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Abstract

We present a class of inequality constraints on
the set of distributions induced by local interven-

tions on variables governed by a causal Bayesian
network, in which some of the variables remain

unmeasured. We derive bounds on causal ef-
fects that are not directly measured in random-
ized experiments. We derive instrumental in-

equality type of constraints on nonexperimental

distributions. The results have applications in

testing causal models with observational or ex-

perimental data.
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The validity of a causal model can be tested only if it has
empirical implications, that is, it must impose constraint
on the statistics of the data collected. A causal BN not
only imposes constraints on the nonexperimental distribu-
tion but also on the interventional distributions that can
be induced by the network. Therefore a causal BN can
be tested and falsified by using two types of data, obser-
vational, which are passively observed, and experimental,
which are produced by manipulating (randomly) some vari-
ables and observing the states of other variables. The abil-
ity to use a mixture of observational and experimental data
will greatly increase our power of causal reasoning and
learning. The use of a mixture of experimental and ob-
servational data in learning causal BN is demonstrated in
[Cooper and Yoo, 1999, Heckerman, 1995]. In this paper
we consider using combined observational and experimen-
tal data for causal model testing.

The use of graphical models for encoding distribu-There has been much research on identifying obser-

tional and causal information is now fairly standard yational implications of BNs.
[Heckerman and Shachter, 1995,
Pearl, 2000, Spirtest al., 2001].

It is well-known that

Lauritzen, 2000¢he observational implications of a BN are completely
The most common captured by conditional independence relationships

such representation involves causal Bayesian network among the variables when all the variables are observed
(BN), namely, a directed acyclic graph (DAG)which, in
addition to the usual conditional independence interpretayariables, callechidden or latent variables, the network

tion, is also given a causal interpretation. This additionastycture may impose other equality and/or inequality
feature permits one to infer the effects of interventionsconstraints on the distribution of the observed variables

or actions, such as those encountered in policy analysi§verma and Pearl, 1990,
treatment management, or planning. Specifically, if anpesjardins, 1999,

[Pearlet al, 1990]. When a BN invokes unobserved

Robins and Wasserman, 1997,
Spirtex al,, 2001]. Methods

external intervention fixes any sétof variables to some  for jdentifying equality constraints were given in

constantst, the DAG permits us to infer the resulting |Geiger and Meek, 1998,

post-intervention distribution, denoted ¥;(v),* from

the pre-intervention distributionP(v).
P,(y), often called the “causal effect” & onY’, is what

The quantity

Tian and Pearl, 2002b].
[Pearl, 1995b] gave an example of inequality constraints
in the model shown in Figure 1. The model imposes the
following inequality, called thénstrumental inequalityoy

we normally assess in a controlled experiment With  pegr|, for discrete variableX, Y, andZ,

randomized, in which the distribution df is estimated
for each levelt of T. We will call a post-intervention
distribution an interventional distribution, and call the
distribution P(v) nonexperimental distribution.

Hl;),XZm?X P(zylz) < 1. (¢D)]
y

This model has been further analysed using convex anal-
ysis approach in [Bonet, 2001]. In principle, all (equal-
ity and inequality) constraints implied by BNs with hid-
den variables can be derived by the quantifier elimination

[Pearl, 1995a, Pearl, 2000] used the notatil®fv|set(t)),
P(v|do(t)), or P(v|t) for the post-intervention distribution,
while [Lauritzen, 2000] used(v||t).



U all its non-descendants given its direct parents in thetgrap
These restrictions imply that the joint probability furoeti

7 X Y P(v) = P(vy,...,v,) factorizes according to the product
P(v) = [ P(vilpas) 2
Figure 1:U is a hidden variable. wherepa; are (values of) the parents of variabilgin G.

