
CAUSAL DIAGRAMS FOREMPIRICAL RESEARCHJudea PearlCognitive Systems LaboratoryComputer Science DepartmentUniversity of California, Los Angeles, CA 90024judea@cs.ucla.eduAbstractThe primary aim of this paper is to show how graphical models can beused as a mathematical language for integrating statistical and subject-matterinformation. In particular, the paper develops a principled, nonparametricframework for causal inference, in which diagrams are queried to determine ifthe assumptions available are su�cient for identifying causal e�ects from non-experimental data. If so the diagrams can be queried to produce mathematicalexpressions for causal e�ects in terms of observed distributions; otherwise, thediagrams can be queried to suggest additional observations or auxiliary exper-iments from which the desired inferences can be obtained.Key words: Causal inference, graph models, interventions treatment e�ect1 IntroductionThe tools introduced in this paper are aimed at helping researchers communicatequalitative assumptions about cause-e�ect relationships, elucidate the rami�cationsof such assumptions, and derive causal inferences from a combination of assumptions,experiments, and data.The basic philosophy of the proposed method can best be illustrated through asimple example taken, for the sake of familiarity and historical continuity, from thedomain of agricultural experiments. Following [Cochran 1957], we consider an ex-periment in which soil fumigants (X) are used to increase oat crop yields (Y ) bycontrolling the eelworm population (Z) but may also have direct e�ects (both bene�-cial and adverse) on yields beside the control of eelworms. We wish to assess the totale�ect of the fumigants on yields when this classical experimental setup is complicatedby several factors. First, we will assume that controlled randomized experiments areinfeasible { farmers insist on deciding for themselves which plots are to be fumigated,1



and they will permit us to go into the oat �elds to conduct only noninvasive mea-surements. Second, we suspect that farmers' choice of treatment is predicated on lastyear's eelworm population (Z0), an unknown quantity, and that last year's eelwormpopulation is strongly correlated with this year's population | thus we have a classi-cal case of confounding bias, which interferes with the assessment of treatment e�ects,regardless of sample size. Fortunately, through laboratory analysis of soil samples, wecan determine the eelworm populations before and after the treatment and, further-more, because the fumigants are known to be active for a short period only, we cansafely assume that they do not a�ect the growth of eelworms surviving the treatment.However, the survival of eelworms past the application of the fumigants depends onthe population of birds (and other predators) which is correlated, in turn, with lastyear's eelworm population and hence with the treatment itself.The method proposed in this paper permits the investigator to translate complexconsiderations of this sort into a formal language, thus facilitating the following tasks:1. Explicate the assumptions underlying the model.2. Decide whether the assumptions are su�cient for obtaining consistent estimatesof the target quantity: the total e�ect of the fumigants on yields.3. If the answer to item 2 is a�rmative, the method provides a closed-form ex-pression for the target quantity, in terms of distributions of observed quantities.4. If the answer to item 2 is negative, the method suggests a set of observations andexperiments which, if performed, would render a consistent estimate feasible.The �rst step in this analysis is to construct a causal diagram such as the onegiven in Figure 1. The precise formal de�nition of such diagrams will be given insubsequent sections. At this point, it is su�cient to view the diagram as representingthe investigator's understanding of the major causal in
uences among measurablequantities in the domain. For example, the quantities Z1; Z2, and Z3 represent,respectively, the eelworm population (both size and type) before treatment, aftertreatment, and at the end of the season. Z0 represents last year's eelworm population;because it is an unknown quantity, it is denoted by a hollow circle, as is the quantityB, the population of birds and other predators. Links in the diagram are of twokinds: those that connect unmeasured quantities are designated by dashed arrows,those connecting measured quantities by solid arrows. The substantive assumptionsembodied in the diagram are negative causal assertions which are conveyed throughthe links missing from the diagram. For example, the missing arrow between Z1and Y signi�es the investigator's understanding that pre-treatment eelworms can nota�ect oat plats directly; their entire in
uence on oat yields is mediated by post-treatment conditions, namely Z2 and Z3. The purpose of this paper is not to validateor repudiate such domain-speci�c assumptions but, rather, to test whether a givenset of assumptions is su�cient for quantifying causal e�ects from nonexperimentaldata, for example, estimating the total e�ect of fumigants on yields.2
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ZFigure 1:A causal diagram representing the e�ect of fumigants (X) on yields (Y ).The causal diagram in Figure 1 is similar in many respects to the path diagramsdevised by Wright [1921]: both re
ect the investigator's subjective and qualitativeknowledge of causal in
uences in the domain, both employ directed acyclic graphs,and both allow for the incorporation of latent or unmeasured quantities. The majordi�erences lie in the method of analysis. First, whereas path diagrams have beenanalyzed mostly in the context of additive linear models, causal diagrams permit ar-bitrary nonlinear interactions. In fact, the analysis of causal e�ects will be entirelynonparametric, entailing no commitment to a particular functional form for interac-tions and distributions. Second, causal diagrams will be used not only as a passivelanguage to specify assumptions but also as an active computational device throughwhich the desired quantities will be derived. For example, the proposed method al-lows an investigator to inspect the diagram of Figure 1 and conclude immediatelythat:1. The total e�ect of X on Y can be estimated consistently from the observeddistribution of X, Z1; Z2; Z3, and Y .2. The total e�ect of X on Y (assuming discrete variables) is given by the formulaP (yjx̂) =Xz1 Xz2 Xz3 P (yjz2; z3; x)P (z2jz1; x)Xx0 P (z3jz1; z2; x0)P (z1; x0) (1)where P (yjx̂) stands for the probability of achieving a yield level of Y = y giventhat the treatment is set to level X = x by external intervention.3. A consistent estimation of the total e�ect of X on Y would not be feasible if Y3



