of Section 2.1 Professor Dawid
defines independence: “We write X Il Y to denote that X and Y are independent.” This prompts
the question: independent of what? This question can be interpreted in three different ways:

(1) X and Y are independent of some mysterious element Z;

(2) X and Y are independent of each other; and

(3) X is independent of Y, without saying that Y is independent of X.

His formulations enshrined in (IIa) and (IIb) are the consequences of the third interpretation;
Theorem 2.1 is a consequence of the second. The word “are” in his definition of _IL supports
the second interpretation. The third interpretation gains substance from his assertion that X I Y
if any information received about Y does not alter uncertainties about X. There is a fundamental
conflict between the second and third interpretation in that the second interpretation imparts a
bidirectional attribute to the relational operator I by definition; whereas the third interpretation
assigns to it a unidirectional character. The latter is logically robust as any relational operator R
must initially denote only a unidirectional relationship between a given pair X, Y; thus leaving
the possibility of a symmetrical, non-symmetrical, asymmetrical and anti-symmetrical character
for R to be settled on a logico-empirical basis.

In his application of Theorem 2.1 to the investigation of cancer development from some
carcinogenic agent, I suspect Professor Dawid is in an inferential trap. In real-life problems of this
nature when one relates X to Y, one really is testing the hypothesis:

(a) whether X and Y have an association (a symmetrical relationship);

(b) whether X and Y have a causal link (an asymmetrical relationship); and

(c) whether X depends on Y (a non-symmetrical relationship).

Supposing his formulation of Theorem 2.1 was correct, and supposing his null hypothesis of
independence were to fail, thus implying either association or causality or dependence, then
Professor Dawid would not be able to reach logically valid conclusions without framing the following
theorems:

Theorem.

(a) If X[ass] Y, then Y[ass] X; where [ass] denotes “has association with”.,

(b) If X[d] Y, then Y[d] X; where [d] denotes ““is dependent on”.

(c) If X[cau] Y, then Y(cau) X; where [cau] denotes “causes”, and (cau) denotes ““is caused by’

It is useful to consider Professor Dawid’s Table 1 in terms of indices as follows:

TABLE 1A (indexed)

Male Female
R R R R
67 33 40 60

NN

57 43 25 75
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when consolidated over sex Table 1A looks as follows:

TABLE 1A (unisexed)

R R
T 107 93
T 82 118

One would not fail to make the same inference about the efficacy of the treatment from the consoli-
dated table as one would from the fragmented table. Perhaps Simpson’s paradox has more faces to
it than is appreciated!

Mr E. F. HARDING (Cambridge University): This is indeed a superb paper, on which it is
difficult to comment when it seems to settle so many questions. I would like to make just two
points simply.

The first concerns Section 2.2 which, apart from the Bayesian paragraph, says only that S,
whose distribution does not vary with 0, provides no information about ®; which may be taken as
a principle of inference. The section appears to say more, in “turning Theorem 2.1 [unprovable;
indeed meaningless until @ _IL S is defined] into a principle of inference”. First, here S_I ©
denotes only p(s| 0) = a(s); second, “Theorem 2.1” here only defines that ® _L S denotes the same
as S ©; thirdly, interpreting ® L S as *S provides no information about ®” is the same, there-
fore, as interpreting S ® likewise, which is the above “principle”. I am commenting on
presentation, not content: using different notations S_L® and © IL S for the same thing, with
evoked overtones of the stochastic independence they denote in their different meaning in another
context, appears (without really doing so) to beg big questions. The same point occurs in Section
3.2, implicitly perhaps also in Sections 3.3 and 8.2.

In passing, the above *“principle” needs interpreting, as shown for instance by the existence of
ancillary functions S of a minimal sufficient T = (R, S) say (example: § = Xmax —Xmin for the
uniform distributions on (6, 1+ 6))—when can we maintain that inf(.,s) is independent of s?
Under various interpretations of inf (hypothesis-testing, estimation, confidence intervals variously
derived, Bayesian methods, etc.) this is sometimes so, sometimes not. There is an important
distinction between such ancillaries and ancillaries S* of which no function is any function of T,
which can be hidden by attaching inferential interpretations to the notation Sl ® (or, worse,
O S).

My second point concerns Section 5. I do not consider the Simpson phenomenon paradoxical,
but fallacy can arise if data are inappropriately pooled. Suppose Table 1 gives the results of randomly
allocating T to 150M out of 430 and to 250F out of 330: then, for instance, we can report the data
allowing estimation of expected frequencies were T to be allocated to a random 400 individuals out
of 760 (sexless) by pooling as the weighted (430 : 330) sum, namely 220/180//160/200 (to nearest
integers). If T is beneficial for both M and F it must remain so in the collapsed table. To use the
simple sum for this purpose is an arithmetic fallacy like using 3(%+ 5) as the combined mean of
two unequal samples. On the other hand, if getting T depends on access to a treatment centre,
then the row-margins, regional incidence of the disease, recovery rate and sex may covary all
together. Here no causal inference about T 'is possible, but knowing the T-category of an individual
enables prediction of his recovery, for which the appropriate collapsed (sexless) table is the simple
sum.

This is implicit in Professor Dawid’s very illuminating analysis of covariates. It is more nearly
explicit in Professor Lindley’s reference to randomization in the experimental situation. Above
are quite explicit details of just two possible situations and I think it is worth while looking at it in
this way.

Professor G. A. BARNARD (Essex): Professor Dawid, as we have come to expect, presents us
with a set of wide ranging and original ideas in this paper, and we must be grateful to him for the
resulting stimulus to rethink basic ideas. And I for one would grant his claim to the extent that he
has shown that the formal similarities between many of the ideas involved in statistical inference
are well worth noting, if only from the point of view of providing an introduction to deeper under-
standing. He is also to be congratulated on the skill with which he walks the tightrope, as we all
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must, nowadays, between the smooth and easy, but perhaps not very fertile territory of simplistic
frequentism, and what Professor Bartlett has referred to as the Bayesian bog.