The causal interpretation views the arrowsdras repre-
method presented in [Geiger and Meek, 1999]. Howeversenting causal influences between the corresponding vari-
due to high computational demand (doubly exponential inables. In this interpretation, the factorization of (2)Isti
the number of probabilistic parameters), in practice, tjpan holds, but the factors are further assumed to represent au-
fier elimination is limited to BNs with few number of prob- tonomous data-generation processes, that is, each condi-
abilistic parameters. For example, the current quantifietional probability P(v;|pa;) represents a stochastic pro-
elimination algorithms cannot deal with the simple modelcess by which the values df; are assigned in response
in Figure 1 forX, Y, andZ being binary variables. to the valuea; (previously chosen foV;'s parents), and

When all variables are observed, a complete charactere stochastic variation of this assignment is assumed in-

- : . . S .~ dependent of the variations in all other assignments in the
ization of constraints on interventional distributions-im

posed by a given causal BN has been given in [Pearl, 200(Snodel. Moreover, each assignment process remains invari-

pp.23-4]. When a causal BN contains unobserved varif"int to possible ghange.s in the assignmgnt processes that
ables, there may be inequality constraints on intervendovem other variables in the system. This modularity as-

tional distributions [Tian and Pearl, 2002a]. For the modelsumptlon e_znables us to predict th_e effects of m_t_ervenn_o_ns
B . whenever interventions are described as specific modifica-
in Figure 1, bounds on causal effed&(y) in terms of

the nonexperimental distributiaR(z, y, -) was derived in tions of some factors in the product of (2). The simplest

[Balke and Pearl, 1994, Chickering and Pearl, 1996] usin sugh intervention, calledtomic |nvo|v¢s f|>§|ng a sef’ of
i X . X ariables to some constarifs= ¢, which yields the post-
linear programming method foX, Y, andZ being binary . . o
variables intervention distribution

' [L:i1v: e P(vilpa;) v consistent witht.
In thi; paper, we sgek the constraints impqsed by a cagseﬂ't(v) = { 0 lvigT) ' v inconsistent witht.
BN with hidden variables on both nonexperimental and in- 3)
terventional distributions. We present a type of inequal- o .
ity constraints on interventional distributions. We deriv EQ. (3) represents a truncated factorization of (2), with
bounds on causal effects in terms of nonexperimental disfactors corresponding to the manipulated variables re-
tributions and given interventional distributions. Weider ~moved. This ftruncation follows immediately from (2)
instrumental inequality type of constraints upon nonexperSince, assuming modularity, the post-intervention prdbab
imental distributions. Although the constraints we give ar ities P(vi|pa;) corresponding to variables ifi are either
not complete, they constitute necessary conditions fora hyl or 0, while those corresponding to unmanipulated vari-
pothesized model to be compatible with the data. The conables remain unaltered. T stands for a set of treatment
straints also provide information (bounds) on the effeéts o Variables and” for an outcome variable il \ T, then Eq.
interventions that have not been tried experimentallynfro (3) permits us to calculate the probabili(y) that event

observational data and given experimental data. Y = y would occur if treatment conditioi” = ¢ were
enforced uniformly over the population.

2 Causal Bayesian Networksand When some variables in a Markovian model are unob-

| nterventions served, the probability distribution over the observed-var
ables may no longer be decomposed as in Eq. (2)VLet
{W,...,Va}andU = {Uy,...,U, } stand for the sets of
observed and unobserved variables respectively. 1f/no
variable is a descendant of afyvariable, then the corre-
sponding model is called semi-Markovian modelin this
paper, we only consider semi-Markovian models. How-
ever, the results can be generalized to models with arpitrar
unobserved variables as shown in [Tian and Pearl, 2002b].
In a semi-Markovian model, the observed probability dis-
tribution, P(v), becomes a mixture of products:

P) = [T Pwilpai, u')P(u) ()

A causal Bayesian network, also known adarkovian
mode] consists of two mathematical objects: (i) a DAG
G, called acausal graph over a setV = {V;,...,V,}

of vertices, and (ii) a probability distributio®(v), over
the setV of discrete variables that correspond to the ver-
tices inG.2 The interpretation of such a graph has two
components, probabilistic and causal. The probabiligtic i
terpretation viewss as representing conditional indepen-
dence restrictions o: Each variable is independent of

2\We only consider discrete random variables in this paper.



where PA; andU* stand for the sets of the observed and
unobserved parents &f, and the summation ranges over
all theU variables. The post-intervention distribution, like-
wise, will be given as a mixture of truncated products

Pt(U)
> Il Pwilpas,w’)P(u) v consistent witht.

= u {i|VigT}
0

Assuming that is consistent witht, we can write

v inconsistent witht.