were confounded with Z3; however, confounding Z2 and Y will not invalidatethe formula for P (yjx̂).These conclusions can be obtained either by analyzing the graphical properties ofthe diagram or by performing a sequence of symbolic derivations, governed by thediagram, which gives rise to causal e�ect formulas such as Eq. (1).The formal semantics of the causal diagrams used in this paper will be de�nedin Section 2, following review of directed acyclic graphs (DAGs) as a language forcommunicating conditional independence assumptions (Subsection 2.1). Subsection2.2 introduces a causal interpretation of DAGs based on nonparametric structuralequations and demonstrates their use in predicting the e�ect of interventions. Analternative formulation is then described where interventions are treated as variablesin an augmented probability space (shaped by the causal diagram) from which causale�ects are obtained by ordinary conditioning. Using either interpretation, it is pos-sible to quantify how probability distributions will change as a result of externalinterventions and to identify conditions under which randomized experiments are notnecessary.Section 3 will demonstrate the use of causal diagrams to control confoundingbias in observational studies. We will establish two graphical conditions ensuringthat causal e�ects can be estimated consistently from nonexperimental data. The�rst condition, named the back-door criterion, is equivalent to the strongly ignorabletreatment assignment (SITA) condition of [Rosenbaum & Rubin 1983]. The secondcondition, named the front-door criterion, involves covariates that are a�ected by thetreatment, and thus introduces new opportunities for causal inference.In Section 4, we introduce a symbolic calculus that permits the stepwise derivationof causal e�ect formulas of the type shown in Eq. (1). The calculus employs three rulesof inference, the applicability of each is governed by the topology of the graph. Usingthis calculus, Section 5 characterizes the class of graphs that permit the quanti�cationof causal e�ects from nonexperimental data or from surrogate experimental designs.2 Graphical Models and the Manipulative Ac-count of Causation2.1 Graphs and Conditional IndependenceThe diagrams considered in this paper are directed acyclic graphs (DAGs) whichfunction both:1. as economical schemes for representing conditional independence assumptions,and2. as languages for representing qualitative causal in
uences.4



In this section, we brie
y review the properties of DAGs as carriers of conditionalindependence information [Pearl 1988]. Readers familiar with this aspect of DAGsare advised to skip to Subsection 2.2.Given a DAG G and a joint distribution P over a setX = fX1; :::;Xng of discretevariables, we say that G represents P if there is a one-to-one correspondence betweenthe variables in X and the nodes of G, such that P admits the recursive productdecomposition P (x1; :::; xn) =Yi P (xi j pai) (2)where pai are the direct predecessors (called parents) of Xi in G. The recursivedecomposition in Eq. (2) implies that, given its parent set pai, each variable Xi isconditionally independent of all its other predecessors fX1;X2; :::;Xi�1gnpai. UsingDawid's [1979] notation, we can state this set of independencies as follows:Xi k fX1;X2; :::;Xi�1gnpai j pai; i = 2; :::; n (3)A graphical criterion called d-separation [Pearl 1988] permits us to read o� the DAGthe sum total of all independencies implied by a given decomposition.De�nition 2.1 (d-separation) Let X; Y; and Z be three disjoint subsets of nodes ina DAG G, and let p be any path between a node in X and a node in Y . (By a pathwe mean any succession of arcs, regardless of their directions.) Z is said to block pif there is a node w on p satisfying one of the following two conditions:1. w has converging arrows (along p) and neither w nor any of its descendants arein Z, or2. w does not have converging arrows (along p) and w is in Z.Z is said to d-separate X from Y , in G, denoted (X k Y jZ)G, i� Z blocks everypath from a node in X to a node in Y . 2It can be shown that there is a one-to-one correspondence between the set ofindependencies implied by the recursive decomposition of Eq. (2) and the set of triples(X;Z; Y ) that satisfy the d-separation criterion in G [Geiger et al. 1990].An alternative test for d-separation has been devised by [Lauritzen et al. 1990],based on the notion of ancestral graphs. To test for (X k Y jZ)G, delete from G allnodes except those in fX; Y; Zg and their ancestors, connect by an edge every pair ofnodes that share a common child, and remove all arrows from the arcs. (X k Y jZ)Gholds i� Z is a cutset of the resulting undirected graph, separating nodes of X fromthose of Y . Additional properties of DAGs and their applications to evidential rea-soning in expert systems are discussed in [Pearl 1988, Lauritzen & Spiegelhalter 1988,Spiegelhalter et al. 1993, Pearl 1993a]. 5



2.2 Graphs as Models of InterventionThe interpretation of DAGs as carriers of independence assumptions does not specif-ically mention causation, and DAGs displaying such assumptions can in fact be con-structed for any ordering (not necessarily causal or chronological) of the variables.However, the main use of DAGs lies in their ability to portray causal, rather thanstatistical, associations, because causal models, assuming they are properly validated,provide information about the e�ects of actions. In other words, a joint distributiontells us how probable events are and how probabilities would change with subsequentobservations, but a causal model also tells us how these probabilities would changeas a result of external interventions, such as those encountered in policy analysis andtreatment management.The connection between the causal and associational readings of DAGs is formedthrough the mechanism-based account of causation, which owes its roots to earlyworks in econometrics [Frisch 1938, Haavelmo 1943, Simon 1953]. In this account,assertions about causal in
uences, such as those speci�ed by the links in Figure 1,stand for autonomous physical mechanisms among the corresponding quantities, andthese mechanisms can be represented as functional relationships perturbed by randomdisturbances. In other words, each child-parent family in a DAG G represents adeterministic function Xi = fi(pai; �i); i = 1; :::; n (4)where pai are the parents of variableXi inG, and �i; 0 < i � n, are mutually indepen-dent, arbitrarily distributed random disturbances [Pearl & Verma 1991]. These dis-turbance terms represent independent exogenous factors that the investigator choosesnot to include in the analysis. If any of these factors is judged to be in
uencing two ormore variables (thus violating the independence assumption), then that factor mustenter the analysis as an unmeasured (or latent) variable, to be represented in thegraph by a hollow node, such as Z0 and B in Figure 1. For example, the causalassumptions conveyed by the model in Figure 1 correspond to the following set ofequations: Z0 = f0(�0) Z2 = f2(X;Z1; �2)B = fB(Z0; �B) Z3 = f3(B;Z2; �3)Z1 = f1(Z0; �1) Y = fY (X;Z2; Z3; �Y )X = fX(Z0; �X) (5)The equational model in (4) is the nonparametric analogue of the so-called struc-tural equations model in econometrics [Goldberger 1973], with one exception: thefunctional form of the equations as well as the distribution of the disturbance termswill remain unspeci�ed. In contrast to conditional probabilities, structural equa-tions communicate stable counterfactual information, thus forming a clear correspon-dence between causal diagrams and Rubin's model of potential response [Rubin 1974,Holland 88]. For example, the equation for Y states that regardless of what we cur-rently observe about Y , and regardless of any changes that might occur in other6



