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Abstract

We present a class of inequality constraints on
the set of distributions induced by local interven-
tions on variables governed by a causal Bayesian
network, in which some of the variables remain
unmeasured. We derive bounds on causal ef-
fects that are not directly measured in random-
ized experiments. We derive instrumental in-
equality type of constraints on nonexperimental
distributions. The results have applications in
testing causal models with observational or ex-
perimental data.

1 Introduction

The use of graphical models for encoding distribu-
tional and causal information is now fairly standard
[Heckerman and Shachter, 1995, Lauritzen, 2000,
Pearl, 2000, Spirteset al., 2001]. The most common
such representation involves acausal Bayesian network
(BN), namely, a directed acyclic graph (DAG)G which, in
addition to the usual conditional independence interpreta-
tion, is also given a causal interpretation. This additional
feature permits one to infer the effects of interventions
or actions, such as those encountered in policy analysis,
treatment management, or planning. Specifically, if an
external intervention fixes any setT of variables to some
constantst, the DAG permits us to infer the resulting
post-intervention distribution, denoted byPt(v),1 from
the pre-intervention distributionP (v). The quantity
Pt(y), often called the “causal effect” ofT on Y , is what
we normally assess in a controlled experiment withT

randomized, in which the distribution ofY is estimated
for each levelt of T . We will call a post-intervention
distribution an interventional distribution, and call the
distributionP (v) nonexperimental distribution.

1[Pearl, 1995a, Pearl, 2000] used the notationP (v|set(t)),
P (v|do(t)), or P (v|t̂) for the post-intervention distribution,
while [Lauritzen, 2000] usedP (v||t).

The validity of a causal model can be tested only if it has
empirical implications, that is, it must impose constraints
on the statistics of the data collected. A causal BN not
only imposes constraints on the nonexperimental distribu-
tion but also on the interventional distributions that can
be induced by the network. Therefore a causal BN can
be tested and falsified by using two types of data, obser-
vational, which are passively observed, and experimental,
which are produced by manipulating (randomly) some vari-
ables and observing the states of other variables. The abil-
ity to use a mixture of observational and experimental data
will greatly increase our power of causal reasoning and
learning. The use of a mixture of experimental and ob-
servational data in learning causal BN is demonstrated in
[Cooper and Yoo, 1999, Heckerman, 1995]. In this paper
we consider using combined observational and experimen-
tal data for causal model testing.

There has been much research on identifying obser-
vational implications of BNs. It is well-known that
the observational implications of a BN are completely
captured by conditional independence relationships
among the variables when all the variables are observed
[Pearlet al., 1990]. When a BN invokes unobserved
variables, calledhidden or latent variables, the network
structure may impose other equality and/or inequality
constraints on the distribution of the observed variables
[Verma and Pearl, 1990, Robins and Wasserman, 1997,
Desjardins, 1999, Spirteset al., 2001]. Methods
for identifying equality constraints were given in
[Geiger and Meek, 1998, Tian and Pearl, 2002b].
[Pearl, 1995b] gave an example of inequality constraints
in the model shown in Figure 1. The model imposes the
following inequality, called theinstrumental inequalityby
Pearl, for discrete variablesX, Y , andZ,

max
x

∑

y

max
z

P (xy|z) ≤ 1. (1)

This model has been further analysed using convex anal-
ysis approach in [Bonet, 2001]. In principle, all (equal-
ity and inequality) constraints implied by BNs with hid-
den variables can be derived by the quantifier elimination
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Figure 1:U is a hidden variable.

method presented in [Geiger and Meek, 1999]. However,
due to high computational demand (doubly exponential in
the number of probabilistic parameters), in practice, quanti-
fier elimination is limited to BNs with few number of prob-
abilistic parameters. For example, the current quantifier
elimination algorithms cannot deal with the simple model
in Figure 1 forX, Y , andZ being binary variables.

When all variables are observed, a complete character-
ization of constraints on interventional distributions im-
posed by a given causal BN has been given in [Pearl, 2000,
pp.23-4]. When a causal BN contains unobserved vari-
ables, there may be inequality constraints on interven-
tional distributions [Tian and Pearl, 2002a]. For the model
in Figure 1, bounds on causal effectsPx(y) in terms of
the nonexperimental distributionP (x, y, z) was derived in
[Balke and Pearl, 1994, Chickering and Pearl, 1996] using
linear programming method forX, Y , andZ being binary
variables.

