
Causal Inference from Graphical Models�Ste�en L. LauritzenAalborg UniversityNovember 23, 1999AbstractThis article surveys modern developments within graphical modelsconcerned with using these as a basis for discussing and inferring aboutcausal relationships.It is in particular concerned with the calculus of intervention e�ectsand their identi�ability from observational or experimental studies.The article will appear as a chapter in: O.E. Barndor�-Nielsen, D.R. Cox and C. Kl�uppelberg (eds). Complex Stochastic Systems. Chap-man and Hall, London, 2000.Key words: G-computation, causal Markov property, counterfactu-als, identi�cation of treatment e�ects, inuence diagrams, instrumentalvariables, partial compliance, potential responses, structural equations.1 IntroductionThe introduction of Bayesian networks (Pearl 1986b) and associated lo-cal computation algorithms (Lauritzen and Spiegelhalter 1988; Shenoy andShafer 1990; Jensen et al. 1990) has initiated a renewed interest for under-standing causal concepts in connection with modelling complex stochasticsystems.It has become clear that graphical models, in particular those based upondirected acyclic graphs, have natural causal interpretations and thus form abase for a language in which causal concepts can be discussed and analysedin precise terms.As a consequence there has been an explosion of writings, not primarilywithin mainstream statistical literature, concerned with the exploitationof this language to clarify and extend causal concepts. Among these we�This is Research Report R-99-2021, Department of Mathematical Sciences, AalborgUniversity. 1



mention in particular books by Spirtes et al. (1993), Shafer (1996), andPearl (2000) as well as the collection of papers in Glymour and Cooper(1999).Very briey, but fundamentally, the important distinction to be madeis the distinction between two types of conditional probability. We refer tothese as conditioning by intervention and conditioning by observation andsuggest the notationp(x jj y) = P (X = x jY  y); p(x j y) = P (X = x jY = y)for these two notions. Much existing controversy and lack of clarity is dueto the misconception that these two are identical or even related in a simplefashion.In the following, we try to develop the basic ideas needed to make thisdistinction precise and discuss a number of classical statistical problemswhere the distinction is important.There are many important aspects of causality which are not even touchedupon here, as we are mainly concerned with one particular such aspect: theprediction of the e�ect of interventions in a given system. For other as-pects of causality associated with probabilistic systems we ask the reader toconsult the books mentioned above.The material is organized as follows. Section 2 introduces the necessarygraph-terminology. The next three sections are concerned with the verybasic elements of graphical models, conditional independence and Markovproperties for undirected and directed graphs.Section 6 introduces the notion of a causal Markov �eld and associ-ated intervention probabilities. The next sections are concerned with theexploitation of this idea in a number of important cases.We conclude by discussing structural equation models methods basedupon using counterfactual variables or potential responses, and �nally givea brief discussion of other issues which not treated per se here.While writing, I have in particular exploited Pearl (1995a) and Robins(1997).2 Graph terminologyThis section introduces some necessary graph terminology. We are basi-cally following the terminology used in Cowell et al. (1999) which is almostidentical to that in Lauritzen (1996).2



We de�ne a graph G to be a pair G = (V;E), where V is a �nite setof vertices, also called nodes, of G, and E is a subset of the set V � V ofordered pairs of vertices, called the edges or links of G. Thus, as E is a set,the graph G has no multiple edges. We further require that E consist ofpairs of distinct vertices, so that there are no loops.If both ordered pairs (�; �) and (�; �) belong to E, we say that we havean undirected edge between � and �, and write � � �; we also say that �and � are neighbours, � is a neighbour of �, or � is a neighbour of �. Theset of neighbours of a vertex � is denoted by ne(�).If (�; �) 2 E but (�; �) 62 E we call the edge directed, and write �! �.We also say that � is a parent of �, and that � is a child of �. The set ofparents of a vertex � is denoted by pa(�), and the set of children of a vertex� by ch(�). The family of �, denoted fa(�), is fa(�) = f�g [ pa(�).If (�; �) 2 E or (�; �) 2 E we say that � and � are joined. Then � 6� �indicates that � and � are not joined, i.e. both (�; �) 62 E and (�; �) 62 E.We also write � 6! � if (�; �) 62 E.If A � V , the expressions pa(A), ne(A) and ch(A) will denote the col-lection of parents, children and neighbours, respectively, of the elements ofA, but excluding any element in A:pa(A) = S�2A pa(�) n A;ne(A) = S�2A ne(�) nA;ch(A) = S�2A ch(�) n A:If all the edges of a graph are directed, we say that it is a directed graph.Conversely, if all the edges of a graph are undirected, we say that it is anundirected graph.The boundary bd(�) of a vertex � is the set of parents and neighboursof �; the boundary bd(A) of a subset A � V is the set of vertices in V n Athat are parents or neighbours to vertices in A, i.e. bd(A) = paA [ neA.The closure of A is cl(A) = A [ bd(A).The undirected version G� of a graph G is the undirected graph obtainedby replacing the directed edges of G by undirected edges.We call GA = (A;EA) a subgraph of G = (V;E) if A � V and EA �E \ (A � A). Thus it may contain the same vertex set but possibly feweredges. If in addition EA = E \ (A�A), we say that GA is the subgraph ofG induced by the vertex set A. 3



A graph is called complete if every pair of vertices are joined. We saythat a subset of vertices of G is complete if it induces a complete subgraph.A complete subgraph which is maximal (with respect to �) is called a clique.A path of length n from � to � is a sequence � = �0; : : : ; �n = �of distinct vertices such that (�i�1; �i) 2 E for all i = 1; : : : ; n. Thus apath can never cross itself and moving along a path never goes against thedirections of arrows.A cycle of length n is a path with the modi�cation that the �rst andlast vertex are identical �0 = �n. The cycle is directed if it contains at leastone arrow.A directed graph which contains no cycles is called a directed acyclicgraph, or DAG.A trail of length n from � to � is a sequence � = �0; : : : ; �n = � ofdistinct vertices such that �i�1 ! �i, or �i ! �i�1, or �i�1 � �i for alli = 1; : : : ; n. Thus, moving along a trail could go against the direction ofthe arrows, in contrast to the case of a path. In other words, a trail in G isa sequence of vertices that form a path in the undirected version G� of G.It is always possible to well order the nodes of a DAG, by a linearordering or numbering, such that if two nodes are connected the edge pointsfrom the lower to the higher of the two nodes with respect to the ordering.Given a directed acyclic graph, the set of its vertices � such that � 7! �but not � 7! � are the ancestors an(�) of � and the descendants de(�) of� are the vertices � such that � 7! � but not � 7! �. The nondescendantsnd(�) of � is the set V n (de(�)[�). If pa(�) � A for all � 2 A we say thatA is an ancestral set. The symbol An(A) denotes the smallest ancestral setcontaining A.A subset C � V is said to be an (�; �)-separator if all trails from � to� intersect C. The subset C is said to separate A from B if it is an (�; �)-separator for every � 2 A and � 2 B. An (�; �)-separator C is said to beminimal if no proper subset of C is itself an (�; �)-separator.For a directed acyclic graph D, we de�ne the moral graph of D to bethe undirected graph Dm obtained from D by �rst adding undirected edgesbetween all pairs of vertices which have common children and are not alreadyjoined, and then forming the undirected version of the resulting graph.
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3 Conditional independenceThroughout this text a central notion is that of conditional independence ofrandom variables and groups of these.We are concerned with the situation where we have a collection of ran-dom variables (X�)�2V taking values in probability spaces (X�)�2V . Theprobability spaces are either real �nite-dimensional vector spaces or �niteand discrete sets but could be quite general, just su�ciently well-behaved toensure the existence of conditional probabilities. For simplicity we mostlyconsider the discrete case.For A being a subset of V we let XA = ��2AX� and further X = XV .Typical elements of XA are denoted as xA = (x�)�2A. Similarly XA =(X�)�2A.Formally, if X;Y;Z are random variables with a joint distribution P , wesay that X is conditionally independent of Y given Z under P , and writeX ??Y jZ [P ], if, for any measurable set A in the sample space of X, thereexists a version of the conditional probability P (A j Y;Z) which is a functionof Z alone. Usually P will be �xed and omitted from the notation. If Z istrivial we say that X is independent of Y , and write X ??Y .When X, Y , and Z are discrete random variables the condition forX ??Y jZ simpli�es asP (X = x; Y = y jZ = z) = P (X = x jZ = z)P (Y = y jZ = z);where the equation holds for all z with P (Z = z) > 0. When the threevariables admit a joint density with respect to a product measure �, wehave X ??Y jZ () fXY jZ(x; y j z) = fX jZ(x j z)fY jZ(y j z); (1)where this equation is to hold almost surely with respect to P . The condition(1) can be rewritten asX ??Y jZ () fXY Z(x; y; z)fZ(z) = fXZ(x; z)fY Z(y; z) (2)and this equality must hold for all values of z when the densities are con-tinuous.The ternary relation X ??Y jZ has the following properties, where hdenotes an arbitrary measurable function on the sample space of X:(C1) if X ??Y jZ then Y ??X jZ;(C2) if X ??Y jZ and U = h(X), then U ??Y jZ;5