equations, if (X;Z2; Z3; �Y ) were to assume the values (x; z2; z3; �Y ), respectively, Ywould take on the value dictated by the function fY . Thus, the corresponding poten-tial response variable in Rubin's model Y(x) (read: the value that Y would take if Xwere x) becomes a deterministic function of Z2; Z3 and �Y and can be considered arandom variable whose distribution is determined by those of Z2; Z3 and �Y .Characterizing each child-parent relationship as a deterministic function, insteadof the usual conditional probability P (xi j pai), imposes equivalent independenceconstraints on the resulting distributions and leads to the same recursive decompo-sition that characterizes DAG models (see Eq. (2)). This occurs because each �i isindependent on all nondescendants of Xi. However, the functional characterizationXi = fi(pai; �i) also provides a convenient languages for specifying how the resultingdistribution would change in response to external interventions. This is accomplishedby encoding each intervention as an alteration on a select subset of functions, whilekeeping the others intact. Once we know the identity of the mechanisms altered bythe intervention and the nature of the alteration, the overall e�ect of the interventioncan be predicted by modifying the corresponding equations in the model and usingthe modi�ed model to compute a new probability function.The simplest type of external intervention is one in which a single variable, sayXi, is forced to take on some �xed value xi. Such an intervention, which we callatomic, amounts to lifting Xi from the in
uence of the old functional mechanismXi = fi(pai; �i) and placing it under the in
uence of a new mechanism that setsthe value xi while keeping all other mechanisms unperturbed. Formally, this atomicintervention, which we denote by set(Xi = xi), or set(xi) for short, amounts toremoving the equation Xi = fi(pai; �i) from the model and substituting Xi = xiin the remaining equations. The new model thus created represents the system'sbehavior under the intervention set(Xi = xi) and, when solved for the distribution ofXj , yields the causal e�ect of Xi on Xj , denoted P (xjjx̂i).1 More generally, when anintervention forces a subset X of variables to attain �xed values x, then a subset ofequations is to be pruned from the model given in Eq. (4), one for each member ofX, thus de�ning a new distribution over the remaining variables, which completelycharacterizes the e�ect of the intervention. We therefore de�ne:De�nition 2.2 (causal e�ect) Given two disjoint sets of variables, X and Y , thecausal e�ect of X on Y is a function X �Y ! [0; 1], denoted P (yjx̂), which gives theprobability of Y = y induced by deleting from the model (8) all equations correspondingto variables in X and substituting X = x in the remaining equations. 2Clearly the graph corresponding to the reduced set of equations is an edge subgraph ofG from which all arrows entering X have been pruned. We will denote this subgraphby GX .1An explicit translation of interventions to \wiping out" equations from the model was �rstproposed by [Strotz & Wold 1960] and later used in [Fisher 1970] and [Sobel 1990]. Graphical rami-�cations of this interpretation were explicated �rst in [Spirtes et al. 1993] and later in [Pearl 1993c].An equivalent mathematical model, using event trees has been introduced by [Robins 1986, pp.1422-1425]. 7



An alternative (but operationally equivalent) account of intervention treats theforce responsible for the intervention as a variable within the system [Pearl 1993c].This is facilitated by representing the identity of the function fi itself as a variableFi and writing Xi = I(pai; Fi; �i) (6)where I is a 3-argument function de�ned byI(a; b; c) = fi(a; c) whenever b = fi:Thus, the impact of any external intervention that alters fi can be represented graph-ically as an added parent node Fi of Xi, and the e�ect of such an intervention can beanalyzed by Bayesian conditionalization, that is, by conditioning our probability onthe added variable having obtained the value fi.
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richer types of interventions. Multiple interventions would be represented by condi-tioning P 0 on a subset of the Fi's (taking values in their respective set(x0i)), while thepre-intervention probability function P would be viewed as the posterior distributioninduced by conditioning each Fi in P 0 on the value idle.Regardless of whether we represent interventions as a modi�cation of an existingmodel or as part of an augmented model, the result is a well-de�ned transformationbetween the pre-intervention and the post-intervention distributions. In the case ofan atomic intervention set(Xi = x0i), this transformation can be expressed in a simplealgebraic formula that follows immediately from Eq. (4) and De�nition 2.2:2P (x1; :::; xnjx̂0i) = ( P (x1;:::;xn)P (xi j pai) if xi = x0i0 if xi 6= x0i (9)This formula re
ects the removal of the term P (xi j pai) from the product decom-position of Eq. (2), since pai no longer in
uence Xi. Graphically, the removal of thisterm is equivalent to removing the links between pai and Xi while keeping the restof the network intact.The transformation given in Eq. (9) exhibits the following properties:1. An intervention set(xi) can a�ect only the descendants of Xi in G.2. For any set S of variables, we haveP (S j pai; x̂i) = P (S j xi;pai) (10)In other words, given Xi = xi and pai, it is super
uous to �nd out whetherXi = xi was established by external intervention or not. This can be seendirectly from the augmented network G0 (see Figure 2), since fXig [ pai d-separates Fi from the rest of the network, thus legitimizing the conditionalindependence S k Fi j (Xi;pai).3. A su�cient condition for an external intervention set(Xi = xi) to have the samee�ect on Xj as the passive observation Xi = xi is that Xi d-separate pai fromXj , that is, P (xjjx̂i) = P (xj j xi) if Xj k pai j Xi (11)The immediate implication of Eq. (9) is that, given the structure of the causaldiagram G in which all variables are observable, one can infer post-intervention distri-butions from pre-intervention distributions; hence, we can reliably estimate the e�ectsof interventions from passive (i.e., nonexperimental) observations. Of course, Eq. (9)does not imply that we can always substitute observational studies for experimen-tal studies, as this would require estimation of P (xi j pai). The mere identi�cation2Eq. (14) can also be obtained from the G-computation formula of [Robins 1986, p. 1423] andthe Manipulation Theorem of [Spirtes et al. 1993]. According to this source, Eq. (14) was \indepen-dently conjectured by Fienberg in a seminar in 1991".9