)
Pi(v) = Fi(v\ 1) (6)

In the rest of the paper, we will usé,(v) and P;(v \ t)
interchangeably, always assumindpeing consistent with
t.

3 Constraintson I nterventional
Distributions

Let P, denote the set of all interventional distributions in-
duced by a given semi-Markovian model,
P, ={P,(v)|IT CV,t € Dm(T),v e Dm(V)} (7)

where Dm/(T') represents the domain @f. What are the

Figure 2:Uy,U; andUj; are hidden variables.

j =1,...,1,is computable fron®,,, (v) and is given
by
v\ h(i) (U)
Pon, (v) = 71\‘(7 o
{i|Vi, €H;} Po\nti-v (v)

where eachP,, ) (v), i = 0,1,..., k, is given by

P’U\h(i) (U) = Z P’u\h(v)'

h\R()

(10)

A special case of Lemma 1 is whéh = V, and we have
the following Lemma.

Lemma 2 [Tian and Pearl, 2002bJAssuming thatV is

constraints imposed by the model on the interventional dispartitioned into c-components,, .. ., Si, we have

tributions inP,? The structure of the causal graghwill
play an important role in finding these constraints.cA
componenis a maximal set of vertices such that any two

vertices in the set are connected by a path on which ever)(ii) Let a topological order ovel’ beV; <

edge is of the form-- U --» whereU is a hidden vari-
able. The set of variablds is then partitioned into a set of
c-components. For example, the causal grdph Figure 2
consists of two c-componen{sX, Y, Z} and{W,, W, }.

Let G(H) denote the subgraph 6f composed only of the

variables inH and the hidden variables that are ancestors

() P(v) =TI Pos, (v):

... < V,,and
letvV® = {v;,...,V;},i=1,...,n,andV(©® = .
Then eachP,\,,(v),j = 1,..., k, is computable from

P(v) and is given by

Pv\sj (v) = H P(Uz‘|U(i71)). (1D

{ilvies;}

of H. In general, equality constraints on the set of interven-

tional distributions can be found using the following three
lemmas.

Lemmal [Tian and Pearl, 2002blet H C V, and as-

sume thatH is partitioned into c-componentdy, ..., H,
in the subgraplG(H). Then we have
(i) Py\n(v) decomposes as
Pv\h(v) = H P'U\hi (U) (8)

(i) Let k be the number of variables if, and let a topo-
logical order of the variables irff beV,,, < ... <
Vi, I G(H). LetH® = {V},,,..., Vi, } be the set
of variables inH ordered beford/,, (includingV%4,),
i=1,....k and H® = (. Then eachP,,;, (v),

The next lemma provides a condition under which we can
computeP,\ ,,(w) from P, .(c) whereW is a subset of”,
by simply summingP,, .(c) over other variable€’ \ .

Lemma 3 [Tian and Pearl, 2002dletW C C' C V, and
W' = C\W. If W contains its own observed ancestors in
G(C), then

D Pie(v) = Pou(v). (12)

The set of equality constraints implied by these three lem-
mas can be systematically listed by slightly modifying the
procedure in [Tian and Pearl, 2002b] for listing equality
constraints on nonexperimental distributions. We will not
show the details of the procedure here since the focus of
this paper is on inequality constraints.



For example, the model in Figure 1 imposes the followingsince for allV; € V'
equality constraints.

Pz(my) = P(xy|z) (13) 0 < P(v;|pai,u’) < 1. (29)
Py.(z) = P(z|2) (14)
Pux(y) = Pu(y) (15) ®

For afixedS) set, there arél>1| number of Eq. (26) type of
inequalities. For different’ sets, some of those inequali-
ties may imply others as shown in the following lemma.

The model in Figure 2 imposes the following equality con-
straints.