(C3) if X ??Y jZ and U = h(X), then X ??Y j (Z;U);(C4) if X ??Y jZ and X ??W j (Y;Z), then X ?? (W;Y ) jZ.Note that the converse to (C4) follows from (C2) and (C3).If we use f as generic symbol for the probability density of the randomvariables corresponding to its arguments, the following statements are true:X ??Y j Z () f(x; y; z) = f(x; z)f(y; z)=f(z) (3)X ??Y j Z () f(x j y; z) = f(x j z) (4)X ??Y j Z () f(x; z j y) = f(x j z)f(z j y) (5)X ??Y j Z () f(x; y; z) = h(x; z)k(y; z) for some h; k (6)X ??Y j Z () f(x; y; z) = f(x j z)f(y; z): (7)The equalities above hold apart from a set of triples (x; y; z) with probabilityzero.Another property of the conditional independence relation is often used:(C5) if X ??Y jZ and X ??Z jY then X ?? (Y;Z).However (C5) does not hold universally, but only under additional conditions| essentially that there be no non-trivial logical relationship between Y andZ. A trivial counterexample appears when X = Y = Z with PfX = 1g =PfX = 0g = 1=2: We have howeverProposition 1 If the joint density of all variables with respect to a productmeasure is strictly positive, then the statement (C5) will hold true.Proof We assume for simplicity that the variables are discrete with densityf(x; y; z) > 0 and that X ??Y j Z as well as X ??Z j Y . Then (6) gives forall values of (x; y; z) thatf(x; y; z) = k(x; z)l(y; z) = g(x; y)h(y; z)for suitable strictly positive functions g; h; k; l. Thus we have for all z thatg(x; y) = k(x; z)l(y; z)h(y; z) :Choosing a �xed z = z0 we get g(x; y) = �(x)�(y) where �(x) = k(x; z0)and �(y) = l(y; z0)=h(y; z0). Thus f(x; y; z) = �(x)�(y)h(y; z) and henceX ?? (Y;Z) as desired. 26



In most cases we are speci�cally interested in conditional independenceamong groups of random variables such as for example XA = (X�; � 2 A),where A is a subset of V . We then use the short notationA??B j Cfor XA??XB j XCand so on. We then get the following properties as a consequence of (C1){(C4):(C1') if A??B jC then B??A jC;(C2') if A??B jC and D � B, then A??D jC;(C3') if A??B jC and D � B, then A??B jC [D;(C4') if A??B jC and A??D jB [ C, then A??B [D jC.And similarly the analogue of (C5) is that for disjoint subsets A, B, C, andD, we have(C5') if A??B jC [D and A??C jB [D then A??B [ C jDalthough (C5') does not hold universally, but only under speci�c extra as-sumptions. It holds for example under the assumption that the joint densityof the random variables involved is strictly positive.It is illuminating to think of the properties (C1){(C5) or in particulartheir analogues (C1'){(C5') as purely formal expressions, with a meaningthat is not necessarily tied to probability. If we interpret the symbols used forrandom variables as abstract symbols for pieces of knowledge obtained from,say, reading books, and further interpret the symbolic expression X ??Y jZas: Knowing Z, reading Y is irrelevant for reading X,the properties (C1){(C4) translate to the following:(I1) if, knowing Z, reading Y is irrelevant for reading X, then so is readingX for reading Y ;(I2) if, knowing Z, reading Y is irrelevant for reading the book X, thenreading Y is irrelevant for reading any chapter U of X;7



(I3) if, knowing Z, reading Y is irrelevant for reading the bookX, it remainsirrelevant after having read any chapter U of X;(I4) if, knowing Z, reading the book Y is irrelevant for reading X and evenafter having also read Y , reading W is irrelevant for reading X, thenreading of both Y and W is irrelevant for reading X.Thus one can view the relations (C1){(C4) as pure formal properties ofthe notion of irrelevance. The property (C5) is slightly more subtle. In acertain sense, also the symmetry (C1) is a somewhat special property ofprobabilistic conditional independence, rather than general irrelevance.It is thus tempting to use the relations (C1){(C4) as formal axioms forconditional independence or irrelevance. A semi-graphoid is an algebraicstructure which satis�es (C1'){(C4'). If also (C5') holds for disjoint subsets,it is called a graphoid (Pearl 1988). Similarly we refer to (C1'){(C4') as thesemi-graphoid axioms and (C1'){(C5') as the graphoid axioms.4 Markov properties for undirected graphsConditional independence properties of joint distributions of collections ofrandom variables can be compactly described and expressed as so-calledMarkov properties for various graphs. In this section we consider the casewhen the graph is undirected. We refer to Lauritzen (1996) or Cowell et al.(1999) for proofs of all assertions that are not proved here.Associated with an undirected graph G = (V;E) and a collection ofrandom variables (X�)�2V as above there is a range of di�erent Markovproperties. A probability distribution P on X is said to obey(P) the pairwise Markov property , relative to G, if for any pair (�; �) ofnon-adjacent vertices �??� jV n f�; �g;(L) the local Markov property , relative to G, if for any vertex � 2 V�??V n cl(�) j bd(�);(G) the global Markov property , relative to G, if for any triple (A;B; S) ofdisjoint subsets of V such that S separates A from B in GA??B jS:8



As conditional independence is intimately related to factorization, so arethe Markov properties. A probability measure P on X is said to factorizeaccording to G if for all complete subsets a � V there exist non-negativefunctions  a that depend on x through xa only, and there exists a productmeasure � = 
�2V �� on X , such that P has density f with respect to �where f has the form f(x) = Ya complete a(x): (8)The functions  a are not uniquely determined. There is arbitrariness in thechoice of �, but also groups of functions  a can be multiplied together orsplit up in di�erent ways. In fact one can without loss of generality assume| although this is not always practical | that only cliques appear as thesets a, i.e. that f(x) = Yc2C  c(x); (9)where C is the set of cliques of G. If P factorizes, we say that P has property(F). The di�erent Markov properties are related as followsProposition 2 For any undirected graph G and any probability distributionon X it holds that (F) =) (G) =) (L) =) (P):Proof See Lauritzen (1996). 2For a given graph G and state space X = ��2V X� we denote the set ofdistributions that satisfy the di�erent Markov properties asMF (G), MG(G),ML(G), and MP (G). Proposition 2 can now be equivalently formulated asMF (G) �MG(G) �ML(G) �MP (G):The Markov properties are genuinely di�erent in general, but in the casewhere P has a positive density it is possible to show that (P) implies (F),and thus that all Markov properties are equivalent. This result has beendiscovered in various forms by a number of authors (Speed 1979) but isusually attributed to Hammersley and Cli�ord (1971). More precisely, wehaveTheorem 1 (Hammersley and Cli�ord) A probability distribution P withdensity f with respect to a product measure � satis�es the pairwise Markov9



property with respect to an undirected graph G if and only if it factorizesaccording to G.Proof See Lauritzen (1996). 2In fact, if (C5') holds, the global, local, and pairwise Markov propertiescoincide. This fact is stated in the theorem below, due to Pearl and Paz(1987); see also Pearl (1988).Theorem 2 (Pearl and Paz) If a probability distribution on X is suchthat (C5') holds for disjoint subsets A;B;C;D then(G) () (L) () (P):Proof See Lauritzen (1996). 2The global Markov property (G) is important because it gives a generalcriterion for deciding when two groups of variables A and B are conditionallyindependent given a third group of variables S. Moreover, it cannot befurther strengthened. For example it holds (Frydenberg 1990b) that if allstate spaces are binary, i.e. X� = f1;�1g, thenA??B j S for all P 2MF (G) () S separates A from B:In other words, if A and B are not separated by S then there is a factorizingdistribution that makes them conditionally dependent.5 The directed Markov propertyWe consider the same set-up as in the previous section, except that now thegraph D is assumed to be directed and acyclic.We say that a probability distribution P admits a recursive factorizationaccording to D, if there exist (�-�nite) measures �� over X and non-negativefunctions k�(�; �); � 2 V , henceforth referred to as kernels, de�ned on X� �Xpa(�) such that Z k�(y�; xpa(�))��(dy�) = 1and P has density f with respect to the product measure � = 
�2V �� givenby f(x) = Y�2V k�(x�; xpa(�)):10