Professor Dawid seems to suggest that it is possible to take a notion of conditional independence
as fundamental, to provide it with a set of formal axioms and on this basis to develop a reasonably
complete theory of statistical inference. Of course he does not claim to have done this in the
present paper. Iwould look forward very much indeed to seeing such an attempt made, even though
I feel it would be likely to come up against some very severe snags. For the present it seems to me
that the various ideas which can be formalized by Professor Dawid’s notation have no more than
a formal similarity—useful no doubt, but not to be regarded as fundamental. Many years ago I
attempted to draw a distinction between “statistical independence” and “absolute independence”.
The first refers to the property expressed by Professor Dawid’s I and II, 4 and B, but the second
relates to something more fundamental which might be described as “absence of causal link
between”. From a formal point of view a difference between these concepts can be seen to consist
in the fact that with three variables, U, V, W, we may have pairwise statistical independence but not
total independence as a triplet: but if in fact there are no causal links between U and ¥ or between
Vand W nor between U and W then there are no causal links between the three events as a group.
From a more semantic point of view the difference lies in the fact that statistical independence is a
property of populations, while absolute independence is not.

One’s feeling that Professor Dawid may have overlooked this distinction is perhaps strongest in
relation to his Section 5. Simpson’s paradox seems to me to involve little more than our naive
tendency to think that the sum of two fractions can be obtained by adding numerators and adding
denominators. I do not think that it could ever be for a statistician, as such, to make an “informed
judgement” about whether all possible causal factors have been examined. The most he can do on
the basis of observing samples from a population is to make statements about that population,
leaving open the question whether in another population another set of relationships might hold.

Dr P. J. BickeL (University of California): Professor Dawid has given us an interesting overview
of the role of conditional independence in aiding our understanding of the structure of statistical
models. A particularly fruitful field of application is log-linear models where fundamental work has
already been done by Goodman (1971) and Haberman (1974). For instance, one can essentially
restate one of Goodman’s (1971) results as follows. Hierarchical models for complete m-way
contingency tables with all main effects present yield closed form (in a suitable sense) maximum
likelihood estimates of the cell probabilities if and only if the cell probabilities vary subject to the
following restrictions (and only these): There is a partition of the m variables of the table into
disjoint subsets A, ..., 4, of (possibly) unequal size with the folfowing properties.

For each 4,, j=2, 3 a set of variables B, such that:

(i) B;< H Ay, (B; = @ is possible)
<

(ii) If A‘x n B,# a, A" n B;# @, and i <iy<j, then A‘l n BICB‘P
(iii) 4; LB, | B;, where B; = [U<; A:]— B,.

This remark follows from Theorems 3.4.1 and 3.4.2 in Bishop et al. (1975), for instance. The form
that the estimates must take is easy to see from this formulation.

Restriction (ii) says that if variables included in A4,, and 4,, are needed for predicting A, then
all such variables included in 4, are also needed for predicting A4, This restriction is equivalent
to the hierarchical property of the models. By dropping it one gets all models which are simply
interpretable and, I believe, all models which have closed form maximum likelihood estimates of
the cell probabilities.

Turning briefly to Professor Dawid’s remarks concerning Bickel et al. (1977) I always felt that
the main inadequacy in our study was the insufficiency of Z, in our case the department applied to.
The difficulties in determining whether X enters Z are discussed in my correspondence with Kruskal
in Bickel et al .(1977). In any case, there is no interview for admission to our graduate school.

Professor M. H. DEGRroot (Carnegie-Mellon University): I congratulate Phil Dawid on a
nicely written paper which clearly shows the relevance of the concept of conditional independence
to a wide variety of areas of statistics. One area that he does not mention in which this concept is
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useful is the selection of a regression model. Suppose that a choice must be made between two
regression models M, and M,. Under M,, the regression function of the dependent variable ¥
is specified as a function of some vector X of independent variables, and under M, the regression
function of Y is specified as a function of a vector W of other independent variables. In order to be
sure that the models M, and M, are mutually exclusive, it is appropriate to impose the additional
conditions that ¥ Il W | X under M, and that Y L X| W under M,. This approach is followed in
Davis and DeGroot (1978). Other areas in which notions of conditional independence can be
helpful are the study of qualitative probability, where Theorem 3.1 need not hold, and the study of
sufficient experiments, rather than sufficient statistics in a given experiment.

The concept of conditional independence can also be embedded in a more general setting.
Given some joint distribution of X, Y and Z, we might ask whether X and Y are conditionally
independent given a particular partition (or subfield) I1 of the sample space 2 of Z. We might
denote this relation X Il Y|II. Let II, denote the trivial partition containing just the two sets 2
and ¢, and let I1° denote the total partition containing each individual point of Z. At one extreme
there is the possibility that X Il Y |II,, which means that X Il ¥. At the other extreme there is
the possibility that X L Y| II°, which means that X Il Y|Z. Can we characterize problems in
which there will exist a partition II such that X Il ¥ |II? Can we find coarsest and finest partitions
for which this property holds? In problems of sufficient statistics, we are interested in coarsest
partitions. In problems relating to Simpson’s paradox, we are interested in finest partitions.

The adequacy of (5.4) is considered in the final paragraph of Section 5. I believe that the only
possible formalization of “the notion that X does not enter into Z” is that Z L. X. But the critical
issue is not whether Z Il X, but whether Z and a student’s performance V in the program are
independent. Thus, the use of an applicant’s height in deciding on admission should be regarded
as a form of sex discrimination if height is not relevant to one’s ability to succeed in the program.
Performance ¥ is an important variable missing from the discussion in Section 5. The justification
for having acceptance Y depend on Z is that ¥ depends on Z. If VL Z but neither Z_ I X nor
Y L Z is true, then there is sex discrimination (against one sex or the other).