Puyyw, (2yz) = P(zlwizwaey) P(y|wizws) P(x|w; )
Lemma5 If S c S7, then the set o2/57| inequalities,
16)  vs, c sy,

Py, z(2y) = P(y|lwizws) P(x|w:) (17)

Pw1w2y(xz) = Pwly(xz) (18) Z (—1)|SQ‘PU\(51U52)(U) > 0, Yv € Dm(V)

Prywyz(y2) = Puye(y2) (19) S2CS1\S1

Puyway= () = P(z|w;) (20) (30)

Py wyzz (y) = szx(y) (21)

Porwgay(2) = Py(2) (22)  imply the set o251l inequalities S, C S,

Py (wiwe) = P(wa|wiz) P(wr) (23)

Pﬂﬁyzum (wl) = P(wl) (24) Z (_1)|S2‘Pv\(51U82)(’U) > O’ Vv e Dm(V)
$CSI\S,

Pryew, (w2) = 3 P(ws|wyz) P(wy) (25) \ 31)

3.1 Inequality Constraints The proof is omitted due to space limitation.

In this paper, we are concerned with inequality constraints\ssume that the set of variablésin the model is parti-

imposed by a model. Th&, set induced from a semi- tjoned into c-component®:, ..., T,. Due to the equal-
Markovian model must satisfy the following inequality ity constraints given in Lemma 1, instead of listiag’!
constraints. Eq. (26) type of inequalities, we only need to giv€"!

Lemma4 For any$; C V and any superse§| C V of Eq. (26) type of inequalities for each c-compon&nt

S1, we have . . . .
Proposition 1 Let the set of variables/ in a semi-
> (—D)IPy (g usy) () =0, Vv € Dm(V) Markovian model be partitioned into c-components
52CSI\S, T1,...,Tx. TheP, set must satisfy the following inequality

(26) constraints: fori = 1,...,k,VS; C T;,
where| S, | represents the number of variablesSh.

Proof: We use the following equation. Y (DEIPy(usy () 2 0, Yo e Dm(V)
A S2CTi\S1
2
H(l - a;) (32)
=1
=1-Y a;+» aia;—...+(~1)*ar...ax. (27)  For example, Proposition 1 gives the following inequality

constraints for the model in Figure 1,

Takea; = P(v;|pa;,u’), we have that

, 1= Py.(z) = Pox(y) + Pa(zy) 2 0 (33)

zu: {Z‘QS }P(Ui|pafi,ul) P’qz(x) Pz( ) >0 (34)
- , Pr(y) — Px(ay) > 0 (35)

H (1 - P(Uj|pa.jvuj)>P(u) Pz(osy) >0, (36)

{ilViesi\S1}

= Z (_1)|S2‘Pv\(sluS2)(U) >0 (28)  in which (36) is trivial, and (34) becomes trivial because of
S2C51\51 equality constraints (13) and (14).



For the model in Figure 2, Proposition 1 gives the following P;(v) for an instantiation ot € Dm(V) as a variable,

inequality constraints for the c-compondiX, Y, Z}, and solve the inequalities to eliminate unwanted variables
using methods like Fourier-Motzkin elimination or quanti-
L= Purwsyz(®) = Punwswz(y) = Puywoay(2) fier elimination. However, this is typically only practical
+ Purwsz(2Y) + Puwyway (22) + Puywse (Y2) for small number of binary variables due to high compu-
— Py, (yz) >0 (37)  tational complexity. In this paper, we show some inequal-

ity constraints involving only interventional distribatis of

waz _Pu)wz _wa . . . .
wayz (%) vwa=(2Y) vway(72) interests that can be derived from those in Proposition 1.

+ Py (2y2) 2 0 8  in general, these constraints may not include all the possi-
Puywszz(Y) = Puywsz(2Y) — Puwywsz (y2) ble constraints that could be derived from Proposition 1 in
+ Puyw, (vy2z) > 0 (39)  principle.

Puywsay(2) = Puywsy(02) — Puyw,e(Y2) Instead of directly solving the inequality constraintsegiv

+ Py, (2yz) >0 (40)  in Proposition 1, we consider the inequality in Eg. (26) for

(41) everij C T7 We k_eep every inequality that involvgs only
the interventional distributions of interests. Those urede
Purway(22) = Puyw, (2y2) (42)  ities that contain unwanted interventional distributiomesy
Puywyz(Y2) — Puyw, (7y2) (43)  lead to some new inequalities. For example, in the model
Py, (2y2) > 0, (44)  in Figure 2, consider the following inequality that follows
from (26) withS; = {Z} andS] = {Y, Z},
some of which are implied by the set of equality constraints

Puywsz(2Y) — Py, (2Y2)