We then also say that P has property (DF). It is easy to show that, if Padmits a recursive factorization as above, then the kernels k�(�; xpa(�)) arein fact densities for the conditional distribution of X�, given Xpa(�) = xpa(�)and thus f(x) = Y�2V f(x� jxpa(�)): (10)We refer to these kernels as the conditional speci�cations for P . It is imme-diate that if we form the (undirected) moral graph Dm (see Section 2) wehave the following:Lemma 1 If P admits a recursive factorization according to the directedacyclic graph D, it factorizes according to the moral graph Dm and thereforeobeys the global Markov property relative to Dm.Proof The factorization follows from the fact that, by construction, the setsf�g [ pa(�) are complete in Dm and we can therefore let  f�g[pa(�) = k�.2This simple lemma has very useful consequences and we shall see severalexamples of this in the sequel. Also, using the local Markov property on themoral graph Dm we �nd that�??V n � j bl(�);where bl(�) is the so-called Markov blanket of �. The Markov blanket isthe set of neighbours of � in the moral graph Dm. It can be found directlyfrom the original DAG D as the set of �'s parents, children, and children'sparents: bl(�) = pa(�) [ ch(�) [ f� : ch(�) \ ch(�) 6= ;g: (11)In particular it follows that the so-called full conditionals satisfyL(X� jXV n�) = L(X� jXbl(�))with density given asL(X� jXV n�) = f(x� jxpa(�)) Y�2ch(�) f(x� jxpa(�)):The following result is easily shown:Proposition 3 If P admits a recursive factorization according to the di-rected acyclic graph D and A is an ancestral set, then the marginal distri-bution PA admits a recursive factorization according to DA.11
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Figure 1: The directed, global Markov property. Is a?? b jS? In the moralgraph of the smallest ancestral set in the graph containing fag [ fbg [ S,clearly S separates a from b, implying a?? b jS.In combination with Lemma 1 this yields:Corollary 1 Let P factorize recursively according to D. ThenA??B jSwhenever A and B are separated by S in (DAn(A[B[S))m, the moral graphof the smallest ancestral set containing A [B [ S.Following Lauritzen et al. (1990), the property in Corollary 1 will bereferred to as the directed global Markov property (DG) and a distributionsatisfying it is a directed Markov �eld over D.One can show that the global directed Markov property has the samerôle as the global Markov property does in the case of an undirected graph,in the sense that it gives the sharpest possible rule for reading conditionalindependence relations o� the directed graph. The procedure is illustratedin the following example:Example 1 Consider a directed Markov �eld on the �rst graph in Fig. 1and the problem of deciding whether a?? b jS. The moral graph of thesmallest ancestral set containing all the variables involved is shown in thesecond graph of Fig. 1. It is immediate that S separates a from b in thismoral graph, implying a?? b jS. 2An alternative formulation of the global, directed Markov property wasgiven by Pearl (1986a) with a formal treatment in Verma and Pearl (1990).12



Recall that a trail in D is a sequence of vertices that forms a path in theundirected version D� of D, i.e. when the directions of arrows are ignored.A trail � from a to b in a directed, acyclic graph D is said to be blocked byS if it contains a vertex  2 � such that either 2 S and arrows of � do not meet head-to-head at , or and all its descendants are not in S, and arrows of � meet head-to-headat .A trail that is not blocked by S is said to be active. Two subsets A and Bare said to be d-separated by S if all trails from A to B are blocked by S.We then have the following result:Proposition 4 Let A, B and S be disjoint subsets of a directed, acyclicgraph D. Then S d-separates A from B if and only if S separates A fromB in (DAn(A[B[S))m.Proof See Lauritzen (1996). 2The global directed Markov property can thus be formulated by requiringthat A??B jS whenever S d-separates A from B thereby making the anal-ogy with the undirected case clearer. It depends on the speci�c contextand purpose whether the pathwise criterion, or the criterion used in thede�nition of the global directed Markov property is easiest to use.We illustrate the concept of d-separation by applying it to the query ofExample 1. As Fig. 2 indicates, all trails between a and b are blocked by S,whereby the global Markov property gives that a?? b jS.For further use, we shall use the symbolic expression A?D B jS to denotethat A and B are d-separated by S or, equivalently, A and B are separatedby S in (DAn(A[B[S))m. It was shown in Verma and Pearl (1990) thatLemma 2 For any �xed directed acyclic graph D, the relation ?D satis�esthe graphoid axioms.Geiger and Pearl (1990) show that the criterion of d-separation cannotbe improved, in the sense that, for any given directed acyclic graph D, onecan �nd state spaces X�; � 2 V and a probability distribution P such thatA??B jS () A?D B jS: (12)This result was streghtened by Meek (1995), who showed that if the statespaces were �nite and had cardinality at least two, the set of probability13
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Figure 2: Illustration of Pearl's d-separation criterion. There are two trailsfrom a to b, drawn with thick lines. Both are blocked, but di�erent vertices, indicated with open circles, play the rôle of blocking vertices.distributions P not satisfying (12) had Lebesgue measure zero in the set ofall directed Markov probability measures.To complete this section we say that P obeys the local directed Markovproperty (DL) if any variable is conditionally independent of its non-desc-endants, given its parents: �?? nd(�) j pa(�):A seemingly weaker requirement, the ordered directed Markov property(DO), replaces all non-descendants of � in the above condition by the pre-decessors pr(�) of � in some given well-ordering of the nodes:�?? pr(�) j pa(�):In contrast with the undirected case we have that all the four properties(DF), (DL), (DG) and (DO) are equivalent just assuming existence of thedensity f . This is stated formally as:Theorem 3 Let D be a directed acyclic graph. For a probability distributionP on X which has density with respect to a product measure �, the followingconditions are equivalent:(DF) P admits a recursive factorization according to D;(DG) P obeys the global directed Markov property, relative to D;(DL) P obeys the local directed Markov property, relative to D;(DO) P obeys the ordered directed Markov property, relative to D:Proof That (DF) implies (DG) is Corollary 1. That (DG) implies (DL)follows by observing that f�g [ nd(�) is an ancestral set and that pa(�)14



obviously separates f�g from nd(�) n pa(�) in (Df�g[nd(�))m. It is trivialthat (DL) implies (DO), since pr(�) � nd(�). The �nal implication isshown by induction on the number of vertices jV j of D. Let �0 be thelast vertex of D. Then we can let k�0 be the conditional density of X�0 ,given XV nf�0g, which by (DO) can be chosen to depend on xpa(�0) only.The marginal distribution of XV nf�0g trivially obeys the ordered directedMarkov property and admits a factorization by the inductive assumption.Combining this factorization with k�0 yields the factorization for P . Thiscompletes the proof. 2Since the four conditions in Theorem 3 are equivalent, it makes senseto speak of a directed Markov �eld as one where any of the conditions issatis�ed. The set of such distributions for a directed acyclic graph D isdenoted by M(D).In the particular case when the directed acyclic graph D is perfect, i.e.all parents are married, the directed Markov property on D and the factor-ization property on its undirected version D� coincide.Proposition 5 Let D be a perfect directed acyclic graph and D� its undi-rected version. Then P is directed Markov with respect to D if and only ifit factorizes according to D�.Proof See Lauritzen (1996). 26 Causal Markov modelsFor simplicity we assume here and in the following that all random variablesare discrete and have �nite state spaces unless we speci�cally indicate oth-erwise. To emphasize the discreteness we use little p as a generic symbol fora probability mass function rather than f for a general density.6.1 Conditioning by observation or interventionThe �rst important issue is to distinguish between di�erent types of condi-tioning operations, each of which modify a given probability distribution inresponse to information obtained. Conditional probabilities are sometimesde�ned and calculated asp(y jx) = P (Y = y jX = x) = P (Y = y;X = x)P (X = x) :15



We refer to this type of conditioning as conditioning by observation or con-ventional conditioning. In many cases this represents the way in which aprobability distribution, P (Y = y), should be modi�ed when the informationX = x is revealed. Paradoxes appear when it is unclear how the informationabout X is revealed (Shafer 1985, 1996), but that is a di�erent discussion.When discussing causal issues it is important to realize that this is typ-ically not the way the distribution of Y should be modi�ed if we interveneexternally and force the value of X to be equal to x. We refer to this type ofmodi�cation as conditioning by intervention or conditioning by action. Tomake the distinction clear we use di�erent symbols for this conditioning, asindicated below p(y jjx) = P (Y = y jX  x):Generally, the two quantities will be di�erentp(y jjx) 6= p(y jx)and the quantity on the left-hand side cannot be calculated from the proba-bility measure P alone, without additional assumptions. To judge whetherthese assumptions are reasonable in any given context one needs a speci�ca-tion of the precise way in which the intervention is made, just as conventionalconditioning needs a speci�cation about how the information is revealed.In a moment we will give a precise meaning to a directed acyclic graphbeing causal. This will imply that in the graph below to the leftX Y X Yt t t t- �we will have that p(y jjx) = p(y jx) and p(x jj y) = p(x), whereas theserelations are reversed in the graph to the right, i.e. there it holds thatp(y jjx) = p(y) and p(x jj y) = p(x j y).6.2 Causal graphsWe de�ne a directed acyclic graph D to be causal for a probability distri-bution P with respect to a subset B � V , if P is Markov with respect to D,i.e. p(x) = Y�2V p(x� jxpa(�))
16