In this paper, we seek the constraints imposed by a causal
BN with hidden variables on both nonexperimental and in-
terventional distributions. We present a type of inequal-
ity constraints on interventional distributions. We derive
bounds on causal effects in terms of nonexperimental dis-
tributions and given interventional distributions. We derive
instrumental inequality type of constraints upon nonexper-
imental distributions. Although the constraints we give are
not complete, they constitute necessary conditions for a hy-
pothesized model to be compatible with the data. The con-
straints also provide information (bounds) on the effects of
interventions that have not been tried experimentally, from
observational data and given experimental data.

2 Causal Bayesian Networks and
Interventions

A causal Bayesian network, also known as aMarkovian
model, consists of two mathematical objects: (i) a DAG
G, called acausal graph, over a setV = {V1, . . . , Vn}
of vertices, and (ii) a probability distributionP (v), over
the setV of discrete variables that correspond to the ver-
tices in G.2 The interpretation of such a graph has two
components, probabilistic and causal. The probabilistic in-
terpretation viewsG as representing conditional indepen-
dence restrictions onP : Each variable is independent of

2We only consider discrete random variables in this paper.

all its non-descendants given its direct parents in the graph.
These restrictions imply that the joint probability function
P (v) = P (v1, . . . , vn) factorizes according to the product

P (v) =
∏

i

P (vi|pai) (2)

wherepai are (values of) the parents of variableVi in G.

The causal interpretation views the arrows inG as repre-
senting causal influences between the corresponding vari-
ables. In this interpretation, the factorization of (2) still
holds, but the factors are further assumed to represent au-
tonomous data-generation processes, that is, each condi-
tional probability P (vi|pai) represents a stochastic pro-
cess by which the values ofVi are assigned in response
to the valuespai (previously chosen forVi’s parents), and
the stochastic variation of this assignment is assumed in-
dependent of the variations in all other assignments in the
model. Moreover, each assignment process remains invari-
ant to possible changes in the assignment processes that
govern other variables in the system. This modularity as-
sumption enables us to predict the effects of interventions,
whenever interventions are described as specific modifica-
tions of some factors in the product of (2). The simplest
such intervention, calledatomic, involves fixing a setT of
variables to some constantsT = t, which yields the post-
intervention distribution

Pt(v) =

{ ∏

{i|Vi 6∈T} P (vi|pai) v consistent witht.
0 v inconsistent witht.

(3)

Eq. (3) represents a truncated factorization of (2), with
factors corresponding to the manipulated variables re-
moved. This truncation follows immediately from (2)
since, assuming modularity, the post-intervention probabil-
ities P (vi|pai) corresponding to variables inT are either
1 or 0, while those corresponding to unmanipulated vari-
ables remain unaltered. IfT stands for a set of treatment
variables andY for an outcome variable inV \ T , then Eq.
(3) permits us to calculate the probabilityPt(y) that event
Y = y would occur if treatment conditionT = t were
enforced uniformly over the population.

When some variables in a Markovian model are unob-
served, the probability distribution over the observed vari-
ables may no longer be decomposed as in Eq. (2). LetV =
{V1, . . . , Vn} andU = {U1, . . . , Un′} stand for the sets of
observed and unobserved variables respectively. If noU

variable is a descendant of anyV variable, then the corre-
sponding model is called asemi-Markovian model. In this
paper, we only consider semi-Markovian models. How-
ever, the results can be generalized to models with arbitrary
unobserved variables as shown in [Tian and Pearl, 2002b].
In a semi-Markovian model, the observed probability dis-
tribution,P (v), becomes a mixture of products:

P (v) =
∑

u

∏

i

P (vi|pai, u
i)P (u) (4)



wherePAi andU i stand for the sets of the observed and
unobserved parents ofVi, and the summation ranges over
all theU variables. The post-intervention distribution, like-
wise, will be given as a mixture of truncated products

Pt(v)

=

8

<

:

X

u

Y

{i|Vi 6∈T}

P (vi|pai, u
i)P (u) v consistent witht.

0 v inconsistent witht.
(5)

Assuming thatv is consistent witht, we can write

Pt(v) = Pt(v \ t) (6)

In the rest of the paper, we will usePt(v) andPt(v \ t)
interchangeably, always assumingv being consistent with
t.