of pai (i.e., the direct causal factors of Xi) requires substantive causal knowledgeof the domain which is often unavailable. Moreover, even when we have su�cientsubstantive knowledge to structure the causal diagram (as in Figure 1) and identifypai, some members of pai may be unobservable, or latent, thus preventing estimationof P (xijpai). Fortunately, there are conditions for which a consistent estimate ofP (xjjx̂i) can be obtained even when the pai variables are latent. Moreover, simplegraphical tests can tell us when such conditions are satis�ed.3 Controlling Confounding Bias3.1 The Back-Door CriterionAssume we are given a causal diagram G together with nonexperimental data ona subset Xo of observed variables in G and we wish to estimate what e�ect theintervention set(Xi = xi) would have on some response variable Xj . In other words,we seek to estimate P (xjjx̂i) from a sample estimate of P (Xo). Applying Eq. (8), wecan writeP (xjjx̂i) = P 0(xj j Fi = set(xi))= XS P 0(xj j S;Xi = xi; Fi = set(xi))P 0(S j Fi = set(xi)) (12)where S is any set of variables. Clearly, if S satis�es the d-separation conditions(S k Fi)G0 and (Xj k Fi j (Xi;S))G0 (13)where G0 is the augmented diagram, then Eq. (12) can be reduced toP (xjjx̂i) =XS P (xj j S; xi)P (S) = ES[P (xj j S; xi)] (14)Thus, if we �nd a set S � Xo of observables satisfying Eq. (13), we can estimateP (xjjx̂i) by taking the expectation (over S) of P (xj j S; xi), and the latter can easilybe estimated from nonexperimental data.The conditions in Eq. (13) can be translated to equivalent d-separation conditionsin the original diagram G, which we name the back-door criterion [Pearl 1993b]:De�nition 3.1 (back-door) A set of variables S is said to satisfy the back-door cri-terion relative to an ordered pair of variables (Xi;Xj) in a DAG G if1. no node in S is a descendant of Xi, and2. S blocks every path between Xi and Xj which contains an arrow into Xi.Similarly, if X and Y are two disjoint subsets of nodes in G, then S is said to satisfythe back-door criterion relative to (X;Y ) if it satis�es the criterion relative to anypair (x; y) such that x 2 X and y 2 Y . 210
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Pratt & Schlaifer 1988, Rosenbaum 1989]. It is interesting to note that the condi-tions formulated in De�nition 3.1 are equivalent to those known as the strongly ig-norable treatment assignment (SITA) conditions in Rubin's model for causal e�ect[Rosenbaum & Rubin 1983] (see [Pearl 1993c] for detailed comparison). Reducingthe SITA conditions to a graphical criterion replaces judgments about counterfactualinteractions with formal procedures that can be applied to causal diagrams of anysize and shape. The reduction to a graphical criterion also facilitates the search foran optimal conditioning set S, namely, a set that minimizes measurement cost orsampling variability.This equivalence does not mean of course that one must specify the entire set ofpossible links between the variables before testing the ignorability conditions on thevariables of interest. If one feels comfortable to mentally marginalize out irrelevantvariables, a reduced graph would ensue, involving just a few, treatment-related vari-ables (as in the next subsection). Moreover, if one is prepared to make independencejudgments directly on potential-response variables, these too can be communicated ingraphical form [Pearl 1993c], combined with judgments involving measurable quanti-ties, and yield testable conditions of ignorability.Condition 1 of De�nition 3.1 re
ects the prevailing practice that \the concomitantobservations should be quite una�ected by the treatment" [Cox 1958, page 48]. Thenext subsection demonstrates how concomitants that are a�ected by the treatmentcan be used to facilitate causal inference. The emerging criterion, which we will namethe front-door criterion, will constitute the second building block of the general testfor identifying causal e�ects which will be formulated in Section 4.3.2 The Front-Door CriterionAssume that variable X6 in Figure 3 is the only observed variable in the graph otherthan Xi and Xj . Clearly, X6 does not satisfy any of the back-door conditions because(1) it is a descendant of Xi and (2) it does not block any of the back-door pathsbetween Xi and Xj. We shall now show that measurements of X6 can neverthelessfacilitate a consistent estimation of P (xjjx̂i). This can be shown by reducing the ex-pression for P (xjjx̂i) to formulae computable from the observed distribution functionP (xi; x6; xj). To that end, let us denote by U the compound variable consisting of alllatent variables between Xi and Xj (i.e., U = fX1; :::;X5g in Figure 3) and furtherdenote Xi byX;X6 by Z, and Xj by Y . Altogether, we now have a structure depictedin Figure 4, containing one unobserved variable U and three observed variables X,Z, and Y , with Z mediating the interaction between X and Y . We will assume thatP (x; z) > 0 for all values of x and z.The joint distribution function of all four variables is given by the productP (x; y; z; u) = P (yjz; u)P (zjx)P (xju)P (u)From Eq. (9), the intervention set(x) removes the factor P (xju) and induces the12
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(Unobserved)Figure 4:The identi�cation of the causal e�ect of X on Y is rendered possibleby observing an intermediate variable (Z).post-intervention distributionP (y; z; ujx̂) = P (yjz; u)P (zjx)P (u) (16)Summing over z and u, givesP (yjx̂) =Xz P (zjx)Xu P (yjz; u)P (u) (17)To eliminate u from the r.h.s. of Eq. (17), we use the two conditional independenceassumptions encoded in the graph of Figure 4P (ujz; x) = P (ujx) (18)P (yjx; z; u) = P (yjz; u) (19)which yields the equalityXu P (yjz; u)P (u) = Xx Xu P (yjz; u)P (ujx)P (x)= Xx Xu P (yjx; z; u)P (ujx; z)P (x)= Xx P (yjx; z)P (x) (20)and allows the reduction of Eq. (17) to the desired form:P (yjx̂) =Xz P (zjx)Xx0 P (yjx0; z)P (x0) (21)Since all factors on the r.h.s. of Eq. (21) are consistently estimable from nonexper-imental data, it follows that P (yjx̂) is estimable as well. Thus, we are in possessionof a nonparametric estimand for the causal e�ect of an X on a Y whenever we can�nd a mediating variable Z that meets the conditions of Eqs. (18) and (19).13