and it further holds for any A � B thatp(x jjx�A) = Y�2V nA p(x� jxpa(�))������xA=x�A= p(x)Q�2A p(x�� jxpa(�)) �����xA=x�A : (13)If B = V we simply say that D is causal or fully causal for P . We also usethe expression that P is a causal directed Markov �eld with respect to D orsay that P is causally Markov with respect to D.We will refer to (13) as the intervention formula. It appeared in variousforms in Pearl (1993) and Spirtes et al. (1993). It is implicit in Robins (1986)and in other literature.There are many ways in which this causal interpretation of a directedMarkov model can be justi�ed. But it is also important to realize that thereare may other ways in which one can associate causal relationships with di-rected acyclic graphs. This is in particular apparent in the highly interestingbook of Shafer (1996) who develops a language for causal interpretation ofprobabilities through event trees. This leads to events being more naturalas direct causes than variables and a variety of causal relationships betweenvariables can then be derived as consequences of the formalism.In a more general setting one would be interested in allowing more gen-eral types of interventions than those described. For example, one couldwant to control the value of a variable in a way that depends on previouslyobserved variables. But for simplicity we only consider the case of simpleinterventions.One should contrast the intervention formula (13) with conventional con-ditioning using Bayes' formula:p(x jx�A) = p(x)p(x�A) �����xA=x�A = p(x)Py:yA=x�A p(y) �����xA=x�A ; (14)which di�ers from the intervention formula in the denominator, where theproduct of conditional speci�cations is replaced by the marginal probabilityp(x�A). This implies in particular that if intervention takes place on a singlevariable without parents, observation and intervention have identical e�ects:Corollary 2 If � 2 V has no parents, i.e. pa(�) = ;, then it holds thatp(x jjx��) = p(x jx��). 17
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Figure 3: Illustration of causal directed acyclic graph.We illustrate the similarities and di�erences by intervening on variable 5 inFigure 3. If this graph is causal, we have that the intervention X5  x�5produces the distributionp(x jjx�5) = p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x6 jx3; x�5)p(x7 jx4; x�5)whereas the observation X5 = x�5 leads top(x jx�5) /p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x�5 jx2; x3)p(x6 jx3; x�5)p(x7 jx4; x�5):(15)The modi�ed distribution P (� jXA  x�A) is again a directed causal Markov�eld over the subgraph DV nA induced by the remaining variables. Thecorresponding conditional speci�cations are just modi�ed such thatp(x� jxpaV nA(�) jjx�A) = p(x� jxpa(�)nA; x�pa(�)\A):Expressed in words, the causal assumption is that the conditional speci�ca-tions are unchanged for variables which are not used for intervention. In theexample above, where we have intervened on variable 5, the speci�cationsthat change are those that refer to children of the variable, i.e. variables 6and 7, where we getp(x6 jx3 jjx�5) = p(x6 jx3; x�5); p(x7 jx4; x6 jjx�5) = p(x7 jx4; x�5; x6):The corresponding subgraph is displayed as the left graph in Fig. 4. Thisis again to be contrasted with the e�ect of observation of variable 5, whichcreates a dependence structure determined by the chain graph (Lauritzen1996) to the right in the same �gure. This is due to the factor p(x�5 jx2; x3)creating a function depending on (x2; x3) in the factorization (15).It is important to realize that successive conditioning operations of thesame type commute whereas intervention and observation in general cannot18
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Figure 4: The intervention X5  x�5 in Fig. 3 produces a causal directedMarkov �eld with respect to the graph on the left. The observation X5 = x�5produces a distribution which satis�es the chain graph Markov property withrespect to the graph to the right.be interchanged. We therefore adopt the convention that all operations areperformed from the right to the left. Thusp(x jj y j z) = P (X = x jY  y; Z = z)denotes the modi�ed probability obtained by �rst observing Z = z andsubsequently intervening as Y  y, whereasp(x j z jj y) = P (X = x jZ = z; Y  y)reects that the intervention is performed before the observation. Generally,for the model to have an unambiguous meaning, intervention at a node �must always be made before any variables corresponding to its descendantnodes have been observed.7 Assessment of treatment e�ects in sequentialtrialsThe following example is adapted from Robins (1997) and is the simplestexample where traditional approaches to assessment of treatment e�ects giveincorrect results, whereas the methods described here coincide with thosedeveloped by Robins (1986), known as G-computation, and give the correctanswer.Consider a study made in a population of AIDS patients. Let us imag-ine the population being so large that sampling error can be ignored forpractical purposes. The study involves 4 binary variables. In our notation,a is the label for an initial, randomized treatment, where Xa = 1 denotesthat the patient has been treated with AZT, and Xa = 0 indicates placebo.After a given period it is for each patient observed whether the patient de-velops pneumonia, corresponding to the variable l, where Xl = 1 indicates19



a l brt - t -t @@@I����6 tFigure 5: Graph displaying causal relationships between variables in a par-ticular sequential trial. The graph is only assumed causal with respect tointerventions at fa; bg. The missing arrow from a to b reects that b isassigned by randomization.that this is the case. We assume that all patients survive up to this point.Subsequently a secondary treatment with antibiotics is contemplated, cor-responding to the variable b. For ethical reasons, all patients who have de-veloped pneumonia are treated with antibiotics, i.e. P (Xb = 1 jXl = 1) = 1,whereas the treatment is randomized for the patients with Xl = 0. Finally,after a given period it is registered whether a given patient has survived upto that time, corresponding to the variable s, where Xs = 1 denotes thatthe patient has survived.The question is now to assess the e�ect on survival of a combined treat-ment with AZT and antibiotics of a new patient. In other words, we wishto calculate P (Xs = 1 jXa  1;Xb  1) = p(1s jj 1a; 1b):This is done in the following way. The relevant graph is displayed inFigure 5, where missing arrows reect the randomized allocation of treat-ments. This graph is not fully causal as there may be unobserved variables(confounders) that simultaneously a�ect l and r. It is only assumed causalwith respect to interventions at fa; bg.Note that not all e�ects are estimable as there are no observations withXl = 1 and Xb = 0. For example, the e�ect of treating with AZT onlycannot be assessed. We �ndp(1s jj 1a; 1b) = Xxl p(1s; xl jj 1a; 1b)= Xxl p(1s jxl jj 1a; 1b)p(xl jj 1a; 1b)= Xxl p(1s jxl; 1a; 1b)p(xl j 1a):20



As pointed out by Robins, conventional wisdom gives ambiguous or in-correct answers: The variable l is a confounder for the e�ect of the treatmenton survival and one should therefore not adjust for it but simply use the es-timate of the conditional probabilityp(1s jj 1a; 1b) � p̂(1s j 1a; 1b):On the other hand, the covariate l is also a�ected by the treatment andtherefore an intermediate variable. Thus adjustment for l is needed and oneshould rather usep(1s jj 1a; 1b) �Xxl p̂(1s jxl; 1a; 1b)p̂(xl j 1a; 1b):Both answers disagree with the correct calculation as given above.The calculation is a special case of more general situations described byRobins, where randomized treatment allocations and intermediate responsesalternate as t1; r1; t2; r2; : : : ; tk; rk and where, for example, the e�ect of acombined treatment, �xing t1; : : : ; tk, on the �nal response rk is desired.This is then found by G-computation, involving two steps:1. modifying the joint distribution of all variables (corresponding to acomplete DAG in many cases) by the intervention formula (13);2. calculating the marginal distribution of Xrk by a recursive forwardcomputation, possibly using Monte Carlo methods.We refrain here from describing the more general situation where the sug-gested treatment regime is allowed to depend on previous treatments andrecordings, but emphasize that this does not create essentially new problems.8 Identi�ability of causal e�ectsThis section will be concerned with the problem of identifying the e�ects ofinterventions from partial observation of a causal system, expressed in theform of a causal directed Markov �eld. It is largely based on ideas in Pearl(1993) and Pearl (1995a).8.1 The general problemConsider as usual a �nite set of variables V , one of which is labelled tand designated the treatment variable, and another group of variables are21



considered to be the response, labelled R. We also assume that there is adirected acyclic graph D such that the joint distribution of all the variablesV is causally Markov with respect to D.The object of interest is the causal e�ect of t on the group of responsevariables R, represented by the intervention distributionP (XR = xR jXt  x�t ) = p(xR jjx�t ):The remaining variables are partitioned into C � V and U � V , where Cis a set of observed covariates whereas the variables in U are to remain un-observed. In principle one could discuss multiple treatments and responses,but this will not be done here.Thus from an experimental or observational study we obtain informationabout the joint distribution of the observed variables, t, R and C. Ignoringsampling error, can the causal e�ect of t on R be determined from thisinformation? Or, phrased in another way, which variables C are needed inorder to determine this e�ect? If the causal e�ect can be determined fromthe observed distribution, then how can it be calculated, i.e. is there ananalogue of the G-computation that gives the correct answer? If the causale�ects cannot be precisely determined, can can we at least give inequalitiesthat these numbers must satisfy?To make the discussion precise, we say that C identi�es the causal e�ectof t on R if for any pair P1; P2 of distributions that are causally Markovwith respect to D it holds thatp1(xt; xC ; xR) � p2(xt; xC ; xR) =) p1(xR jjxt) � p2(xR jjxt):The most basic question above can now be phrased as determiningwhether a given set covariates C identi�es the causal e�ect of t on r. Clearly,if C 0 � C and C identi�es the e�ect of t on r, so does C 0, so we are interestedin minimal sets of identifying covariates.Generally C will not identify causal e�ects unless the conditional distri-butions are identi�ed by the joint distribution. Thus, throughout this sectionwe will assume thatp(xt; xC) > 0 for all combinations of xt and xC , (16)unless we explicitely state otherwise.
22