3 Constraints on Interventional
Distributions

Let P∗P∗P∗ denote the set of all interventional distributions in-
duced by a given semi-Markovian model,

P∗P∗P∗ = {Pt(v)|T ⊆ V, t ∈ Dm(T ), v ∈ Dm(V )} (7)

whereDm(T ) represents the domain ofT . What are the
constraints imposed by the model on the interventional dis-
tributions inP∗P∗P∗? The structure of the causal graphG will
play an important role in finding these constraints. Ac-
componentis a maximal set of vertices such that any two
vertices in the set are connected by a path on which every
edge is of the formL99 U 99K whereU is a hidden vari-
able. The set of variablesV is then partitioned into a set of
c-components. For example, the causal graphG in Figure 2
consists of two c-components{X,Y,Z} and{W1,W2}.

Let G(H) denote the subgraph ofG composed only of the
variables inH and the hidden variables that are ancestors
of H. In general, equality constraints on the set of interven-
tional distributions can be found using the following three
lemmas.

Lemma 1 [Tian and Pearl, 2002b]Let H ⊆ V , and as-
sume thatH is partitioned into c-componentsH1, . . . ,Hl

in the subgraphG(H). Then we have

(i) Pv\h(v) decomposes as

Pv\h(v) =
∏

i

Pv\hi
(v). (8)

(ii) Let k be the number of variables inH, and let a topo-
logical order of the variables inH be Vh1

< . . . <

Vhk
in G(H). Let H(i) = {Vh1

, . . . , Vhi
} be the set

of variables inH ordered beforeVhi
(includingVhi

),
i = 1, . . . , k, and H(0) = ∅. Then eachPv\hj

(v),

W1 X

U1

Y Z

U2

W2
U3

Figure 2:U1,U2 andU3 are hidden variables.

j = 1, . . . , l, is computable fromPv\h(v) and is given
by

Pv\hj
(v) =

∏

{i|Vhi
∈Hj}

Pv\h(i)(v)

Pv\h(i−1)(v)
, (9)

where eachPv\h(i)(v), i = 0, 1, . . . , k, is given by

Pv\h(i)(v) =
∑

h\h(i)

Pv\h(v). (10)

A special case of Lemma 1 is whenH = V , and we have
the following Lemma.

Lemma 2 [Tian and Pearl, 2002b]Assuming thatV is
partitioned into c-componentsS1, . . . , Sk, we have

(i) P (v) =
∏

i Pv\si
(v).

(ii) Let a topological order overV beV1 < . . . < Vn, and
let V (i) = {V1, . . . , Vi}, i = 1, . . . , n, andV (0) = ∅.
Then eachPv\sj

(v), j = 1, . . . , k, is computable from
P (v) and is given by

Pv\sj
(v) =

∏

{i|Vi∈Sj}

P (vi|v
(i−1)). (11)

The next lemma provides a condition under which we can
computePv\w(w) from Pv\c(c) whereW is a subset ofC,
by simply summingPv\c(c) over other variablesC \ W .

Lemma 3 [Tian and Pearl, 2002b]Let W ⊆ C ⊆ V , and
W ′ = C \W . If W contains its own observed ancestors in
G(C), then

∑

w′

Pv\c(v) = Pv\w(v). (12)

The set of equality constraints implied by these three lem-
mas can be systematically listed by slightly modifying the
procedure in [Tian and Pearl, 2002b] for listing equality
constraints on nonexperimental distributions. We will not
show the details of the procedure here since the focus of
this paper is on inequality constraints.



For example, the model in Figure 1 imposes the following
equality constraints.

Pz(xy) = P (xy|z) (13)

Pyz(x) = P (x|z) (14)

Pxz(y) = Px(y) (15)

The model in Figure 2 imposes the following equality con-
straints.

Pw1w2
(xyz) = P (z|w1xw2y)P (y|w1xw2)P (x|w1)

(16)

Pw1w2z(xy) = P (y|w1xw2)P (x|w1) (17)

Pw1w2y(xz) = Pw1y(xz) (18)

Pw1w2x(yz) = Pw2x(yz) (19)

Pw1w2yz(x) = P (x|w1) (20)

Pw1w2xz(y) = Pw2x(y) (21)

Pw1w2xy(z) = Py(z) (22)

Pxyz(w1w2) = P (w2|w1x)P (w1) (23)

Pxyzw2
(w1) = P (w1) (24)

Pxyzw1
(w2) =

∑

w1

P (w2|w1x)P (w1) (25)

3.1 Inequality Constraints

In this paper, we are concerned with inequality constraints
imposed by a model. TheP∗P∗P∗ set induced from a semi-
Markovian model must satisfy the following inequality
constraints.