(A\VARAVARLY]
o o o

(16)-(25). It can be shown that all inequality constraints Puoywsay(2) = Pupwyz(yz) > 0. (45)
for c-component{W,, W5} are implied by equality con-
straints. Suppose we want constraints @), .,,,(yz) and get rid

Note that in general, the inequality constraints given inOf unknpwn quUantityP,, u,ay(2). First we have equality
) . . constraints (19) and (22), and Eq. (45) becomes
this section are not the complete set of constraints that are

implied by a given model. For example, for the model P <p 46
given in Figure 1, the sharp bounds @h(y) given in war(y2) S Fy(2) (46)

[Balke and Pearl, 1994] faK, Y, andZ being binary vari- Pu,.(y2) is a function of W, and X but P,(z) is not,
ables are not implied by (33)-(36). which leads to

4 Inequality Constraints On a Subset of max Py, (yz) < Py(2) (47)

w2,

Interventional Distributions S i Py (42) < 1 (48)

wa,T
Proposition 1 gives a set of inequality constraints on the se -
of interventional distributions i, In practical situations, Eq. (48) is a nontrivial inequality constraint on
we may be interested in constraints involving only a certainP,,, ,,,.(yz) = Pu,.(y2), Which can also be repre-
subset of interventional distributions. For example, (8 W sented as
have done some experiments, and obtaiRgd) for some
setsS. We want to know whether these data are compati- Puyu(yz0) + Py (yz1) <1 (49)
ble with the given model. For this purpose, we would like
inequality constraints involving only those known interve ~ for anyws € Dm(W), 2 € Dm(X), wy € Dm(W3) and
tional distributions; (i) A special case of (i) is that welpn =’ € Dm(X) whenZ is binary (Dm(Z) = {z0, z1}).
have _the nonexperlmental_dlstrlbutld?(v). We wantin-  £rom the above considerations, we give a procedure in
equality constraints off (v) imposed by the model; (iii) In  gigre 3 that lists the inequality constraints on the inter-
practice, certain experiments may be difficult or expensivg e ntiona| distributions of interest. The procedure has a
to perform. Still, we want some information about a partic- complexity of327:/. Note thatA will always contain the

ular causal effect, given some known interventional distri nonexperimental distribution and all interventional dist
(via equality con-

butions and nonexperimental distribution. We may providebutiOns that can be computed fraft{v)
bounds on concerned causal effect that can be derived frog}raints)
those inequality constraints (if this causal effect is ravhe

putable from given quantity through equality constraints) In Step 1, we list the inequalities that do not involve un-
wanted quantities (i.e., interventional distributiong ime

cluded in A). Note that we remove some redundant in-
equalities based on the following lemma.

To restrict the set of inequality constraints given in Propo
sition 1 to constraints involving only certain subset of in-
terventional distributions, in principle, we can treat leac



procedure Findlneqs(G,A)

INPUT: a causal grapld7, interventional distributions of
interestA, equality constraints implied bg#

OUTPUT: inequalities of interests/Er, for each c-

componentl;, i =1,...,k
Step 1.
For each c-componenfl;;,i =1,...,k

For each S; C T; (small to large)
For each S| C T; such thatS; C Sj(small to large)
Study the inequality
€s1,81 = Lsycsns: (12 Py 5,055 () 20
If every interventional distribution ias, s; isin A
IETi = IET7 @] {651,51 > 0},
Remove anyg, g in I Eq, such thatR C S%;
Step 2:
For each c-componentl;;,i =1,... k
For each S, C T; (small to large)
For each S1 C T; such thatS; C Sj(small to large)
Study the inequality
€511 = Lsycsis, (12 Py 5,0s,) () 20
If some interventional distribution i, s; is

notin A
IEr, = IET, U{es, s, > 0 reformulated
in the form of (55};

Figure 3: A Procedure for Listing Inequality Constraints

On a Subset of Interventional Distributions

Lemma6 Let Sup(S;) denote the set of super-
sets of S; such thatS; € Sup(Sy) if and only
if every interventional distribution ineg, g
Ys.csns (DI Pys,us,)(v) > 0is in A For

a set of setdV, let Max(W) = {S|S € W, there is no
S’ € W such thatS C S’} denote the set of maximal sets
in W. Then, the set of inequalities

VS, C T;,YS] € Max(Sup(Sy)),
Z ()12 Py (5,085) (v) > 0,0 € Dm(V) (50)
S2CS1\S1

imply the inequalities

VS1 C T;,VS] € Sup(St)

Z (—1)‘SQ|PU\(SIUSZ)(U) > 0,Yv € Dm(V).
$>C8I\Sy
(51)

See the Appendix for the proof.