8.2 Intervention graphsWhen the e�ect of potential intervention are to be discussed, it is convenientto represent these explicitly in the associated graph of the model considered.As also done in Pearl (1993) and Spirtes et al. (1993), this is done throughan intervention graph D0, which is formed by augmenting each node rep-resenting a variable where intervention is contemplated, with an additionalparent.We denote this additional parent of a vertex � by �0. The correspondingrandom variable X�0 is, when no ambiguity results, just denoted by F�. Thevariable F� has state space X�[f�g and the conditional distributions of X�given its parents in the intervention graph are given byp0(x� jxpa(�); f�) = ( p(x� jxpa(�)) if f� = ��x�;x�� if f� = x��, (17)where �xy is Kronecker's symbol�xy = ( 1 if x = y0 otherwise.A more general setup would let f� vary in the set of all (randomized)decision policies, but here we only consider the simpler case.This approach to the representation of causal e�ects is related to so-calledinuence diagrams (Howard and Matheson 1984; Shachter 1986; Smith 1989;Oliver and Smith 1990) and taking this connection to its consequence givesyet an alternative basis for causal interpretation of graphical models (Heck-erman and Shachter 1995).Each of the variables F�; � 2 A, where A is the set of variables for whichintervention is contemplated, can be given an arbitrary distribution withpositive probability of all states. We then clearly havep(x) = p0(x jF� = �; � 2 A);but it also holds for any any subset B � A thatp(x jjx�B) = P (X = x jXB  x�B) = P 0(x jF� = x��; � 2 B); (18)since it follows from Corollary 2 thatP 0(X = x jF�  x��; � 2 B) = P 0(X = x jF� = x��; � 2 B)because the variables �0 do not have parents. The importance of this relationis that it gives a simple connection between intervention conditioning in theoriginal graph and ordinary conditioning in the intervention graph.23



8.3 Three inference rulesThe operations needed to �nd groups of identifying covariates typically in-volve a sequence of operations that gradually transform expressions involv-ing intervention probabilities to expressions involving ordinary conditionalprobabilities, the latter being in principle accessible by empirical observa-tion.We are considering the simple case, where intervention at a node t iscontemplated, its e�ect on a group of variables R is studied, in a contextwhere XA is observed to be xA. We let ?D0 denote d-separation in theintervention graph D0 obtained by augmenting D with an intervention vari-able t0 as an additional parent of t, and possibly other intervention variables,if also other interventions are contemplated, as described above. We thenhave the following three inference rules:Neutral observation of Xt:R?D0 t jA =) p(xr jxA; xt) = p(xR jxA) (19)Neutral intervention at t:R?D0 t0 jA =) p(xr jxA jjxt) = p(xR jxA) (20)Equivalence of observation and intervention at t:R?D0 t0 j fA; tg =) p(xR jxA jjxt) = p(xR jxA; xt): (21)Each of these can be derived from the directed Markov property of P andP 0 combined with the fact that intervention probabilites can be obtained byappropriate observation conditioning in the intervention graph.For example, to derive (19) we observe that R?D0 t jA impliesR?D t jA.This holds because all trails from t to R in D are also trails in D0 and if oneis blocked by A in D0, it is also blocked by A in D. Therefore the globaldirected Markov property for D entails thatR?D0 t jA =) R?? t jA;whereby (19) follows.The relations (20) and (21) follow directly from the fact that interventionconditioning at t in D is equivalent to observation conditioning at t0 in D0.These rules are also direct consequences of Theorem 7.1 of Spirtes et al.(1993). 24



Although Pearl (1995a) formulates these inference rules somewhat dif-ferently, he conjectures that the three inference rules are complete, in thesense that a set of covariates is identifying for the e�ect of t on R if andonly if all terms involving intervention conditioning in the expression for theintervention distribution can be changed to terms involving observationalconditioning by successive application of these three rules. We shall see ex-amples of this in the next subsection, where a number of classical conceptsfrom epidemiology will be illustrated.8.4 The back-door formulaeOne of the classic conditions for a set of covariates to be identifying is cap-tured in the theorem below, known as the back-door theorem and formula.As earlier we contemplate the e�ect of t on a group of variables R andplan to observe these together with a set of covariates C, whereas the re-maining variables in the system remain unobserved. Also as above D denotesthe intervention graph obtained from D by augmenting with an interventionvariable t0 as an additional parent of t and ?D0 denotes d-separation in D0.We then have the following theorem, which can also be derived directlyfrom Theorem 7.1 of Spirtes et al. (1993):Theorem 4 (Back-door) Assume C � C0, where C0 satis�es(BD1) The covariates in C0 are una�ected by an intervention: C0?D0 t0;(BD2) An intervention only a�ects the response through the treatment itself,as modi�ed by the observed covariates: R?D0 t0 jC0 [ ftg.Then C identi�es the e�ect of the treatment t on R asp(xR jjx�t ) =XxC0 p(xR jxC0 ; x�t )p(xC0): (22)Proof The proof is a simple application of the inference rules. If wepartition according to XC0 and then apply �rst (21) for A = C0 and then(20) for R = C0 and A = ;, we getp(xR jjx�t ) = XxC0 p(xR jxC0 jjx�t )p(xC0 jjx�t )= XxC0 p(xR jxC0 ; x�t )p(xC0 jjx�t )= XxC0 p(xR jxC0 ; x�t )p(xC0):25



2Condition (BD1) might as well have been formulated by demanding thatnone of the covariates in C0 are descendants of t. This is a condition whichcan then be checked in D rather than D0.Note that the positivity assumption (16) is important for the joint dis-tribution to identify p(xR jxC0 ; x�t ) for all combinations of its arguments.In the formulation given, the name `back-door theorem' is not obvious.The lemma below clari�es the reason for the name. A back-door trail fromt to R in D is a trail from t to R that does not involve an arrow emanatingfrom t, i.e. leaves t through the `back door'. Similarly, we let a front-doortrail from t to R be a trail that begins with an arrow emanating from t.Lemma 3 If no covariates in C0 are descendants of t, r?D0 t0 jC0 [ ftg ifand only if all back-door trails from t to R are blocked by C0 in D.Proof Assume r?D0 t0 jC0 [ftg. Each trail from t0 to R in D0 correspondsuniquely to a trail from t to R in D. Since the descendants of t are identicalin D and D� and none of these are in C0, t is blocking all trails from t0 toR in D that correspond to front-door trails and it is not blocking any trailscorresponding to back-door trails. Consequently, these are be blocked byC0 [ t in D0 if and only if they are blocked by C0 in D. 2The condition in Lemma 3 is also phrased in terms of the original graph Drather than the intervention graph.James Robins (personal communication) gives the following heuristicargument for the criterion: The treatment e�ect can be identi�ed if, condi-tionally on C0, there is no association beyond causation. Removing arrowsout of t eliminates causation. One must thus demand that no conditionalassociation remains after these arrows have been removed.The formula (22) is the classical formula which adjusts for covariatesthat are not a�ected by the treatment.Theorem 4 has a slightly more general version, extended by a recursiveargument.Theorem 5 (Extended back-door) Assume C � C0, where C0 satis�es(EBD1) The e�ect of the treatment t on the covariates in C0 is identi�edby C; 26



t0 t rut - t -t@@@R? t t0 t rut��� t tt@@@Figure 6: Intervention graph and associated moral graph for experimentwith an unobserved confounder. There is a path in the moral graph from t0to r circumventing t so the back-door criterion is violated and the e�ect oft on r cannot be identi�ed from observations of t and r.(BD2) An intervention only a�ects the response through the treatment itself,modi�ed by the observed covariates: R?D0 t0 jC0 [ ftg.Then C identi�es the e�ect of the treatment t on R asp(xR jjx�t ) =XxC0 p(xR jxC0 ; x�t )p(xC0 jjx�t ): (23)Proof This is shown exactly as for Theorem 4, just omitting the last stepin the calculation. 28.4.1 ConfoundingThe �rst situation to be considered in the light of the back-door theoremis the classical case of a confounder, which in the current context is de�nedto be an unobserved quantity that simultaneosly a�ects the treatment andthe response. Thus, in a causal graph, a confounder is a common ancestorto the treatment and response. The literature in epidemiology contain awealth of more or less precise de�nitions of the term.This situation is illustrated in Figure 6, displaying the correspondingintervention graph and its associated moral graph. The conditional distri-bution of Xr after intervention at t cannot be determined from the jointdistribution of (Xt;Xr).8.4.2 RandomizationThe next example illustrates how randomization overcomes the identi�cationproblem caused by the confounder. Instead of just observing (Xt;Xr), thetreatment Xt is now allocated by a known random mechanism, possibly27