Lemma 4 For anyS1 ⊆ V and any supersetS′
1 ⊆ V of

S1, we have
∑

S2⊆S′

1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V )

(26)
where|S2| represents the number of variables inS2.

Proof: We use the following equation.

k
∏

i=1

(1 − ai)

= 1 −
∑

i

ai +
∑

i,j

aiaj − . . . + (−1)ka1 . . . ak. (27)

Takeaj = P (vj |paj , u
j), we have that

∑

u

∏

{i|Vi∈S1}

P (vi|pai, u
i)

∏

{j|Vj∈S′

1\S1}

(1 − P (vj |paj , u
j))P (u)

=
∑

S2⊆S′

1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0 (28)

since for allVi ∈ V

0 ≤ P (vi|pai, u
i) ≤ 1. (29)

�

For a fixedS′
1 set, there are2|S

′

1| number of Eq. (26) type of
inequalities. For differentS′

1 sets, some of those inequali-
ties may imply others as shown in the following lemma.

Lemma 5 If S′
1 ⊂ S′′

1 , then the set of2|S
′′

1 | inequalities,
∀S1 ⊆ S′′

1 ,

∑

S2⊆S′′

1 \S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V )

(30)

imply the set of2|S
′

1| inequalities,∀S1 ⊆ S′
1,

∑

S2⊆S′

1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V )

(31)

The proof is omitted due to space limitation.

Assume that the set of variablesV in the model is parti-
tioned into c-componentsT1, . . . , Tk. Due to the equal-
ity constraints given in Lemma 1, instead of listing2|V |

Eq. (26) type of inequalities, we only need to give2|Ti|

Eq. (26) type of inequalities for each c-componentTi.

Proposition 1 Let the set of variablesV in a semi-
Markovian model be partitioned into c-components
T1, . . . , Tk. TheP∗P∗P∗ set must satisfy the following inequality
constraints: fori = 1, . . . , k, ∀S1 ⊆ Ti,

∑

S2⊆Ti\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V )

(32)

For example, Proposition 1 gives the following inequality
constraints for the model in Figure 1,

1 − Pyz(x) − Pxz(y) + Pz(xy) ≥ 0 (33)

Pyz(x) − Pz(xy) ≥ 0 (34)

Pxz(y) − Pz(xy) ≥ 0 (35)

Pz(xy) ≥ 0, (36)

in which (36) is trivial, and (34) becomes trivial because of
equality constraints (13) and (14).



For the model in Figure 2, Proposition 1 gives the following
inequality constraints for the c-component{X,Y,Z},

1 − Pw1w2yz(x) − Pw1w2xz(y) − Pw1w2xy(z)

+ Pw1w2z(xy) + Pw1w2y(xz) + Pw1w2x(yz)

− Pw1w2
(xyz) ≥ 0 (37)

Pw1w2yz(x) − Pw1w2z(xy) − Pw1w2y(xz)

+ Pw1w2
(xyz) ≥ 0 (38)

Pw1w2xz(y) − Pw1w2z(xy) − Pw1w2x(yz)

+ Pw1w2
(xyz) ≥ 0 (39)

Pw1w2xy(z) − Pw1w2y(xz) − Pw1w2x(yz)

+ Pw1w2
(xyz) ≥ 0 (40)

Pw1w2z(xy) − Pw1w2
(xyz) ≥ 0 (41)

Pw1w2y(xz) − Pw1w2
(xyz) ≥ 0 (42)

Pw1w2x(yz) − Pw1w2
(xyz) ≥ 0 (43)

Pw1w2
(xyz) ≥ 0, (44)

some of which are implied by the set of equality constraints
(16)-(25). It can be shown that all inequality constraints
for c-component{W1,W2} are implied by equality con-
straints.

Note that in general, the inequality constraints given in
this section are not the complete set of constraints that are
implied by a given model. For example, for the model
given in Figure 1, the sharp bounds onPx(y) given in
[Balke and Pearl, 1994] forX, Y , andZ being binary vari-
ables are not implied by (33)-(36).