Eq. (21) can be interpreted as a two-step application of the back-door estimand.In the �rst step we �nd the causal e�ect of X on Z and, since there is no back-doorpath from X to Z, we simply haveP (zjx̂) = P (zjx)Next, we compute the causal e�ect of Z on Y , which we can no longer equate with theconditional probability P (yjz) because there is a back-door path Z  X  U ! Yfrom Z to Y . However, since X blocks (d-separates) this path, X can play the roleof a concomitant S in the back-door criterion, which allows us to compute the causale�ect of Z on Y in accordance with Eq. (14):P (yjx̂) =Xx0 P (yjx0; z)P (x0)Thus, Eq. (21) can be interpreted as a chain rule for causal e�ectsP (yjx̂) =Xz P (yjẑ)P (zjx̂) (22)which, of course, is valid only when there is no direct causal path from X to Y andno latent common cause of Z and Y .We summarize this result by a theorem, after formally de�ning the assumptions.De�nition 3.4 A set of variables Z is said to satisfy the front-door criterion relativeto an ordered pair of variables (X;Y ) if1. Z intercepts all directed paths from X to Y .2. There is no back-door path from X to Z.3. All back-door paths from Z to Y are blocked by X. 2Theorem 3.5 If Z satis�es the front-door criterion relative to (X;Y ), and P (x; z) >0, then the causal e�ect of X on Y is identi�able and is given by the formulaP (yjx̂) =Xz P (zjx)Xx0 P (yjx0; z)P (x0) (23)2 The conditions stated in De�nition 3.4 are overly restrictive; some of the back-door paths excluded by conditions 2 and 3 can in fact be allowed, as long as they areblocked by some concomitants. For example, the variable Z2 in Figure 1 satis�es afront-door-like criterion relative to (X;Z3) by virtue of Z1 blocking all back-door pathsfrom X to Z2 as well as those from Z2 to Z3. To allow the analysis of such intricatestructures, including nested combinations of back-door and front-door conditions, amore powerful symbolic machinery will be introduced in Section 5, one that willsidestep algebraic manipulations such as those used in the derivation of Eq. (20).But �rst let us look at an example illustrating possible applications of the front-doorcondition. 14



3.3 Example: Smoking and the Genotype TheoryConsider the century-old debate on the relation between smoking (X) and lung cancer(Y ) [Spirtes et al. 1993, pp. 291-302]. According to many, the tobacco industry hasmanaged to stay anti-smoking legislation by arguing that the observed correlationbetween smoking and lung cancer could be explained by some sort of carcinogenicgenotype (U) which involves inborn craving for nicotine.The amount of tar (Z) deposited in a person's lungs is a variable that promisesto meet the conditions listed in De�nition 3.4 above, thus �tting the structure ofFigure 4. To meet condition 1, we must assume that smoking cigarettes has no e�ecton the production of lung cancer except the one mediated through tar deposits. Tomeet conditions 2 and 3, we must assume that, even if a genotype is aggravating theproduction of lung cancer, it nevertheless has no e�ect on the amount of tar in thelungs except indirectly, through cigarette smoking. Finally, condition P (x; z) > 0of Theorem 3.5 requires that we allow that high levels of tar in the lungs could bethe result not only of cigarette smoking but also of other means (e.g., exposure toenvironmental pollutants) and that tar may be absent in some smokers (perhaps dueto an extremely e�cient tar-rejecting mechanism). Satisfaction of this last conditioncan be tested in the data.To demonstrate how we can assess the degree to which cigarette smoking increases(or decreases) lung cancer risk, we will assume a hypothetical study in which the threevariables, X;Y; and Z, were measured simultaneously on a large, randomly selectedsample from the population. To simplify the exposition, we will further assume thatall three variables are binary, taking on true (1) or false (0) values. A hypotheticaldata set from a study on the relations among tar, cancer, and cigarette smoking ispresented in Table 1. P (x; z) P (Y = 1jx; z)Group Type Group Size % of Cancer Cases(% of Population) in GroupX = 0; Z = 0 Non-smokers, No tar 47.5 10X = 1; Z = 0 Smokers, No tar 2.5 90X = 0; Z = 1 Non-smokers, Tar 2.5 5X = 1; Z = 1 Smokers, Tar 47.5 85Table 1It shows that 95% of smokers and 5% of non-smokers have developed high levels oftar in their lungs. Moreover, 81% of subjects with tar deposits have developed lungcancer, compared to only 9% among those with no tar deposits. Finally, within eachof these two groups, tar and no tar, smokers show a much higher percentage of cancerthan non-smokers.These results seem to prove that smoking is a major contributor to lung cancer.However, the tobacco industry might argue that the table tells a di�erent story { thatsmoking actually decreases, not increases, one's risk of lung cancer. Their argument15