Professor D. A. S. Fraser (University of Toronto): Conditional independence involves two of
the most basic concepts in statistics—independence and conditional probability.

Independence provides the primary means by which we build larger statistical models from
smaller initial components.

Conditional probability extends these means for building larger models, but also—of fundamental
importance—it has to do with what probabilities are the proper or correct probabilities in any
particular application.

The paper claims that conditional independence is more than a useful tool and that it offers a
new language for expressing and studying statistical concepts. Independence as a concept arose
asymmetric—the conditional of X is independent of Y—was symmetrized in its pure form by the
more mathematically inclined, and now is re-emphasized in its original, more natural asymmetric
form.

The central contribution of the paper is the notation for independence, both marginal and
conditional. The symbol for orthogonality is useful in mathematics and statistics—so also the
symbol for independence, L, will be useful in statistics, and its arrival on the scene is overdue.

1 am sceptical, however, that the notation can contribute to statistical inference as suggested
in the paper. The concepts of sufficiency and ancillarity are already heavily overburdened with
various theoretical resufts—and these totally dwarf the limited range of applications of the concepts.
Rather, for statistical inference, attention is needed to the applications of probabilities, the
determination of the appropriate conditional probabilities. This is an area of great need. We have
progressed somewhat from the lack of clarity of some years ago when a prominent statistician
asserted that the probability for an event that has occurred is zero or one and in context we may not
know which, and yet in his introductory text asked for the probability of a finesse or a split given
the observed two hands in a bridge distribution! There is much to be done in the area of inference
and, in particular, in the determination of appropriate conditional probabilities. We will need
more than the notation that expresses concepts we now have in hand.

Mr R. F. GALBRAITH (University College London): Professor Dawid has emphasised the concept
of conditional independence in statistical inference. An explicit notation and theory for this
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property can also be of value in some areas of probability theory and it is surprising that its use is
not more widespread. One such area is that of probability models for processes in two and higher
dimensions, where notation using probability densities can be cumbersome and even elementary
probability manipulations hard to follow.

As one example, consider the binary process {X;;} on an m x n rectangular lattice discussed by
Pickard (1977). This process has the properties that successive rows form a vector Markov chain,
as do successive columns, and that these properties remain true when the process is restricted to an
sx t sublattice. Theorem 5 of that paper asserts that the conditional distribution of X, given all
other site variables depends only on the neighbours—those site variables that are horizontally,
vertically or diagonally adjacent. This may be expressed as

Xy AL Ly | Ny, ¢))

where L,; denotes all variables other than Xj;, and Ny; denotes the neighbours of X;;. A proof
using probability densities is indicated by Pickard but the following is more easily understood
(especially with the aid of a diagram).

The nearest neighbour property of Markov chains applied to the rows says

Ri —“— Si | (R‘—-l’ RH‘I)’

where R; denotes all variables in the ith row and S; denotes all other variables. If we now denote
by Uy; all variables in the ith row except X;; we have, by Lemmas 4.2 and 4.1,

Rt -u— (Sls U“) I (Ri—h RH-I.: Uﬁ)-
In particular
Xoy AL Ly | (Ngy Puy), )]

where the conditioning variables have been re-expressed in terms of Ny (the neighbours of X;;)
and P, (everything in rows i—1, i and i+ 1 except for Ny; and X;;). Now the same argument applied
to the columns of the 3 x » sublattice consisting of rows i — 1, i and i+ 1 must give the corresponding
statement

Xy L Py | Ny 3)

and, by Lemma 4.3, (3) and (2) together imply (1).

Instead of XL Y|Z some authors have used the notation X|(Y, Z) = X|Z. This latter
seems inferior as it is less concise and obscures the symmetry between X and Y, a view that is
confirmed when one tries to prove the converse of Lemma 4.3. On the other hand, it states the
property differently (saying two things are the same, rather than saying one thing does not depend
on another) The argument of the previous paragraph becomes

Ri|Si= Rtl(Rt—ls Ryy) = Ry | (Sy, Uu) = R;| (Ri—1, Rys, Upy) = Xy |Lu = Xy |(Ny, Py) = Xu | Nusy
which seems more obvious than the first version and there is apparently no need for Lemma 4.3.

Professor S. Geisser (University of Minnesota): It is remarkable how many concepts can be
artfully woven together by the thread of conditional independence and its discovery no less so.
However, where this unification leads us and what it achieves is obscure. In fact, in some respects
it conceals almost as much as it reveals. Specifically, the notation

X1 Y|z W §))

cloaks a variety of factorizations—to name but a few in an obvious and more informative notation,
though admittedly more cumbersome, that satisfy (1), we can have

X, Y|Z, W)= (X|Z, W)(Y|Z, W)

X, Y|z, W) =(X|2)(Y| W), etc.

Thus the relationship DL Q| .S, in Section 7.2, derives from the easily obtained factorization
(D, Q| G,S) = (D]|S)(Q]G), which displays the full anatomy of the situation. This particular
case notwithstanding, such a factorization will often be considerably more enlightening than the
less precise D Q| (G, S), granted that the latter notation remains sufficient for the ostensible
unification aims of the paper.

or
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Professor V. P. GopaMBe (University of Waterloo): My comments would be restricted to
Section 2.2 of Professor Dawid’s very interesting paper. In Section 2.2 he introduces a principle of
statistical inference: “no information about the parameter can be extracted from observing an
ancillary statistic”’. In Professor Dawid’s notation “if sl 6 then 6 _lls”. But this principle is
contradicted by the following obvious mode of inference. Let a finite population P consist of N
individuals, i. P={i:i=1,...,N}. With P is associated a parameter 6 = (6,,..., 0,, ..., Oy)
where each 0, = 1 or 0. It is known that X6, = N/2 summing over i from 1 to N. But it is not
known for which individuals i, 6, = 1 or 0. Hence the total number of possible values for 0 are
(;IVV) Let s be a random sample of size n drawn (without replacement) from P; s<P. Now the
very meaning of randomization implies the following inference about 6 on the basis of s. “For a
number k, suitably specified in terms of n, N, the values of 0 for which | X6,/n—%|> k (summing
over i€ s), are implausible, s being the random sample actually drawn.” This I submit contradicts
the above principle of statistical inference, namely “if s_Il_6 then 0 _Il s, for the distribution of s

is independent of @ (p(s |0) =1 / (1’\:), v 6) but the inference contradicts the assertion 0 _ll_s. For

instance, let N = 10, n = 4, 6* = (0000011111) and 62 = (0101010101). Then on the basis of