4 Inequality Constraints On a Subset of
Interventional Distributions

Proposition 1 gives a set of inequality constraints on the set
of interventional distributions inP∗P∗P∗. In practical situations,
we may be interested in constraints involving only a certain
subset of interventional distributions. For example, (i) We
have done some experiments, and obtainedPs(v) for some
setsS. We want to know whether these data are compati-
ble with the given model. For this purpose, we would like
inequality constraints involving only those known interven-
tional distributions; (ii) A special case of (i) is that we only
have the nonexperimental distributionP (v). We want in-
equality constraints onP (v) imposed by the model; (iii) In
practice, certain experiments may be difficult or expensive
to perform. Still, we want some information about a partic-
ular causal effect, given some known interventional distri-
butions and nonexperimental distribution. We may provide
bounds on concerned causal effect that can be derived from
those inequality constraints (if this causal effect is not com-
putable from given quantity through equality constraints).

To restrict the set of inequality constraints given in Propo-
sition 1 to constraints involving only certain subset of in-
terventional distributions, in principle, we can treat each

Ps(v) for an instantiation ofv ∈ Dm(V ) as a variable,
and solve the inequalities to eliminate unwanted variables
using methods like Fourier-Motzkin elimination or quanti-
fier elimination. However, this is typically only practical
for small number of binary variables due to high compu-
tational complexity. In this paper, we show some inequal-
ity constraints involving only interventional distributions of
interests that can be derived from those in Proposition 1.
In general, these constraints may not include all the possi-
ble constraints that could be derived from Proposition 1 in
principle.

Instead of directly solving the inequality constraints given
in Proposition 1, we consider the inequality in Eq. (26) for
everyS′

1 ⊆ Ti. We keep every inequality that involves only
the interventional distributions of interests. Those inequal-
ities that contain unwanted interventional distributionsmay
lead to some new inequalities. For example, in the model
in Figure 2, consider the following inequality that follows
from (26) withS1 = {Z} andS′

1 = {Y,Z},

Pw1w2xy(z) − Pw1w2x(yz) ≥ 0. (45)

Suppose we want constraints onPw1w2x(yz) and get rid
of unknown quantityPw1w2xy(z). First we have equality
constraints (19) and (22), and Eq. (45) becomes

Pw2x(yz) ≤ Py(z) (46)

Pw2x(yz) is a function ofW2 and X but Py(z) is not,
which leads to

max
w2,x

Pw2x(yz) ≤ Py(z) (47)
∑

z

max
w2,x

Pw2x(yz) ≤ 1 (48)

Eq. (48) is a nontrivial inequality constraint on
Pw1w2x(yz) = Pw2x(yz), which can also be repre-
sented as

Pw2x(yz0) + Pw′

2x′(yz1) ≤ 1 (49)

for anyw2 ∈ Dm(W2), x ∈ Dm(X), w′
2 ∈ Dm(W2) and

x′ ∈ Dm(X) whenZ is binary (Dm(Z) = {z0, z1}).

From the above considerations, we give a procedure in
Figure 3 that lists the inequality constraints on the inter-
ventional distributions of interest. The procedure has a
complexity of32|Ti|. Note thatA will always contain the
nonexperimental distribution and all interventional distri-
butions that can be computed fromP (v) (via equality con-
straints).

In Step 1, we list the inequalities that do not involve un-
wanted quantities (i.e., interventional distributions not in-
cluded inA). Note that we remove some redundant in-
equalities based on the following lemma.



procedure FindIneqs(G,A)
INPUT: a causal graphG, interventional distributions of
interestA, equality constraints implied byG
OUTPUT: inequalities of interests,IETi

for each c-
componentTi, i = 1, . . . , k
Step 1:
For each c-componentTi, i = 1, . . . , k

For each S1 ⊆ Ti (small to large)
For each S′

1 ⊆ Ti such thatS1 ⊆ S′
1(small to large)

Study the inequality
eS1,S′

1
=

∑

S2⊆S′

1\S1
(−1)|S2|Pv\(s1∪s2)(v) ≥ 0

If every interventional distribution ineS1,S′

1
is in A

IETi
= IETi

∪ {eS1,S′

1
≥ 0};

Remove anyeS1,R in IETi
such thatR ⊂ S′

1;
Step 2:
For each c-componentTi, i = 1, . . . , k

For each S1 ⊆ Ti (small to large)
For each S′

1 ⊆ Ti such thatS1 ⊆ S′
1(small to large)