goes as follows. If you decide to smoke, then your chances of building up tar depositsare 95%, compared to 5% if you decide not to smoke. To evaluate the e�ect of tardeposits, we look separately at two groups, smokers and non-smokers. The tableshows that tar deposits have a protective e�ect in both groups: in smokers, tardeposits lower cancer rates from 90% to 85%; in non-smokers, they lower cancer ratesfrom 10% to 5%. Thus, regardless of whether I have a natural craving for nicotine, Ishould be seeking the protective e�ect of tar deposits in my lungs, and smoking o�ersa very e�ective means of acquiring them.To settle the dispute between the two interpretations, we now apply the front-doorformula (Eq. (23)) to the data in Table 1. We wish to calculate the probability that arandomly selected person will develop cancer under each of the following two actions:smoking (setting X = 1) or not smoking (setting X = 0).Substituting the appropriate values of P (yjx), P (yjx; z), and P (x) givesP (Y = 1jset(X = 1)) = :05(:10 � :50 + :90 � :50) + :95(:05 � :50 + :85� :50)= :05 � :50 + :95� :45 = :4525P (Y = 1jset(X = 0)) = :95(:10 � :50 + :90 � :50) + :05(:05 � :50 + :85� :50)= :95 � :50 + :05� :45 = :4975 (24)Thus, contrary to expectation, the data prove smoking to be somewhat bene�cial toone's health.The data in Table 1 are obviously unrealistic and were deliberately crafted so asto support the genotype theory. However, the purpose of this exercise was to demon-strate how reasonable qualitative assumptions about the workings of mechanisms,coupled with nonexperimental data, can produce precise quantitative assessments ofcausal e�ects. In reality, we would expect observational studies involving mediatingvariables to refute the genotype theory by showing, for example, that the mediatingconsequences of smoking, such as tar deposits, tend to increase, not decrease, the riskof cancer in smokers and non-smokers alike. The estimand of Eq. (23) could then beused for quantifying the causal e�ect of smoking on cancer.4 A Calculus of InterventionThis section establishes a set of inference rules by which probabilistic sentences in-volving actions and observations can be transformed into other such sentences, thusproviding a syntactic method of deriving (or verifying) claims about interventions.We will assume that we are given the structure of a causal diagram G in which someof the nodes are observable while the others remain unobserved. Our main problemwill be to facilitate the syntactic derivation of causal e�ect expressions of the formP (yjx̂), where X and Y stand for any subsets of observed variables. By derivationwe mean step-wise reduction of the expression P (yjx̂) to an equivalent expressioninvolving standard probabilities of observed quantities. Whenever such reduction isfeasible, the causal e�ect of X on Y is identi�able (see De�nition 3.2).16



4.1 Preliminary NotationLet X;Y; and Z be arbitrary disjoint sets of nodes in a DAG G. We denote by GXthe graph obtained by deleting from G all arrows pointing to nodes in X. Likewise,we denote by GX the graph obtained by deleting from G all arrows emerging fromnodes in X. To represent the deletion of both incoming and outgoing arrows, we usethe notation GXZ (see Figure 5 for illustration). Finally, the expression P (yjx̂; z) �=P (y; zjx̂)=P (zjx̂) stands for the probability of Y = y given that Z = z is observedand X is held constant at x.4.2 Inference RulesArmed with this notation we are now able to formulate the three basic inference rulesof the proposed calculus. A proof is given in Appendix I.Theorem 4.1 Let G be a DAG associated with a causal model as de�ned in Eq. (4),and let P stand for the probability distribution of the variables in the models. For anydisjoint subsets of variables X;Y;Z, and W we have:Rule 1 Insertion/deletion of observationsP (yjx̂; z; w) = P (yjx̂; w) if (Y k ZjX;W )GX (25)Rule 2 Action/observation exchangeP (yjx̂; ẑ; w) = P (yjx̂; z; w) if (Y k ZjX;W )GXZ (26)Rule 3 Insertion/deletion of actionsP (yjx̂; ẑ; w) = P (yjx̂; w) if (Y k ZjX; W )GX; Z(W ) (27)where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX .Each of the inference rules above follows from the basic interpretation of the \x̂"operator as a replacement of the causal mechanism that connects X to its pre-actionparents by a new mechanism X = x introduced by the intervening force (as in Eqs.(7) - (8)). The result is a submodel characterized by the subgraph GX (named \ma-nipulated graph" in [Spirtes et al. 1993]) which supports all three rules.Rule 1 rea�rms d-separation as a valid test for conditional independence in the dis-tribution resulting from the intervention set(X = x), hence the graph GX . This rulefollows from the fact that deleting equations from the system does not introduce anydependencies among the remaining disturbance terms (see Eq. (4)).17



Rule 2 provides a condition for an external intervention set(Z = z) to have the samee�ect on Y as the passive observation Z = z. The condition amounts to fX [Wgblocking all back-door paths from Z to Y (in GX), since GXZ retains all (and only)such paths.Rule 3 provides conditions for introducing (or deleting) an external interventionset(Z = z) without a�ecting the probability of Y = y. The validity of this rulestems, again, from simulating the intervention set(Z = z) by the deletion of all equa-tions corresponding to the variables in Z (hence the graph GXZ).Corollary 4.2 A causal e�ect q: P (y1; :::; ykjx̂1; :::; x̂m) is identi�able in a modelcharacterized by a graph G if there exists a �nite sequence of transformations, eachconforming to one of the inference rules in Theorem 4.1, which reduces q into astandard (i.e., hat-free) probability expression. 2Whether the three rules above are su�cient for deriving all identi�able causale�ects remains an open question. However, the task of �nding a sequence of trans-formations (if such exists) for reducing an arbitrary causal e�ect expression can besystematized and executed by e�cient algorithms [Galles 1994]. As the next subsec-tion illustrates, symbolic derivations using the hat notation are muchmore convenientthan algebraic derivations that aim at eliminating the latent variables from standardprobability expressions (as in Section 3.2).4.3 Symbolic Derivation of Causal E�ects: An ExampleWe will now demonstrate how these inference rules can be used to derive causale�ect estimands in the structure of Figure 4 above. We will see that this structurepermits us to quantify the e�ect of every atomic intervention, using much simplercomputations than those used in the derivation of the front-door formula (Section3.2).The applicability of the inference rules requires that the d-separation conditionholds in various subgraphs of G; the structure of each subgraph varies with theexpressions to be manipulated. Figure 5 displays the graphs that will be needed forthe derivations that follow.Task-1, compute P (zjx̂)This task can be accomplished in one step, since G satis�es the applicability conditionfor Rule 2; namely, X k Z in GX (because the path X  U ! Y  Z is blockedby the collider at Y ) and we can writeP (zjx̂) = P (zjx) (28)Task-2, compute P (yjẑ)Here we cannot apply Rule 2 to exchange ẑ with z because GZ contains a back-doorpath from Z to Y : Z  X  U ! Y . Naturally, we would like to block this path18
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Figure 5:Subgraphs of G used in the derivation of causal e�ects.by conditioning on variables (such as X) that reside on that path. Symbolically, thisinvolves conditioning and summing over all values of X,P (yjẑ) =Xx P (yjx; ẑ)P (xjẑ) (29)We now have to deal with two expressions involving ẑ, P (yjx; ẑ) and P (xjẑ). Thelatter can be readily computed by applying Rule 3 for action deletion:P (xjẑ) = P (x) if (Z k X)GZ (30)noting that, indeed, X and Z are d-separated in GZ . (This can also be veri�ed inG; manipulating Z will have no e�ect on X.) To reduce the former, P (yjx; ẑ), weconsult Rule 2: P (yjx; ẑ) = P (yjx; z) if (Z k Y jX)GZ (31)noting that X d-separates Z from Y in GZ . This allows us to write Eq. (29) asP (yjẑ) =Xx P (yjx; z)P (x) = ExP (yjx; z) (32)which is a special case of the back-door formula (Eq. (14)) with S = X. The legit-imizing condition, (Z k Y jX)GZ , o�ers yet another graphical test for the ignorabilitycondition of [Rosenbaum & Rubin 1983].19