= (1, 4, 5, 10) we prefer 62 and reject 0. Yet the distribution of s is identical on 6 and 62. Almost
all statisticians with whom I discussed this agreed that they would accept the just-mentioned
inference based on the random sample. Of course, there were some notable disagreements. I
would be interested to read Professor Dawid’s reaction. I am not quite clear about the relationship
of the above principle of statistical inference with the conditionality principle as introduced by
Birnbaum (1962). However, Birnbaum’s sufficiency principle (and therefore his likelihood principle)
clearly implies the above principle. But I plan to elaborate upon this in an independent publication.

I should emphasize that the mode of inference discussed in the preceding paragraph is free of
any assumption concerning prior probabilities of possible 0’s. This is clarified further by the above
illustration with just two vectors 6* and 62,

Apart from the case discussed here, I believe there may possibly be many other cases where the
principle of statistical inference ““if s_lL 0 then 0 _L_s” is contradicted. Possibly these cases could be
unearthed by analysing situations where one feels reluctant to condition on a certain ancillary
statistic. The underlying feeling is that the ancillary statistic (with its distribution) contains
information about the unknown parameter.

The statistical inference of the type mentioned above in connection with simple random

sampling (p(sle) =1 / (1:), \7’0) can also be made for moré complicated unequal probability

sampling designs. But this again will be discussed in an independent publication.

Professor D. V. HINKLEY (University of Minnesota): Professor Dawid has nicely demonstrated
the variety of his interests and has tied them together with a thin thread made of 1. Some
claims are made, particularly at the beginning of the paper, but the present results do not suggest
to me that we have a powerful new tool here. However, the later parts of the paper hold definite
promise.

I was somewhat disappointed by Section 5, where the initial purpose dissolves after equation
(5.4) with the necessary concession to subjective judgement. As always, the difficulty is that of
giving a simple mathematical representation for the complex process of scientific inference. Although
Professor Dawid is strictly interested in causal inference, rather than association, it is not entirely
out of place to remark that analyses and tables for different sets of covariates will often be
meaningful, particularly when covariates are approximately confounded. The question posed at
the end of Section 5 is a subtle one, both for us and the U.S. Supreme Court!

The topic of prediction sufficiency has been of some interest to me since my dissatisfaction with
the classical frequency treatment of predictive inference led me to examine definitions of predictive
likelihood. Although my own work (Hinkley, 1979) was not closely related to the mathematical
theory of the present paper, it did raise some interesting points. For example, where an adequate
function of X may be larger than the usual minimal sufficient function, that part of Y which
requires prediction via X may be less than the minimal sufficient function of Y.

One of Professor Dawid’s aims is to evoke more explicitly the “duality between data and
parameters”, which I think is laudable. I believe that R. A. Fisher’s appreciation of this duality,
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and his corresponding understanding of the nature of probability models, were the key ingredients
of fiducial theory. I have no doubt that Professor Dawid will use the language of conditional
independence in his successful efforts to aid our understanding of statistical theory.

Professor H. Kupd (Kwansei Gakuin University, Japan): I welcome the opportunity to comment
on this excellent paper by Professor Dawid, which unifies many concepts in statistical theory in
terms of conditional independence. I agree completely with Professor Dawid’s unification and am
grateful to him for his presentation of such a beautiful theory.

Several concepts of relation among variables, which in this paper Professor Dawid rearranges
in terms of conditional independence, have been treated as distinct subjects in the history of
statistical research. Such a traditional way of treatment of the problems is mainly based on the
fact that the relevant variables are characterized into several categories—especially, those of
parameter and statistic. Why should we make such a strict distinction between parameter and
statistic? The reason seems to me to have a very close connection with the notion of cause—effect
relation via the old and traditional concept of probability. However, nowadays, our view of
probability has changed greatly from the old concept of probability, which was strongly connected
with causality.

An alternative and more natural classification of variables appearing in statistical research is
the distinction between the “‘observable” and the ‘‘unobservable”. The observable is a variable
whose value becomes known after, and just after, the relevant observation has been accomplished,
while the unobservable is one whose value remains unknown at that moment.

On the other hand, one might easily think that the variables in statistical problems are all
random variables, irrespective of whether their probability distribution is (partly or completely)
known or not. Here it should be noted that knowing the existence of the probability distribution
of a variable does not imply getting any information about the value of the variable concerned.
If it is known that the distribution x of a random variable X belongs to a certain class 2 of distri-
butions, then every statement about the value of X can be allowed to have an exceptional set (a set
of measure zero w.r.t. every u € X). Thus the problem of what kind of universality of the statements
is attached to a category of variable (e.g. to a parameter, to a statistic or to a future variable in a
prediction problem) should be solved to complete the theory in Professor Dawid’s paper.

It is hoped that this paper by Professor Dawid may give rise to a new arrangement of statistical
theory.

Professor K. V. MARDIA (University of Leeds): In Examples 8.2 and 8.3, it should be noted
that if C(P)exp (0'x), ¥ = || 0|, is von Mises—Fisher distribution M(8), then the distribution of
S =2X2X;|U=|S]| is simply M(U6). Hence the distribution of S given U and » is not only the
same for all # but is of the same form as the parent distribution.