Study the inequality
eS1,S′

1
=

∑

S2⊆S′

1\S1
(−1)|S2|Pv\(s1∪s2)(v) ≥ 0

If some interventional distribution ineS1,S′

1
is

not inA

IETi
= IETi

∪ {eS1,S′

1
≥ 0 reformulated

in the form of (55)};

Figure 3: A Procedure for Listing Inequality Constraints
On a Subset of Interventional Distributions

Lemma 6 Let Sup(S1) denote the set of super-
sets of S1 such that S′

1 ∈ Sup(S1) if and only
if every interventional distribution in eS1,S′

1
=

∑

S2⊆S′

1\S1
(−1)|S2|Pv\(s1∪s2)(v) ≥ 0 is in A. For

a set of setsW , let Max(W ) = {S|S ∈ W, there is no
S′ ∈ W such thatS ⊂ S′} denote the set of maximal sets
in W . Then, the set of inequalities

∀S1 ⊆ Ti,∀S′
1 ∈ Max(Sup(S1)),

∑

S2⊆S′

1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V ) (50)

imply the inequalities

∀S1 ⊆ Ti,∀S′
1 ∈ Sup(S1)

∑

S2⊆S′

1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V ).

(51)

See the Appendix for the proof.

In Step 2, we deal with the inequalities that contain un-
wanted quantities as follows. We rewrite the inequality in

Eq. (26) aseS1,S′

1
≥ 0, with

eS1,S′

1

=
∑

R∈W1

(−1)|R|−|S1|Pv\r(v) +
∑

R∈W2

(−1)|R|−|S1|Pv\r(v)

(52)

whereW1 = {S1 ∪ S2|S2 ⊆ S′
1 \ S1, Pv\(s1∪s2)(v) is in

A} andW2 = {S1 ∪S2|S2 ⊆ S′
1 \S1, Pv\(s1∪s2)(v) is not

in A}. We have
∑

R∈W1

(−1)|R|−|S1|Pv\r(v) ≥ −
∑

R∈W2

(−1)|R|−|S1|Pv\r(v).

(53)

Suppose the left-hand side is a function of variablesE1 and
the right-hand side is a function of variablesE2. Then,

min
E1\E2

∑

R∈W1

(−1)|R|−|S1|Pv\r(v)

≥ −
∑

R∈W2

(−1)|R|−|S1|Pv\r(r). (54)

Let Q =
⋃

R∈W2
R. We obtain,

∑

Q

min
E1\E2

∑

R∈W1

(−1)|R|−|S1|Pv\r(v)

≥ −
∑

R∈W2

(−1)|R|−|S1|
∏

{i|Vi∈Q\R}

|Dm(Vi)|. (55)

Note that ifE1 \ E2 = ∅, then we do not needminE1\E2
.

To illustrate the procedure, suppose we want to get the in-
equality constraints on the two interventional distributions
Pw1w2xy(z) andPw1w2x(yz) and we are given a tried in-
terventional distributionPw1w2y(xz).

In Step 1, consider the loop in whichTi = {X,Y,Z}
and S1 = {∅}. The procedure first addse∅,{X} and
e∅,{Z}. When it addse∅,{X,Z}, it will remove e∅,{X} and
e∅,{Z} from IETi

and keepe∅,{X,Z} which turns out to be
Max(Sup(∅)). This repeats for everyS1 ⊆ Ti.

In Step 2, consider the loop whereTi = {X,Y,Z}
and S1 = {Y }. The procedure studieseS1,S′

1
for each

S′
1 ∈ {{Y }, {X,Y }, {Y,Z}, {X,Y,Z}}. For example,

for S′
1 = {X,Y,Z}, we have the inequality (39). From

(16), (17), (19) and (21), we obtain

max
w1,z

(

P (y|w1xw2)P (x|w1) + Pw2x(yz)

− P (z|w1xw2y)P (y|w1xw2)P (x|w1)
)

≤ Pw2x(y).

(56)

Summing both sides overY gives
∑

y

max
w1,z

(

P (y|w1xw2)P (x|w1) + Pw2x(yz)

− P (z|w1xw2y)P (y|w1xw2)P (x|w1)
)

≤ 1. (57)



4.1 Bounds on Causal Effects

Suppose that our goal is to bound a particular interventional
distribution. For this case,A in the procedureFindIneqs
consists of the particular interventional distribution that we
want to bound, the nonexperimental distributionP (v), and
all interventional distributions that are computable from
P (v).