t0 t rc ut - t -t@@@R-? t?t t0 t rc ut��� t��� tt@@@ tFigure 7: Intervention graph and associated moral graph for experimentwith randomized treatment allocation. The moral graph reveals thatr?D0 t0 j fc; tg so the back-door criterion is satis�ed and the treatment e�ectcan be assessed.depending on an observed covariate Xc, leading to the diagram described inFigure 7. The randomization ensures that there is no arrow pointing fromu to t, i.e. the treatment Xt is conditionally independent of Xu given thecovariates Xc. To see that (BD1) of Theorem 4 is satis�ed, we form theancestral set in D0 generated by fc; t0g. This is equal to fc; t0; ug and theassociated moral graph has only one edge between c and u. Thus c?D0 t0.The ancestral set generated by fc; t; t0; rg is equal to the full set of variables,and the associated moral graph is also displayed in Figure 7. Clearly r isseparated from t0 by fc; tg in this graph, so (BD2) is satis�ed. Note thatif u had been allowed to have an inuence on the treatment allocation, thecorresponding arrow from u to t in the graph to the left would have inducedan edge in the moral graph between t0 and u, who were common parents oft, thus violating (BD2) and confounding the relation between t and r.8.4.3 Su�cient covariateThe next situation to be considered is an observational study where we haveno control over the treatment allocation mechanism, but we are able to �nd asu�cient (set of) covariate(s), i.e. a set of covariates which is so informativeabout the response mechanism that the response is conditionally indepen-dent of the unobserved variable given the treatment and the covariates. Thecorresponding intervention graph and associated moral graph is displayedin Figure 8.The ancestral set generated by c and t0 is equal to fc; t0; ug and the asso-ciated moral graph has only one edge between c and u and thus c?D0 t0. Theancestral set generated by fc; t; t0; rg is equal to the full set of variables, andthe associated moral graph is displayed in Figure 8. Clearly r is separatedfrom t0 by fc; tg in this graph, so (BD2) is satis�ed.28



t0 t ru ct - t -t -? t?t t0 t ru ct��� t��� tt t
Figure 8: Intervention graph and associated moral graph for an observationalstudy with a su�cient covariate. The moral graph reveals that r?D0 t0 j fc; tgso the back-door criterion is satis�ed and the treatment e�ect can be as-sessed.
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Figure 9: Intervention graph and associated moral graph for a study withpartial compliance. The moral graph reveals that r?D0 a0 j fa; tg so the e�ectof the treatment assignment is identi�ed. However, r is not separated fromt0 by t so the e�ect of the treatment itself cannot be assessed.8.4.4 Partial complianceThe next example describes a study in which treatments are assigned com-pletely at random to individuals, but not all individuals are complying withthe assignments so that some receive a treatment di�erent from the oneassigned. The situation is displayed in Figure 9, where a is labelling theassignment and t the actual treatment received. The response, treatmentassigned, and treatment received are all observed. From inspection of themoral graph it clearly follows that r?D0 a0 j fa; tg so the e�ect of the treat-ment assigned is identi�ed via the back-door formula. The correspondingassessment is commonly referred to as \analysis by intention-to-treat".However, r is not separated from t0 by t so the e�ect of the treatmentitself is not identi�able from these observations. We shall later see how toderive bounds for the e�ects in this particular case.
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t0 t c rut - t - t -t@@@R���	 tFigure 10: Intervention graph associated with a situation where the front-door Theorem 6 applies. The covariate c is capturing the way in which t isa�ecting r, possibly modi�ed by the unobserved variable.8.5 The front-door formulaTheorem 6 below describes yet another situation where the causal e�ect ofa treatment can be identi�ed. Here the observed covariates are to be con-sidered as the active agent determining the response. A basic example tohave in mind could be the e�ect of smoking on lung cancer, the active agentbeing the tar content in the lungs. There could be an unobserved, say ge-netic, feature that inuenced both the response and the tendency to smoke.The corresponding diagram is displayed in Figure 10 and the conditions inthe Theorem 6 reect conditional independence relations following from thedirected Markov property of this diagram.Theorem 6 (Front-door) Assume that C � C0, where C0 satis�es(FD1) The remaining variables D = V n (C0 [ ft; rg) are una�ected by anintervention: D?D0 t0;(FD2) An intervention only a�ects the covariate through the treatment itself,independently of the remaining variables: C0?D0 (D [ ft0g) j t.(FD3) An intervention only a�ects the response through the covariate, asmodi�ed by the remaining variables: R?D0 t0 jC0 [D.Then C identi�es the e�ect of the treatment t on R asp(xR jjx�t ) =XxC0 p(xC0 jx�t )Xxt p(xR jxC0 ; xt)p(xt): (24)Proof We assume without loss of generality that C = C0 and so D = U .Then we havep(xR jjx�t ) = XxC ;xU p(xR jxC ; xU jjx�t )p(xC ; xU jjx�t )= XxC ;xU p(xR jxC ; xU )p(xC jxU jjx�t )p(xU jjx�t );30



where we have used (FD3) together with (20) to deduce that the interventionin the �rst term of the product is neutral.Next, (FD2) combined with the semi-graphoid properties (C3') and (C2')(which are satis�ed by the relation ?D0 by Lemma 2) yieldsC?D0 t0 j (U [ ftg) and C?D0 U j t:Thus (21) yields that intervention in the second term may be substitutedwith ordinary conditioning, and (19) that conditioning with xU then can beignored.Further, (FD1) with (20) gives that the third term in the product isindependent of x�t so that we havep(xR jjx�t ) = XxU ;xC p(xR jxU ; xC)p(xC jx�t )p(xU ):If we now rewrite p(xU ) by partioning according to xt and note that (FD3)with (19) allows further conditioning on xt in the �rst term, we getp(xR jjx�t ) = XxU ;xC ;xt p(xR jxU ; xC ; xt)p(xC jx�t )p(xU jxt)p(xt)= XxC p(xC jx�t )Xxt p(xR jxC ; xt)p(xt)and the proof is complete. 2Both the theorem (in a rather modi�ed formulation) and its name are dueto Pearl (1995a). The justi�cation for the name is not so obvious withthe formulation above. Although it is true that (FD1) and (FD3) togetherreect that C0 blocks front-door paths from t to R, (FD2) rather reectsthat back-door paths from t to C0 are blocked.Again we note the importance of the positivity assumption (16). With-out this, we could always take c = t and satisfy all conditions in Theorem 6.However, the necessary conditional distributions would not be identi�ed bythe marginal distributions in this case.8.6 Additional examplesWe conclude the section on identi�ability of treatment e�ects by discussinga number of additional examples, illustrating the potential use of the front-and back-door theorems. 31



t0 t l rct - t - t -t@@@R���	 tFigure 11: Intervention graph associated with an example where both of thefront-door and back-door theorems apply when l and c are observed.Example 2 Consider the example with intervention graph displayed in Fig-ure 11. In the case where c and l are observed together with the treatmentt and the response r, the back-door theorem applies with c as covariate, thefront-door theorem applies with l as the covariate, and with both covariatesthe extended back-door theorem applies. Thus it holds thatp(xr jjx�t ) = Xxc p(xr jxc; x�t )p(xc)= Xxl p(xl jx�t )Xxt p(xr jxl; xt)p(xt)= Xxc;xl p(xr jxl; xc)p(xc)p(xl jx�t ):However, although the treatment e�ect can be identi�ed in all three observa-tional situations, it is not true that the corresponding maximum likelihoodestimates are equally e�cient in the case where these are estimated fromdata. There is clearly loss of information associated with not observing allfour variables.To illustrate this, assume that all variables are discrete and a poten-tial sample of n independent and identically distributed cases with countsn(xt; xr; xl; xc) are observed, and contrast this with the corresponding in-complete samples only giving n(xt; xr; xc) or n(xt; xr; xl).In the �rst situation, the maximum likelihood estimate in the modelwhich is only restricted by satisfying the directed Markov property on thegraph is equal top̂(xt; xr; xl; xc) = n(xc)n(xt; xc)n(xt; xl)n(xr; xl; xc)nn(xc)n(xt)n(xl; xc)= n(xt; xc)n(xt; xl)n(xr; xl; xc)nn(xt)n(xl; xc) ;32



as each of the conditional probabilities of a variable given its parents is esti-mated by the corresponding observed relative frequencies (Lauritzen 1996,Theorem 4.36). Using the extended back-door formula, i.e. the last relationabove, we therefore getp̂(xr jjx�t ) = Xxc;xl p̂(xr jxl; xc)p̂(xc)p̂(xl jx�t )= Xxc;xl n(xr; xl; xc)n(xl; xc) n(xc)n n(xl; x�t )n(x�t ) :The similar expression in the back-door case, i.e. when only n(xr; xc; xt) isobserved, becomes p̂(xr jjx�t ) = Xxc p̂(xr jxc; x�t )p̂(xc)= Xxc p̂(xr jxc; x�t )n(xc)n :Note that in this case it is not generally true that we havep̂(xr jxc; x�t ) = n(xr; xc; x�t )n(xc; x�t )because the model induces restrictions on this conditional probability. How-ever, it is obvious that~p(xr jjx�t ) =Xxc n(xr; xc; x�t )n(xc; x�t ) n(xc)nis still a reasonable estimate of the intervention probability. The latterestimate is also the traditional estimate used, and it also applies in themore general case, where the conditional independence c?? l j t is violated.Presumably this estimate will be less e�cient if indeed the condition c?? l j twere known to hold.In the front-door case, when n(xr; xl; xt) is observed, we similarly havep̂(xr jjx�t ) = Xxl p̂(xl jx�t )Xxt p̂(xr jxl; xt)p̂(xt)= Xxl n(xl; x�t )n(x�t ) Xxt p̂(xr jxl; xt)n(xt)n ;where again the maximum likelihood estimate of the second conditionalprobability may not be equal to the corresponding relative frequency. How-ever, it is obvious that a reasonable estimate of the treatment e�ect is equal33