In Step 2, we deal with the inequalities that contain un-
wanted quantities as follows. We rewrite the inequality in

Eq. (26) ass, s; > 0, with

€54,8;
= Z (_1)‘R‘_‘51|Pv\r(v> + Z (_1>‘R‘_|51‘Pv\r(v)
ReW; ReWs

(52)

whereW; = {S1 U S2]S> C 57\ S1, Py\(s,us,) (V) IS in
A} andW2 = {Sl USQ|SQ - S{ \Sl, Pv\(slu(‘;z)(v) is not
in A}. We have

S (ISP, () >~ Y (-)IEEISIP, ().

ReWy ReW;
(53)

Suppose the left-hand side is a function of varialilesnd
the right-hand side is a function of variablEs. Then,

i —DIE=ISIp
Erfl\lng (-1) \r(v)
eWw
>— Y (=)IEEISIP, (). (54)
ReW,
Let@Q = Ugew, 1t- We obtain,
Z min Z (—l)llelsl‘Pv\,.(v)
Q E1\E, ReW;
>— Y (=pFEESE T pm(V)|. (55)
ReW; {i|Vi€Q\R}

Note that ifE'; \ E> = ), then we do not neething, \ , .

To illustrate the procedure, suppose we want to get the in-
equality constraints on the two interventional distribug

Py wyay(z) and Py, 4,2 (yz) and we are given a tried in-
terventional distributiorP,,, ., (zz).

In Step 1, consider the loop in which, = {X,Y,Z}
and S; = {0}. The procedure first adds) ;x; and
ep,{z}- When it addse ¢ x 7}, it will remove ey (x and
eg,{z) from I E7, and keepy ;x, 2, which turns out to be
Mazx(Sup(0)). This repeats for everg, C T;.

In Step 2, consider the loop whefg {X,Y,Z}
andS; = {Y'}. The procedure studiess, s; for each
Si € {{Y}.{X.Y},{Y.Z},{X,Y.Z}}. For example,
for S} = {X,Y, Z}, we have the inequality (39). From
(16), (17), (19) and (21), we obtain

max ((P(ylwizws) P(alwr) + Py (y2)

< Pyya (y)
(56)

- P(Z|w1mw2y)P(y|w1xw2)P(£C|’LU1))

Summing both sides ovéf gives

> max (p(y|w1xw2)P<x\w1) + Puya(y2)
—ur,

- P(z|w1mw2y)P(y|w1xw2)P(I|w1)) <1. (57)



4.1 Boundson Causal Effects 5 Conclusion

Suppose that our goal is to bound a particular interventionaye present a class of inequality constraints imposed by a
distribution. For this cased in the proceduré=indineqs  given causal BN with hidden variables on the set of inter-
consists of the particular interventional distributioattive Ventiona' distributions that can be induced from the net-
want to bound, the nonexperimental distributiBtv), and  \ork. We show a method to restrict these inequality con-
all interventional distributions that are computable fromstraints on to that only involving interventional distribu
P(v). tions of interests. These inequality constraints can bd use
For example, consider the graph in Figure 2. Sup-2S necessary t_est fora causal_model to be compatible wi_th
pose that we want to bound the interventional distribu-9iven observational and experimental data. Another appli-
tion Py, w,2y(2) and that the interventional distribution Cation permits us to bound the effects of untried interven-
Pay, way(22) is available from experimentgindl negs will tions from experiments involving auxiliary interventions
list the following bounds foP,, ., (2) in Step 1. that are easier or cheaper to implement.

We derive a type of inequality constraints upon the nonex-
1= P(z|wi) = Puywsay(2) + Purwsy(22) 20 (58) perimental distribution in a complexity 88 wherem is

Puywsay(2) = Puywsy(22) 20 (59)  the number of variables in the largest c-component. These
constraints are imposed by the network structure, regard-

which provides a lower and upper bound 85, w,x () |ess of the number of states of the (observed or hidden)

respectively. variables involved. These constraints can be used to test a
model or distinguish between models. How to test these
4.2 Inequality Constraints on Nonexperimental inequality constraints in practice and use them for model
Distribution selection would be interesting future research.