For example, consider the graph in Figure 2. Sup-
pose that we want to bound the interventional distribu-
tion Pw1w2xy(z) and that the interventional distribution
Pw1w2y(xz) is available from experiments.FindIneqs will
list the following bounds forPw1w2xy(z) in Step 1.

1 − P (x|w1) − Pw1w2xy(z) + Pw1w2y(xz) ≥ 0 (58)

Pw1w2xy(z) − Pw1w2y(xz) ≥ 0 (59)

which provides a lower and upper bound forPw1w2xy(z)
respectively.

4.2 Inequality Constraints on Nonexperimental
Distribution

Now assume that we want to find inequality constraints on
nonexperimental distribution. For this case,A in the proce-
dureFindIneqs consists of the nonexperimental distribu-
tion P (v) and all interventional distributions that are com-
putable fromP (v).

The inequality constraints produced byFindIneqs in this
case include the instrumental inequality type of constraints.
Consider the graph in Figure 1. For the c-component
{X,Y }, FindIneqs will produce the inequality (35). From
(13) and (15), we have

max
z

P (xy|z) ≤ Px(y) (60)

and summing both sides overY gives

∑

y

max
z

P (xy|z) ≤ 1. (61)

Since this must hold for allX, we obtain the instrumental
inequality (1).

To illustrate more general instrumental inequality type of
constraints, consider the graph in Figure 2. ForS1 =
{Y,Z} andS′

1 = {X,Y,Z}, FindIneqs produces the in-
equality (43). From (16) and (19), we have

max
w1

P (z|w1xw2y)P (y|w1xw2)P (x|w1) ≤ Pw2x(yz).

(62)

Summing both sides overY andZ gives

∑

yz

max
w1

P (z|w1xw2y)P (y|w1xw2)P (x|w1) ≤ 1. (63)

5 Conclusion

We present a class of inequality constraints imposed by a
given causal BN with hidden variables on the set of inter-
ventional distributions that can be induced from the net-
work. We show a method to restrict these inequality con-
straints on to that only involving interventional distribu-
tions of interests. These inequality constraints can be used
as necessary test for a causal model to be compatible with
given observational and experimental data. Another appli-
cation permits us to bound the effects of untried interven-
tions from experiments involving auxiliary interventions
that are easier or cheaper to implement.

We derive a type of inequality constraints upon the nonex-
perimental distribution in a complexity of32m wherem is
the number of variables in the largest c-component. These
constraints are imposed by the network structure, regard-
less of the number of states of the (observed or hidden)
variables involved. These constraints can be used to test a
model or distinguish between models. How to test these
inequality constraints in practice and use them for model
selection would be interesting future research.
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Appendix : Proof of Lemma 6

We will show that if the inequalities in (50) hold, then for
anyn ≤ |V | we have

∀S1 ⊆ Ti,∀S′
1 ∈ Maxn(Sup(S1)),

∑

S2⊆S′

1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V ) (64)

whereMaxn(S) = Max(S \ {R|R ∈ S, |R| > n}). (51)
will follow from (64) if we let n be the size of the setS′

1 in
(51). Assuming (50), we prove (64) by induction onn.

Base:n = |V |. (64) is equivalent to (50).

Hypothesis: Assume that

∀S1 ⊆ Ti,∀S′
1 ∈ Maxn(Sup(S1)),

∑

S2⊆S′

1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V ).

(65)

Induction step: We show that

∀S1 ⊆ Ti,∀S′
1 ∈ Maxn−1(Sup(S1)),

∑

S2⊆S′

1\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V ).

(66)



If |S′
1| < n − 1, thenS′

1 is in Maxn(Sup(S1)). Thus,
(66) follows from (65). If|S′

1| = n − 1, then one of the
followings should hold.

Case 1:S′
1 is in Maxn(Sup(S1)).

Case 2: There exists a variableα such thatS′
1 ∪ {α} is in

Maxn(Sup(S1)).

In Case 1, (66) follows from (65). In Case 2, we have
∑

S2⊆(S′

1∪{α})\S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0,∀v ∈ Dm(V )

(67)
and

∑

S2⊆S′

1\S1

(−1)|S2|Pv\(s1∪{α}∪s2)(v) ≥ 0,∀v ∈ Dm(V ).

(68)
(68) follows from (65) since S′

1 ∪ {α} is in
Maxn(Sup(S1 ∪ {α})). Summing (67) and (68)
gives (66).�
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