t0 t l rb da u vt - tt t@@R @@R��	 ��	 t- t -t@@@R? t?���	 t t0 t l rb da u vt������tt t@@ @@�� �� ttt@@@ t��� ��� ��� tFigure 12: Intervention graph associated with Example 3 with its corre-sponding moral graph.to ~p(xr jjx�t ) =Xxl n(xl; x�t )n(x�t ) Xxt n(xr; xl; xt)n(xl; xt) n(xt)n :It would be interesting to compare the loss of e�ciency by not observing cvs. not observing l. 2Example 3 The next example is taken from Pearl (1995a) and is somewhatmore complex. It is illustrated in Figure 3.As the �gure shows, l su�ces as a covariate for the front-door Theorem 6to apply.From the moral graph it is seen by direct inspection that observing b isnecessary but not su�cient to satisfy the back-door Theorem 4. It needs tobe supplemented with any non-empty subset of the variables a, u, v, and dfor its union with t to separate t0 from r in this graph.If, for example b, d, and l are observed together with t and r, the extendedback-door formula (23) yields that the treatment e�ect is to be estimatedfrom complete data counts asp̂(xr jjx�t ) = Xxb;xl;xd n(xr; xb; xd; xl)n(xl; x�t )n(xb; xd; xl)n(x�t ) p̂(xb; xd);where the latter probability ideally should be estimated by taking into ac-count the relevant restrictions induced by the model, rather than using theempirical relative frequencies directly. We leave it to the reader to considerestimation of treatment e�ects under di�erent observational schemes. 2Figure 13 displays the situation in which the variable i is an instrumentalvariable or instrument for assessing the e�ect of t on r. This notion is34



i t rut - t - t?���	 tFigure 13: Graphical model expressing that i is an instrumental variable.Note the similarity with the situation of partial compliance described inFigure 9, where the assignment variable a is an instrument.important in econometrics (Bowden and Turkington 1984; Angrist et al.1996). An instrumental variable is one which a�ects the treatment, but isuncorrelated with unobserved factors. An instrumental variable can be usedto derive bounds for treatment e�ects as we shall show in Section 10.1 below.But here we show an inequality which provides a good example of therestrictions that conditional independence constraints imply for marginaldistributions. More precisely, it holds for any discrete treatment variable tthat if the independence assumptions associated with the diagram in Fig-ure 13 hold, then supxt Zxr supxi f(xr; xt jxi)�r(dxr) � 1; (25)where f is a generic symbol for the appropriate (conditional) density. Thisinstrumental inequality was apparently �rst derived by Pearl (1995b) andwe give the (quite simple) proof below.The conditional independence restrictions imply thatf(xr; xt jxi) = Zxu p(xt jxi; xu)f(xr jxt; xu)Pu(dxu); (26)where Pu denotes the marginal distribution of Xu and the remaining entitiesare appropriate densities. Since the treatment variable is discrete, we havep(xt jxi; xu) � 1and this must also hold for its supremumh(xt; xu) = supxi p(xt jxi; xu) � 1:Now we get from (26) thatsupxi f(xr; xt jxi) = Zxu h(xt; xu)f(xr jxt; xu)Pu(dxu)35



� Zxu f(xr jxt; xu)Pu(dxu);wherebyZxr supxi f(xr; xt jxi)�r(dxr) � Zxr Zxu f(xr jxt; xu)Pu(dxu)�r(dxr)= Zxu Zxr f(xr jxt; xu)�r(dxr)Pu(dxu)= 1;and (25) follows.The importance of the inequality (25) is that it makes the assumptionthat i is an instrument falsi�able from observations of (Xi;Xt;Xr).Note that the discreteness of the variable t is used at a very criticalpoint in the proof of (25). At the time of writing it is not known whether theassumption of i being an instrument is falsi�able in the general case. In otherwords, given an arbitrary joint distribution Q of variables (Xi;Xt;Xr), doesthere exist a random variable Xu and a distribution P of (Xu;Xi;Xt;Xr)which is Markov with respect to the graph in Figure 13 and has Q as itsmarginal to (Xi;Xt;Xr)? In the case where Q is multivariate Gaussian, theanswer to the last question is known to be positive, i.e. such a distributionalways exists and `instrumentality' is therefore not falsi�able in the Gaussiancase.9 Structural equation modelsAs mentioned in Section 6, the assumption that the intervention formula(13) applies is an additional model assumption that does not follow fromthe basic axioms of probability. There are di�erent ways of justifying thisassumption and in any given context, subject matter knowledge must playan essential rôle in this justi�cation process.A particular modelling formulation, leading to causal Markov models,has documented its relevance in several areas of application. Structuralequation models (Bollen 1989) were invented in the context of genetics(Wright 1921, 1923, 1934), and exploited in economics (Haavelmo 1943;Wold 1954) and social sciences (Goldberger 1972), see for example Pearl(1998) and Spirtes et al. (1998) for further discussion.They were used as the main justi�cation and motivation for studyingcausal Markov models in Kiiveri et al. (1984) and Kiiveri and Speed (1982),as well as in Pearl (1995a) and Pearl (2000).36



Most commonly, structural equation models have been assumed linearalthough there are important exceptions (Goldfeld and Quandt 1972). Herewe consider a general structural equation system associated with a directedacyclic graph D. More precisely we consider a system of `equations'Xv  gv(Xpa(v); Uv); v 2 V; (27)where the assignments have to be carried out sequentially, in a well-orderingof the directed acyclic graph D, so that at all times, when Xv is about to beassigned a value, all variables in pa(v) have already been assigned a value.The variables Uv; v 2 V are assumed to be independent. In the liter-ature, correlation is generally allowed among the `disturbances' Uv. Alsonon-recursive systems are often studied. Such systems do not correspond todirected Markov models and they are not studied here. Conditional inde-pendence properties for cyclic linear structural equation systems have beenstudied, for example, by Spirtes (1995), Richardson (1996), Spirtes et al.(1998), and Koster (1996, 1999a, 1999b).The term `structural equation system' is really misplaced, and `structuralassignment system' would have been much more appropriate. Much contro-versy in the literature, in particular concerning calculation of interventione�ects, is due to treating the assignment systems as equation systems, `solv-ing' them and uncritically moving variables between the right-hand side andthe left-hand side of (27). In particular, this matters when interventions areconsidered.It is an important aspect of structural equation models that they alsospecify the way in which intervention is to be carried out. As is implicit inmuch literature and, for example, quite explicit in Strotz and Wold (1960),the e�ect of the intervention Xa  x�a on a variable with label a is simplythat the corresponding line in (27) is replaced with the assignment describedby the intervention. We refer to this process as intervention by replacement.Clearly, the justi�cation that this is a reasonable assumption in any givencontext is no less di�cult than the direct justi�cation of the causal Markovassumption, since the latter follows from (27), as stated formally below.Theorem 7 Let X = (Xv)v2V be determined by a structural equation sys-tem corresponding to a given directed acyclic graph D and let P denote itsdistribution. If intervention is carried out by replacement, then P is causallyMarkov with respect to D.Proof Let the vertices of D be well-ordered as v1; : : : ; vn so that the assign-ments in (27) are carried out in the corresponding order. As the variables37



Uvi are assumed independent, we clearly haveUvi ?? (Xv1 ; : : : ;Xvi�1)and thus, from (C2) and (C3)Uv ??Xpr(v) jXpa(v):Using (27) with (C2) gives Xv ??Xpr(v) jXpa(v);i.e. the distribution of X satis�es the ordered directed Markov property(DO). Theorem 3 now yields that P is directed Markov on D.As intervention in a structural equation system is made by replacement,it is clear that all conditional distributions except those involving interven-tions are preserved. Hence the intervention formula (13) applies. 2Note that neither the functions gv nor the random discturbances Uv areuniquely determined from the distribution P , and not even if P is known tobe causally Markov. Thus assuming the structural equation model (27) isstrictly stronger | in a way which is typically not empirically testable |than just assuming the causal Markov property, as captured in (13).Some authors seem to prefer to use a structural equation model as jus-ti�cation for the causal Markov property, rather than taking this propertyas a primitive assumption that must stand usual scienti�c testing. In viewof the above, this is not reasonable unless speci�c subject matter knowledgenaturally leads to such equations.10 Potential responses and counterfactualsAs mentioned, any causal Markov model for a given DAG D can be repre-sented by a structural equation system, although this can be done in manydi�erent ways.One type of representation deserves particular attention. Observe �rstthat in each of the equations in (27), the values of Uv do not matter beyondwhat they prescribe as values for gv, for each �xed value of possible parentcon�gurations xpa(v). Taking this to its consequence, we can introduce themap !v !v : Xpa(v) ! Xv38