Task-3, compute P (yjx̂)Writing P (yjx̂) =Xz P (yjz; x̂)P (zjx̂) (33)we see that the term P (zjx̂) was reduced in Eq. (28) but that no rule can be appliedto eliminate the \hat" symbol ^ from the term P (yjz; x̂). However, we can add a ^symbol to this term via Rule 2 P (yjz; x̂) = P (yjẑ; x̂) (34)since the applicability condition (Y k ZjX)GXZ , holds true (see Figure 5). We cannow delete the action x̂ from P (yjẑ; x̂) using Rule 3, since Y k XjZ holds in GXZ.Thus, we have P (yjz; x̂) = P (yjẑ) (35)which was calculated in Eq. (32). Substituting Eqs. (32), (35), and (28) back intoEq. (33) �nally yields P (yjx̂) =Xz P (zjx)Xx0 P (yjx0; z)P (x0) (36)which is identical to the front-door formula of Eq. (23).Task-4, compute P (y; zjx̂)P (y; zjx̂) = P (yjz; x̂)P (zjx̂)The two terms on the r.h.s. were derived before in Eqs. (28) and (35), from which weobtain P (y; zjx̂) = P (yjẑ)P (zjx)= P (zjx)Px0 P (yjx0; z)P (x0) (37)Task-5, compute P (x; yjẑ)P (x; yjẑ) = P (yjx; ẑ)P (xjẑ)= P (yjx; z)P (x) (38)The �rst term on the r.h.s. is obtained by Rule 2 (licensed by GZ) and the secondterm by Rule 3 (as in Eq. (30)).Note that in all the derivations the graph G has provided both the license forapplying the inference rules and the guidance for choosing the right rule to apply.20



5 Graphical Tests of Identi�abilityIn the example above, we were able to compute all expressions of the form P (rjŝ)where R and S are subsets of observed variables. In general, this will not be thecase. For example, there is no general way of computing P (yjx̂) from the observeddistribution whenever the causal model contains the bow-pattern shown in Figure6, in which X and Y are connected by both a causal link and a confounding arc.A confounding arc represents the existence in the diagram of a back-door path thatcontains only unobserved variables and has no converging arrows. For example, thepath X;Z0; B; Z3 in Figure 1 can be represented as a confounding arc between X andZ3. A bow-pattern represents an equationY = fY (X;U; �X)where U is unobserved and dependent on X. Such an equation does not permit theidenti�cation of causal e�ects since any portion of the observed dependence betweenX and Y may always be attributed to spurious dependencies mediated by U .The presence of a bow-pattern prevents the identi�cation of P (yjx̂) even whenit is found in the context of a larger graph, as in Figure 6(b). This is in contrastto linear models, where the addition of an arc to a bow-pattern can render P (yjx̂)identi�able. For example, if Y is related to X via a linear relation Y = bX + U ,where U is a zero-mean disturbance possibly correlated with X, then b = E(Y jx̂)=xis not identi�able. However, adding an arc Z ! X to the structure (that is, �nding avariable Z that is correlated withX but not with U) would facilitate the computationof E(Y jx̂) via the instrumental-variable formula [Angrist et al. 1993]:b = E(Y jx̂)x = E(Y jz)E(Xjz) = RyzRxz (39)In nonparametric models, adding an instrumental variable Z to a bow-pattern (Figure6(b)) does not permit the identi�cation of P (yjx̂). This is a familiar problem in theanalysis of clinical trials in which treatment assignment (Z) is randomized (hence, nolink enters Z), but compliance is imperfect. The confounding arc between X and Yin Figure 6(b) represents unmeasurable factors which in
uence both subjects' choiceof treatment (X) and subjects' response to treatment (Y ). In such trials, it is notpossible to obtain an unbiased estimate of the treatment e�ect P (yjx̂) without makingadditional assumptions on the nature of the interactions between compliance andresponse. One can calculate bounds on P (yjx̂) [Robins 1989][Manski 1990, Sec. 1g]and the upper and lower bounds may even coincide for certain types of distributionsP (x; y; z) [Balke & Pearl 1993], but there is no way of computing P (yjx̂) for everydistribution P (x; y; z).A general feature of nonparametric models is that the addition of arcs to a causaldiagram can impede, but never assist, the identi�cation of causal e�ects. This is be-cause such addition reduces the set of d-separation conditions carried by the diagramand, hence, if a causal e�ect derivation fails in the original diagram, it is bound to21