Suppose one wishes to test the hypothesis n = n, (n = 6/F) based on M(UB) against n#n,
where 7 is given. We can then obtain a confidence interval for n if ¥ is known. However, if ¥
is unknown, this method can be extended but any such extension will involve estimating the para-
meter V. One “efficient” method is to estimate ¥ from M(0) through the maximum likelihood
method. An alternative approach to the above null hypothesis is to use a conditional test based
on U| C where C = X X] 0, since the distribution of U| C does not involve ¥'. How does this latter
method fit in Professor Dawid’s framework where there is a nuisance parameter? The second
method also provides a confidence interval for . Which of the two confidence zones is theoretically
most satisfactory in the presence of nuisance parameter ¥'? For a detailed discussion of this
problem, see Mardia (1975, section 4).

Professor M. MoucHART (Catholic University of Louvain, Belgium): In the theorem of
Section 6.3, one may drop the conditions that W, is a function of 5, and that T, is a function of £,;
i.e. this theorem is still valid when written as follows: “if (i) 9, < &g, (ii) W, <T,, (iii) Tpyy AL &, | T,
@iv) Tp AL 9, | W, then (V) W,y L9, |W,” where “ < among random variables is read as “is a
function of””. This is so because the first three conditions already imply 9, 1 Ty, | T,, W,. Note
also that this theorem is true both in the sampling process (i.e. properties (iii), (iv) and (v) understood
as conditionally on ®) and in the predictive process (i.e. after integrating out the parameters).

These (fairly trivial) extensions call, in my opinion, for two more general comments. Firstly,
conditional independence is a simple, yet rather powerful, concept, well known to statisticians,
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worked out as early as the fifties by C. Stein in 1950 (in unpublished work) and “rediscovered
independently by Burkholder in 1958, Hall in 1959 and Ghosh in 1960’ as mentioned in the preface
of Hall et al. (1965)—see also Martin et al. (1973) and the references in Professor Dawid’s paper.
I find it therefore somewhat surprising that this concept has not been used more systematically in the
textbook literature and more efficiently in the specialized literature. These are good reasons for
thanking Professor Dawid for his clear and lucid survey; it should help to popularize a method
which deserves wider use. )

A second comment is that, in my opinion, conditional independence is basically a probabilistic
concept: X I Y|Z makes sense only if X, Y and Z are endowed with a well-defined probability
distribution; in this case, the concept is symmetric in X and Y (in this respect, I found that
Theorems 2.1 and 3.1 give more trouble than information by avoiding a clear (and symmetric)
definition of independence in probability). I therefore tend to disagree with the last sentence of
Section 3.1: to give meaning to XL Y| ® we need either to consider a well-defined (and proper)
distribution on ® or to consider a family of (possibly, all) distributions on ©, the difference being
essentially a matter of null-sets to be taken into account in condition (1) or (2) of the paper. Even
if the independence property is stated “for every ®” (instead of “for almost every ©*), ® has still
to be considered as subject to (a family of) probability distributions and the statement is concerned
with a (family of) induced probability(ies) on (X, Y, ®). Failure to recognize this basic fact may
induce “fallacious arguments”, the marginalization paradox mentioned in Section 3.1 being just
one example. Furthermore, this probabilistic framework gives precisely the power of conditional
independence as a tool for statistical inference: it allows a systematic treatment of reductions on
both the parameter and the sample space (see, for example, Florens and Mouchart, 1977) to eliminate
nuisance parameters, to treat prediction problems (as in Section 6) or to handle partially observable
processes. The full strength of this tool is still better appreciated when combining conditional
independence with other properties, such as invariance (see, for example, Hall et al. 1965),
measurable separability or strong identification (see, for example, Mouchart and Rolin, 1978).
I think therefore that even in a sampling theory framework, it is preferable to stick to a full proba-
bilistic approach to conditional independence (by considering properties defined on a family of
probabilities induced by the set of all prior probabilities) instead of introducing a well-defined
concept for Bayesian analysis and a *“loose” one for a sampling theory analysis.

Dr 1. NimMo-SmItH (MRC Applied Psychology Unit): It is worth examining in more detail
the ““logical equivalence™ established between (5.1) and (5.3), given (5.2); it turns out that the result
depends on the universe of discourse in an asymmetric, but satisfactory, way. For let A= Xx I
denote a fixed “conceptual entity’ of applicable treatment-to-unit allocations, and assume that
(5.1), (5.2) and (5.2)+(5.3) have the meanings

p(y l X, i, 2) = p(y | x', i, 2), (A1)

| x,i,2) = py| x, i, 2), (A2)
and

py|x,i,2) = p(y | X', ¥, 2) (A3)

for all x,x" € X, i,i’eI and ze Z where consistent and A-applicable. Then, regardless of the
structure of A4, (A2) and (A3) imply (A1), for (x,i) > (x’,i) is a special case of (x,i)—(x’,i").
However (Al) and (A2) imply (A3) only if each valid substitution (x, i, z) - (x’, i’, z) may be made
from a chain of ones like (x,7,2z) - (x’,i,z) and (x,i,z) > (x,i’,z). This is equivalent to the
connectedness of 4 within the strata of Z, or to the restriction that there should be no complete
“conceptual” confounding, in any Z-stratum, between a subset of treatments and a subset of units.
Now, for a fixed 4, one may consider the effect of different sufficient covariates Z on the implication
(Al) and (A2) - (A3), and one sees that the implication holds so long as Z contains the information
of the “‘applicability” of treatments. Clearly one can use the above considerations to extend the
approach of Dawid (1977a) to less complete and less balanced designs, the group being subsidiary
to its orbits or (as here) derived equivalence classes.

A measurement technique which relies (perhaps optimistically) on conditional independence
is described by Warner (1965) and Boruch (1972).