and de�ne the functions gv in (27) asgv(xpa(v); !v) = !v(xpa(v)):Denoting such a random element by 
v, 
v(xpa(v)) describes the potentialresponse, i.e. the value of Xv that would have been observed, had the parentcon�guration been equal to xpa(v). In this sense, the sets of random variablesf
v(xpa(v)) : xpa(v) 2 Xpa(v)gare counterfactual random variables. The variables 
v were also called map-ping variables by Heckerman and Shachter (1995).This approach to causal inference was for example used by Neyman(1923), Rubin (1974, 1978), and Holland (1986), and it plays a fundamentalrôle in the methods developed by Robins (1996, 1997), although it is usuallyintroduced in a slightly di�erent context. Counterfactual objects have at alltimes been at the basis for causal reasoning (Lewis 1973).Note that in the formulation given above, the variables 
v are no moreand no less counterfactual than the ! used when a random variable X isconsidered to be a deterministic function X(!) of a random element !. Thishas proved useful in many contexts, although it has also lead to paradoxes,when consequences have been taken too far.Dawid (2000) argues strongly against the use of counterfactual randomvariables as for any given individual it is impossible to observe more than oneof the variables 
v(xpa(v)); the counterfactual variables are complementary.Thus it is dangerous to make assumptions concerning the joint distributionof f
v(xpa(v)) : xpa(v) 2 Xxpa(v)g, as such distributions are purely metaphys-ical. And, as it seems that all interesting results concerning causal inferencecan be derived without counterfactuals, the pitfalls associated with their usecan be avoided.10.1 Partial compliance revisitedIn this section we show how to use counterfactual variables to get boundsfor treatment e�ects in the case of partial compliance, corresponding to thesituation displayed in Figure 9. Although as mentioned, the bound can bederived without using conterfactual random variables, they seem to yield asimple method for deriving these bounds in the present example.With the same notation as earlier, we are interested in the interventionprobabilities p(xr jjx�t ) = Zxu p(xr jxt; xu)Pu(dxu): (28)39



However, only joint observations of a, t, and r are possible. Assuming thatwe have an in�nite sample, we can observe all combinations ofp(xr; xt jxa) = Zxu p(xr jxt; xu)p(xt jxa; xu)Pu(dxu): (29)As neither of the back-door or front-door theorems apply, the treatmente�ect appears not to be identi�able, but it is possible to derive bounds forthe intervention probabilities in (28) subject to the `constraints' given in(29).For simplicity we assume that all observed values are binary taking thevalues 0 or 1. In this case there are a total of six independent constraints,three for each group of treatment assignment.Bounds for the probabilities involved can be derived in many ways. Forexample, the bounds (25) derived for instrumental variables apply to theobserved frequencies here since a is indeed an instrument. Thus this partof the assumptions can and should be checked with observed data. Boundsfor treatment e�ects were also derived by Robins (1989) and Manski (1990).However, it is not always easy to check that the bounds derived are sharpand indeed Balke and Pearl (1994, 1997) derive sharper bounds and showthat the bounds cannot be improved. Their argument is based upon the useof counterfactual variables and we shall sketch their argument below.It may be illuminating to phrase the arguments in terms of the examplealso considered by Imbens and Rubin (1997) and Balke and Pearl (1997).The example considered is thus the study of the e�ects on child mortalityof vitamin A supplementation in Sumatra, as described by Sommer et al.(1986) and Sommer and Zeger (1991).Also here the �rst part of the argument is that it is not the value ornature of Xu that matters, but only the way in which it a�ects the tworesponses t and r. Thus | as was also done by Imbens and Rubin (1997) |we can without loss of generality assume that the unobserved variable is thepair of potential responses ! = (!t; !r), where !t(xa) denotes the treatmenttaken by an individual with assigned treatment xa, and !r(xt) indicates theresponse of an individual with treatment xt.Each of the potential response variables vary in a space of four elements,so the unobserved variable ! has a total of 16 possible values. The fourvalues of the �rst variable !t may well be calledfalways taker;never taker; complier;de�erg;40



so that we have always taker (xa) = 1, where 1 denotes that vitamin A istaken, complier (xa) = xa etc. Similarly the four values of !t may be calledfalways cured;never cured;bene�cial;damagingg:In these terms we can rewrite the equations (28) and (29) asp(xr jjx�t ) =X! p(xr jxt; !)p(!): (30)and p(xr; xt jxa) =X! p(xr jxt; !)p(xt jxa; !)p(!): (31)The di�erence between these and those above are that the conditional prob-abilities in (30) and (31) are known and equal to one or zero. Thus theproblem of �nding bounds can be solved by linear programming methodsthat also identify the best possible bounds. If we let pij:k = p(ir; jt j ka) andqij = p(ir jj ja), the bounds were found to bep10:1p01:0p10:0 + p11:0 � p00:1 � p11:1p01:0 + p10:0 � p00:1 � p01:1 9>>>=>>>; � q10 � 8>>><>>>: 1� p00:11� p00:0p01:0 + p10:0 + p10:1 + p11:1p10:0 + p11:0 + p01:1 + p10:1and the remaining bounds are obtained by suitable index substitution.The bounds turn out to be quite wide in the example mentioned and thusthe analysis is inconclusive in this case. Imbens and Rubin (1997), make afull Bayesian analysis of the model, by imposing prior assumptions on thedistribution of the potential responses, and thereby obtains the conclusionthat the e�ect of vitamin A is bene�cial on average. However, such priorassumptions are untestable and therefore questionable. See also Chickeringand Pearl (1999) for a further discussion of this example.As demonstrated in Balke and Pearl (1997), the bounds are sometimestight and sharp conclusions therefore available. This holds for example fordata concerning lipids and coronary heart disease analysed by Efron andFeldman (1991).11 Other issues11.1 Extension to chain graphsThe intervention calculus can be extended to more general graphical modelsthan those given by directed acyclic graphs. Chain graph models are given41



by graphs that have both directed and undirected links, but no cycles thatcan be traversed only in one direction without going against the arrows.The chain components T of such graphs are undirected graphs that areobtained by removing all directed arrows from a chain graph. They natu-rally unify directed acyclic graphs and undirected graphs in that undirectedgraphs are chain graphs with only one chain component, and directed acyclicgraphs are chain graphs with all chain components being singletons. Thereis a corresponding set of Markov properties associated with chain graphs(Frydenberg 1990a; Lauritzen 1996). In terms of factorization, the chaingraph Markov property manifests itself through an outer factorizationf(x) = Y�2T f �x� jxpa(�)� ; (32)where each factor further factorizes according to the graph G�(�) asf �x� jxpa(�)� = Z�1 �xpa(�)� YA2A(�) �A(xA); (33)where A(�) are the complete sets in G�(�) andZ �xpa(�)� =Xx� YA2A(�) �A(xA):The graph G�(�) is obtained from G�[pa(�) by dropping directions on edgesand adding edges between any pair of members of pa(�).If the intervention X�  x�� is made, the corresponding interventionformula can be argued to bep(x jjx��) = p(x)Py�� :y�=x�� p(y�� jxpa(��)) �����x�=x�� (34)where �� is the chain component including �. This formula specializes to(13) in the fully directed case and (14) in the undirected case. This inter-vention formula corresponds to the analogy with decision networks based onchain graphs as discussed in Cowell et al. (1999). Lauritzen and Richardson(2000) are investigating dynamic regimes that lead to such an interventioncalculus and their potential use as an alternative interpretation of simulta-neous equation systems.
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11.2 Causal discoveryAnother and more controversial aspect of causal inference from graphicalmodels is associated with identifying causal relationships from data. Eversince the appearance of Glymour et al. (1987) and the �rst version of the cor-responding program TETRAD, this has been the subject of sometimes quiteheated discussions (Freedman 1991, 1995; Robins and Wasserman 1999; Gly-mour et al. 1999).Basically there have been two di�erent types of approach. The constraint-based approach (Spirtes et al. 1993) is generally conceived to take place inan ideal environment where the joint distribution P of a system X of ran-dom variables is known completely without error, whereas the causal graphD which has generated the distribution is unknown.Apart from the assumption that such a causal directed acyclic graph Dexists, it is also assumed that P is faithful to D, in other words there areno conditional independence relationships between the variables that do notfollow from the directed Markov property:A??B jS =) A?D B jS:As previously mentioned, results of Meek (1995) indicate that most distri-butions are indeed faithful.On the assumption above, Spirtes et al. (1993) provide several algorithmsthat from a relatively modest number of tests identi�es the causal graph upto Markov equivalence, i.e. produce a graph D0 with the property that forall disjoint subsets A, B, and S of VA?D0 B jS () A?D B jS () A??B jS:They also give variants of these algorithms that do not assume the entiresystem of variables to be observed. These results are supplemented withconditions for identi�ability of causal e�ects and give methods for identifyingcausal e�ects that remain invariant over such an equivalence class.Richardson and Spirtes (1999) extend the approach to situations involv-ing feedback.Little has been done to explore the statistical properties of these andsimilar methods applied to cases where knowledge about the distribution ofX is only obtained through �nite samples. Although Spirtes et al. (1993)contains a small simulation study, this area deserves to be better explored.Another line of this research is based on a pure Bayesian approach tolearning the structure of a Bayesian network, as initiated by Cooper and43
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