Now assume that we want to find inequality constraints O cknowledgments

nonexperimental distribution. For this cagkin the proce-

dure Findlnegs consists of the nonexperimental distribu- This research was partly supported by NSF grant IIS-
tion P(v) and all interventional distributions that are com- 0347846.

putable fromP(v).

The inequality constraints produced Bindinegs in this Appendix : Proof of Lemma 6

case include the instrumental inequality type of constsain

Consider the graph in Figure 1. For the c-componeniVe will show that if the inequalities in (50) hold, then for
{X, Y}, Findlnegs will produce the inequality (35). From anyn < |V/| we have

(13) and (15), we have WSy C T, VS, € Maz"(Sup(Sy)).

max P(zy|2) < Pr(y) (60) > (=) (g usy (0) = 0,Y0 € Dm(V) (64)
S2CSi\ 5S4
and summing both sides ovErgives
whereMaz™(S) = Max(S\ {R|R € S,|R| > n}). (51)
Z max P(zy|?) < 1. (61) will follow from (64) if we let n be the size of the se%; in
. B (51). Assuming (50), we prove (64) by induction on

Since this must hold for alK, we obtain the instrumental Basemn = |V]. (64) is equivalent to (S0).

inequality (1). Hypothesis: Assume that

To illustrate more general instrumental inequality type of vS, C T;,vS] € Maz"(Sup(S1)),

constraints, consider the graph in Figure 2. Bqr = Sy

{v,Z} andS; = {X,Y, Z}, FindInegs produces the in- > (1) (g usy) (0) = 0,Y0 € Dm(V).
equality (43). From (16) and (19), we have S2C51\8 (65)

max P(z|wizway) P(y|wizws) P(z|lw) < P,y (yz).

“i 62) Induction step: We show that

VS) C T;,VS) € Max™ ' (Sup(S1)),

> (1) (g usy) (V) = 0,V0 € Dm(V).
ZmaxP(z|w1xw2y)P(y|w1mw2)P(x\w1) <1. (63) S2CS81\S1
ve (66)

Summing both sides ovéf andZ gives



If S1] < n —1, thenS] is in Maz™(Sup(S1)). Thus, reasoning. Journal of Artificial Intelligence Research
(66) follows from (65). If|S;| = n — 1, then one of the 3:405-430, 1995.

followings should hold. .
[Heckerman, 1995] D. Heckerman. A Bayesian approach

Case 1:57 isin Maz™ (Sup(Sh)). to learning causal networks. Rroc. of UA| pages 274—
Case 2: There exists a variaklesuch thatS] U {a} is in 284, San Francisco, CA, 1995. Morgan Kaufmann Pub-
Maz"(Sup(Sy)). lishers.

In Case 1, (66) follows from (65) In Case 2, we have [Lauritzen, 2000] S. Lauritzen. Graphical models for
causal inference. In O.E. Barndorff-Nielsen, D. Cox,

(=192l P,y (5, 0s) (v) > 0,0 € Dm(V) and C. Kluppelberg, editorComplex Stochastic Sys-
$2C(S1U{a})\S1 tems chapter 2, pages 67—112. Chapman and Hall/CRC
(67) Press, London/Boca Raton, 2000.
and
[Pearlet al, 1990] J. Pearl, D. Geiger, and T. Verma. The
Z (*1)|SQ‘PU\(81U{<X}USQ)(U) > 0,Yv € Dm(V). Iogi_c of influence diagrams. In R.M._Oliver and J.Q.
52CSI\S; Smith, editors|nfluence Diagrams, Belief Nets and De-
(68) cision Analysispages 67—87. John Wiley and Sons, Inc.,
(68) follows from (65) since S} U {a} is in New York, NY, 1990.
Mazx™(Sup(S; U . Summing (67) and (68 _ L
givc(laxs ((66%)Lpl( ! {ah) g (67) (68) [Pearl, 1988] J. Pearl.Probabilistic Reasoning in Intel-
' ligence SystemsMorgan Kaufmann, San Mateo, CA,
1988.
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