On another tack, there is a sense in which this paper is largely irrelevant to being, or under-
standing, a day-to-day, probability-revising person. The information he uses is rarely independent,
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even conditionally, and yet has to be accommodated sequentially. In a recent paper, Navon (1978)
has observed that treating this sequence of information as independent typically may lead to over-
extreme revisions of probabilities. Turning this on its head, he suggests that the experimentally
determined ‘“‘conservatism” of humans (e.g. Edwards, 1968) may in part be explained by an
inappropriate application of a natural facility that corrects (correctly!) for non-independence. This
may indicate an important obstacle that confronts those who hold a normative brief for the
Bayesian model of human inference processes. In no way does it diminish my thanks to Professor
Dawid for his valuable and neat paper.

Professor M. R. Novick (University of Iowa): Professor Dawid has asserted that conditional
independence is fundamentally important in statistical inference. I concur. I have for many years
used his statement (Ia) as a definition of independence in my teaching, and my related work (with
Lindley) on causal inference and Simpson’s paradox goes back to 1975.

I shall suggest now, in response to Professor Dawid’s call, that another major application of the
concept of conditional independence ought to be identified. I note that Professor Dawid has
referred to Birnbaum’s classical paper on foundations of inference, but has not referred to his
work on latent trait theory (Birnbaum, 1968) in which the concept of conditional independence
finds central application. In fact, there is no reference in Professor Dawid’s paper to any publication
in Psychometrika or the psychometric literature generally, a literature in which conditional inde-
pendence is used extensively.

Consider the joint distribution of (X;, Xy, ..., X) and suppose that for n< N given (6,, 0,, ..., 6,),
but not otherwise, the variables Xj,...X,, ..., Xy are independent. The attainment of this local or
conditional independence through the construction of the so-called latent variables 8 is what
psychometric latent trait theory is all about. (See, for example, Lord and Novick, 1968, Chapter 16;
and Anderson, 1959; or almost any issue of Psychometrika for the past quarter century.) Classical
test theory and factor analysis are parallel, though less satisfactory theories, in which conditional
independence is replaced by uncorrelatedness. However, Novick (1965; see also Lord and Novick
1968, Chapters 2 and 24) has shown that these theories can be re-expressed in terms of conditional
linear independence, which is a small but meaningful improvement. The work of Birnbaum (1968)
and the earlier work of Lord (1952), however, correctly show that conditional independence is the
key concept of structural modelling. Latent trait theory is more fundamental than a factor analytic
decomposition.

To characterize this work in simple, if imprecise, language we can say that a structure for a
system or set of variables has been provided if we can write structural parameters as functions of the
observables and if, given the structural parameters, the observables are conditionally independent.
Of course, nothing useful has happened unless # is very much less than N, and in practice we must
disregard small eigenvalues and settle for near conditional independence. Similar applications
have been made in biometrics and econometrics.

I am pleased to join Professor Dawid in looking forward to learning of further applications and
examples of conditional independence from others.

Professor Donald B. RuBiN (Educational Testing Service, Princeton): I want to congratulate
Professor Dawid on a lucid discussion of conditional independence, a concept fundamental for
building statistical models. I hope that Professor Dawid’s presentation and examples are not read
as implying that the primary practical objective of statistics is testing hypotheses, e.g. whether
cancer is independent of an agent or whether selection to school is conditionally independent of
sex given a test score. My experience suggests that the estimation of effects defined in terms of
observable quantities is of far more interest than the testing of idealized mathematical models.
In this context of trying to draw inferences about observable quantities, Professor Dawid’s statement
that to a Bayesian “. . . the distinction between data and parameters is largely irrelevant” is mathe-
matically correct but statistically misleading unless the parameters are phenomenological in the
sense of being essentially equivalent to functions of observables. I believe that Professor Dawid’s
discussion of causal inference suffers from being non-phenomenological.

The emphasis on the central role of a sufficient set of covariates (i.e. effectively all causally
relevant covariates) and the conclusion that ‘At some stage it is necessary to make a subjective
judgement that a set of covariates Z* is sufficient”” miss the major thrust of experimental design.
We are never able to record a sufficient set of covariates, and if we needed to assume that a sufficient
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set were recorded in order to draw valid causal inferences, then experiments would be of little
value in the real world. In a randomized experiment, the validity of the randomization theory
probability statement does not depend on an assumption that blocking has controlled a sufficient
set of covariates; similarly, the validity of a Bayesian probability statement for causal effects does
not require an assumption that a sufficient set of covariates is controlled by blocking or adjustment
in data analysis. The statements are valid when data analysis methods are employed that are
appropriate to the experimental design that was used, and the uncertainties in the probability
statements reflect the potential impact of uncontrolled variables.

For example, it is relatively clear from the distributions of males and females in Professor
Dawid’s Tables 1 and 2 that neither table arose from a completely randomized experiment. It is
likely that either (a) undisplayed covariates correlated with sex were used to assign treatments, or
(b) sex was used as a blocking variable with differential probability of assignment to T and T.
In case (a), valid probability statements about the causal effects of the treatment must be conditional
on the undisplayed covariates used for treatment assignment if they are recorded, or reflect a model
for the non-ignorable assignment mechanism if they are not recorded. In case (b), valid causal
probability statements must be conditional on sex, but there is no need to suppose that sex is a
sufficient covariate. Of course, as we successfully condition on more causally relevant covariates
(e.g. perhaps age), the resultant probability statements become more specific and thus more relevant
to an individual unit with observed values of those covariates. But this does not imply that less
conditional causal inferences are invalid or useless for deciding the typical benefits of the treatment
for males and females.

I feel that a source of the problem with Professor Dawid’s formulation of causal inference is his
choice to let the outcome variable, Y, have a joint distribution with treatment, X, rather than be
t-variate where ¢ is the number of levels of X. Letting Y be ¢-variate as in Rubin (1978) allows us
to define causal effects phenomenologically; that is, as comparisons among ¢ observable quantities
rather than as comparisons among ¢ hypothetical conditional distributions of Y given X for fixed
values of a sufficient set of covariates. With phenomenological definitions of causal effects, valid
inferences for causal effects are predictions of unobserved observables conditional on recorded
data, and thus generally change as more covariates are recorded, just as valid predictions change
as more predictors are recorded. With distributional definitions, inferences for causal effects are
apparently viewed as incorrect unless they arrive at the correct distribution, that is, unless they are
conditional on a sufficient set of covariates, an unachievable goal in real world experiments.

Professor R. A. WusMAN (University of Illinois): Professor Dawid deserves to be commended
highly for putting conditional independence (c.i.) on a pedestal and illuminating it from many
different angles. The idea, introduced in Section 2.2, of manipulating ® formally as a random
variable in independence relations I found very useful. Lemmas 4.1-4.3, modestly labelled “simple
general results”, should not be misunderstood to be obvious. In fact, some of the statements,
especially Lemma 4.3, I find sophisticated and not intuitive. To emphasize the power of these
lemmas I shall present an application to a seemingly rather complicated problem which I met
several years ago. When I first solved it I used ad hoc methods. In the future it should be easier to
deal with this sort of problem now that Professor Dawid has so neatly singled out the crucial lemmas.

Here is the problem. Let U, V, W, X, Y, Z be statistics with a joint distribution depending on
a parameter ®, and X = f(U, V). The following c.i. relations are given: (1) UL (V, Y,Z)| O,
Q@ VALY|(W,Z0), 3) VIW|(Z0), 4 (Y,Z)1LO. To show (5) (X, ¥,Z2) L O|(X,2),
i.e. (X, 2) is a sufficient statistic for the family of distributions of (X, Y, Z). For the proof I shall
need one more lemma to add to those in Section 4:

Lemma 4.4. 1% X;|Z<>[1L?'X;|Z and (X3, ..., Xap) L X, | Z].

Without the conditioning this is stated as a definition in Section 4. Now the proof of (5) (the use
of the various lemmas is indicated in parentheses). We have [(2) and (3)] = (by Lemma 4.3)
vLWw, |(Z,0)=>

© v Y|(Z ©),

(by Lemma 4.2(1)). Further, (1) = UL (¥, Y)|(Z, ©) (by Lemma 4.2) = (U, ¥, Y)|(Z, ®) (by
Lemma 4.4 and (6)) = (U, V)L Y|(Z, ©) (by Lemma 4.4) =

O] - X1 Y|z, 0)
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(by Lemma 4.2(i)) since X = f(U, V). Finally, (4) = Y1 ©|Z (by Lemma 4.2) = Y. (X, Q)| Z
(by Lemma 4.3 and (7)) = Y 1 0 | (X, Z2) (by Lemma 4.2) = (5) (by Lemma 4.1).

For quick and easy repeated use of Lemmas 4.1-4.3 it is convenient to express them in words.
Lemma 4.1 says that the conditioning variable can be “added” to one or both of the c.i. variables.
Lemma 4.2 says that the c.i. variables can be replaced by functions of them, and that such functions
can be ‘““added” to the conditioning variable. Lemma 4.3 is reminiscent of the multiplication law
P(AB) = P(A) P(B| A) for events. Indeed, in its simplest form Lemma 4.3 reads: if X is independent
of Y and also c.i. of Z given Y, then X is independent of (Y, Z). This can be extended to any
number of variables; e.g. [X L Yand X 1. Z| Yand X I W|(Z, Y)]=> XA (Y,Z, W). This can
then be conditioned further on another variable.

The AuTHOR replied later as follows.

Perhaps, as Professor Lindley and Mr Nimmo-Smith suggest, independence is a poor model,
both for the physical world and for our subjective ideas of it; but conditional independence is surely
vital for constructing such models. Suppose that we wish the conditional distributions for X
given Z, in some mathematical model, to express in a meaningful way some property of the world.
Then we must believe (or at least pretend) that these distributions are unaffected to any material
extent by further factors Y that we have chosen to leave out of our description: that is, at least
approximately, X Il Y| Z. Otherwise we should restructure our model, perhaps by adding further
variables to Z (we can, of course, always achieve conditional independence by putting everything
conceivable into Z). As Professor Fraser notes, the problem of determining appropriate conditional
probabilities is paramount. It is the cornerstone of our understanding of Simpsons’ paradox, and
is of fundamental importance in many related areas, for example the treatment of regression by
Davis and DeGroot. While new notation will not solve such problems by itself, its lubricating
action may free the wheels of thought to run in the right tracks.

Professors Lindley and Godambe, and Mr Harding, object to my “proof” of the principle
that no information is contained in an ancillary statistic (I note with interest that nobody raises
similar objections to the sufficiency principle). Of course, this was not meant as a rigorous derivation,
but rather to show how close to such a demonstration one can come, using only the ideas of
(conditional) independence. Personally, it seems to me only natural that, if a statement such as
‘S carries no information about ®” is rigorously demonstrable when ©® has an entirely arbitrary
prior distribution, then it should continue to have force when no such prior is available. None-
theless, Godambe’s interesting example deserves a detailed response.

Let S, © be the variables ‘“‘sample” and “parameter-vector”, having generic realized values s
and 0, and let 4 be the event: “|X ®,/n—%|>k”, summing over i€ S. Godambe argues that
P(A4]© = 0) is small (say ¢) for all 6, and that we should deduce that, even after observing S = s,
it is much more plausible that 4 does not obtain rather than it does. This, he claims, suggests that
we should favour a value 6 for which A fails over one for which A4 holds.

Now a Bayesian would agree with this to the extent that, for him, the marginal probability
P(A) = ¢, so that P(4|S = s) must be small on the average; and in the particular case that he
regards the components of © as a priori exchangeable, he in fact finds P(4| S = s)=¢, so that 4 is
highly implausible in his posterior distribution. But this merely reflects the fact that, for given s,
there are many more values for 0 for which A fails rather than holds, and does not imply that any
Dparticular such 0 is itself more favoured. Godambe’s argument carries no more force than the
belief that, in a fair lottery with 1,000 tickets, the number 500 is less likely to win than 267, because
the latter is more “typical’.

Mr McLaren raises many interesting points. In particular the idea of weaker, non-symmetrical
forms of independence may well be worth pursuing, and may help to meet Mr Rizvi’s objections.
McLaren rightly points out the care needed in handling conditional independence arguments.
Paradoxical arguments such as that of Basu are discussed in Dawid (1979).

McLaren asks me to relate Section 7.3 to 7.2. This is most nearly done by the identifications
® - D, X > (S, G), but the underlying structure of 7.2 is somewhat richer.

In my paper I have deliberately ignored technicalities. It has taken me several attempts to
develop a suitable mathematical framework for conditional independence, which allows parameters
as well as random variables, and I am not entirely satisfied with the outcome (developed in my
1980 Annals of Statistics paper). The natural approach is in terms of o-fields rather than random

variables, but even then Lemma 4.1 is not quite empty, as claimed by Professor Dickey.
2
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At one stage I considered an approach similar to that of Professor Mouchart, in which para-
meters are given arbitrary prior distributions, although I cannot agree with Mouchart that a
symmetrical view of independence is best. (Section 9 of my present paper contains traces of this
approach, and also indicates its limitations: one would not normally consider distributions over A,
the parameter-space for 2.) However, I got into technical trouble with null sets, and chose a
different development, using “statistical operations”. Professor Kudo has considered these
problems carefully, and I believe that recent work of his largely reconciles Mouchart’s approach
and mine. Mouchart and Rolin have done some further technical work which attacks DeGroot’s
problem of finding partitions II of 2 for which X L. ¥|II.

Mr Rizvi and Professor Barnard note that I have not resolved all the philosophical problems of
disentangling association and causation. I hope I may be forgiven for this. Perhaps I am biased
in my belief that the language of conditional independence may provide a suitable matrix for
further studies of this important question.

Mr Galbraith and Professor Geisser suggest that other notation may be more useful than mine.
Certainly Mr Galbraith’s translation of his own argument seems helpful in its context, but, as he
points out, it can sometimes prove a hindrance by obscuring symmetry. I feel, too, that it might be
more liable to lead to errors, such as in the example of Basu quoted by Mr McLaren. The perfect
notation would render all general results obvious on sight, and I agree that mine is not perfect.

Professor Geisser complains that the expression X I Y|(Z, W) is not well defined. This is
not so: it is equivalent to his first attempted translation. His second translation can be properly
expressed by adding on the further conditions X Il W|Z and Y L Z| W. While his notation looks
neater here, it appears to have misled him in his study of Section 7.2, since his implied relationship
QL S| G is not a consequence of my assumptions: it is the very essence of the problem that Q will
depend on S, through S,.

Professor Mardia expands on my analysis of the Fisher-von Mises distribution, highlighting
its value as a test-case for ideas about inference. Although Dickey and I have used conditional
independence to investigate problems involving nuisance parameters, we have not yet considered
the kind of question he raises, which certainly deserves further attention.

A referee of the original version of my paper complained that there was little to interest ‘““the
practical man”. It was as a result of this suggestion that Section 5 was added. In the event, it
seems to have drawn most of the fire of the discussion, which clearly vindicates the referee’s
judgement. However, I am left even more confused by Simpson’s paradox than I ever was before.
Most discussants seem unhappy about my treatment of it, and I myself agree that there remains
much scope for improvement. However, several discussants appear to feel that the whole problem
is illusory, and with this I cannot agree. Causal inference is one of the most important, most
subtle, and most neglected of all the problems of Statistics.

Randomization is an obvious possibility that was suggested more than once: according to
Lindley and McLaren, an appropriate requirement is XL 7| Z. I too gave some thought to
randomization, but did not reach any conclusion convincing enough to put in writing. I have
conceptual difficulties with the essential use made of the randomization distribution for inference,
and find it hard to accept as “appropriate’ any probability which does not condition on individuals
and treatment assignments. Nevertheless, although I do not understand randomization, I am
convinced of its importance, and long for a deeper insight into its true role.

Professor Rubin is one of the small brave band who are beginning to chart the murky depths of
causal inference. I differ from him on some matters of personal taste, the most important being
his willingness to assign a joint distribution to all the conceptual responses of an individual under
all applicable treatments, when in fact only one such response can ever be observed. I dislike this
because I consider it “non-phenomenological” (there must be a shorter word!) and can only
register surprise that this does not bother him too. As Quantum Theory discovered long ago, it
is mleaningless to assign probabilities to the joint occurrence of events which cannot occur
jointly.

DeGroot and Nimmo-Smith both make important points about the case where we cannot
assign treatments arbitrarily to individuals. I accept DeGroot’s censure that performance should
not have been omitted from the discussion of graduate-school admissions. In fact my own discussion
following Theorem 3.1 introduces this in a satisfactory way, and it now seems to me that the
correct expression of “no bias in admissions policy” is (5.4) with Z = performance. However,
I am not sure how far this gets us.
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In laying my ideas on conditional independence before the statistical community, my hope
was that they would prove of value outside the particular topics that I have discussed. I am therefore
particularly heartened by those contributions (by McLaren, Bickel, DeGroot, Galbraith, Mouchart,
Novick and Wijsman) which describe further extensions and applications of the theory. When I
originally circulated my paper, it drew a certain amount of correspondence in which yet other
applications were pointed out. In particular, T. P. Speed has for a long time been making fruitful
use of conditional independence in unpublished work on Markov random fields, with applications
to contingency table analysis.

Although some discussants have their doubts that conditional independence can live up to my
inflated claims, I have been very gratified by the overall constructive and stimulating response to
my paper. My appreciation and thanks go out to all the contributors. If my notation and general
theory find application in the future work of others, I shall at least have justified to the Society’s
Printers my insistence that, somehow or other, they should find a way to print that awkward
symbol _LL.
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