fail in the augmented diagram as well. Conversely, any causal e�ect derivation thatsucceeds in the augmented diagram (by a sequence of symbolic transformations, asin Corollary 4.2) would succeed in the original diagram.
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5.1 Identifying ModelsFigure 7 shows simple diagrams in which the causal e�ect of X on Y , P (yjx̂), is iden-ti�able. Such structures are called identifying because their structures communicatea su�cient number of assumptions (missing links) to permit the identi�cation of thetarget quantity P (yjx̂). Latent variables are not shown explicitly in these diagrams;rather, such variables are implicit in the confounding arcs (dashed lines). Every causaldiagram with latent variables can be converted to an equivalent diagram involvingmeasured variables interconnected by arrows and confounding arcs. This conversioncorresponds to substituting out all latent variables from the structural equations ofEq. (4) and then constructing a new diagram by connecting any two variables Xiand Xj by (1) an arrow from Xj to Xi whenever Xj appears in the equation for Xiand (2) a confounding arc whenever the same � term appears in both fi and fj. Theresult is a diagram in which all unmeasured variables are exogenous and mutuallyindependent.Several features should be noted from examining the diagrams in Figure 7.
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Figure 7:Typical models in which the total e�ect of X on Y is identi�able. Dashedlines represent confounding paths, and Z represents observed covariates.1. Since the removal of any arc or arrow from a causal diagram can only assist23



the identi�ability of causal e�ects, P (yjx̂) will still be identi�ed in any edge-subgraph of the diagrams shown in Figure 7.2. Likewise, the introduction of mediating observed variables onto any edge ina causal graph can assist, but never impede, the identi�ability of any causale�ect. Therefore, P (yjx̂) will still be identi�ed from any graph obtained byadding mediating nodes to the diagrams shown in Figure 7.3. The diagrams in Figure 7 are maximal, in the sense that the introduction ofany additional arc or arrow onto an existing pair of nodes would render P (yjx̂)no longer identi�able.4. Although most of the diagrams in Figure 7 contain bow-patterns, none of thesepatterns emanates from X (as is the case in Figure 8(a) and (b) below). Ingeneral, a necessary condition for the identi�ability of P (yjx̂) is the absence ofa confounding arc between X and any child of X that is an ancestor of Y .5. Diagrams (a) and (b) in Figure 7 contain no back-door paths betweenX and Y ,and thus represent experimental designs in which there is no confounding biasbetween the treatment (X) and the response (Y ) (i.e., X is strongly ignorablerelative to Y [Rosenbaum & Rubin 1983]); hence, P (yjx̂) = P (yjx). Likewise,diagrams (c) and (d) in Figure 7 represent designs in which observed covari-ates, Z, block every back-door path between X and Y (i.e., X is conditionallyignorable given Z [Rosenbaum & Rubin 1983]); hence, P (yjx̂) is obtained fromP (yjx) by standard adjustment for Z (as in Eq. (15)):P (yjx̂) =Xz P (yjx; z)P (z)6. For each of the diagrams in Figure 7, we can readily obtain a formula forP (yjx̂), by using symbolic derivations patterned after those in Section 4.3. Thederivation is often guided by the graph topology. For example, diagram (f) inFigure 7 dictates the following derivation. WritingP (yjx̂) = Xz1;z2 P (yjz1; z2; x̂)P (z1; z2jx̂)we see that the subgraph containing fX;Z1; Z2g is identical in structure to thatof diagram (e), with (Z1; Z2) replacing (Z; Y ), respectively. Thus, P (z1; z2jx̂)can be obtained from Eq. (37). Likewise, the term P (yjz1; z2; x̂) can be reducedto P (yjz1; z2; x) by Rule 2, since (Y k XjZ1; Z2)GX . Thus, we haveP (yjx̂) = Xz1;z2 P (yjz1; z2; x) P (z1jx) Xx0 P (z2jz1; x0) P (x0) (41)Applying a similar derivation to diagram (g) of Figure 7 yieldsP (yjx̂) =Xz1 Xz2 Xx0 P (yjz1; z2; x0)P (x0)P (z1jz2; x)P (z2) (42)24



Note that the variable Z3 does not appear in the expression above, which meansthat Z3 need not be measured if all one wants to learn is the causal e�ect of Xon Y .7. In diagrams (e), (f), and (g) of Figure 7, the identi�ability of P (yjx̂) is ren-dered feasible through observed covariates, Z, that are a�ected by the treat-ment X (i.e., Z being descendants of X). This stands contrary to the warn-ing, repeated in most of the literature on statistical experimentation, to refrainfrom adjusting for concomitant observations that are a�ected by the treatment[Cox 1958, Rosenbaum 1984, Pratt & Schlaifer 1988]. It is commonly believed[Pratt & Schlaifer 1988] that if a concomitant Z is a�ected by the treatment,then it must be excluded from the analysis of the total e�ect of the treatment.The reason given for the exclusion is that the calculation of total e�ects amountsto integrating out Z, which is functionally equivalent to omitting Z to beginwith. Diagrams (e), (f), and (g) show cases where one wants to learn the to-tal e�ects of X and, still, the measurement of concomitants that are a�ectedby X (e.g., Z, or Z1) is necessary. However, the adjustment of (needed forsuch concomitants is nonstandard, involving two or more stages of the standardadjustment of Eq. (15), (see Eqs. (23), (41), and (42)).8. In diagrams (b), (c), and (f) of Figure 7, Y has a parent whose e�ect on Yis not identi�able yet the e�ect of X on Y is identi�able. This demonstratesthat local identi�ability is not a necessary condition for global identi�ability. Inother words, to identify the e�ect of X on Y we need not insist on identifyingeach and every link along the paths from X to Y .5.2 Nonidentifying ModelsFigure 8 presents typical graphs in which the total e�ect of X on Y , P (yjx̂), is notidenti�able. Noteworthy features of these graphs are as follows.1. All graphs in Figure 8 contain unblockable back-door paths between X andY , that is, paths ending with arrows pointing to X which cannot be blockedby observed nondescendants of X. The presence of such a path in a graph is,indeed, a necessary test for nonidenti�ability (see Theorem 3.3). It is not asu�cient test, though, as is demonstrated by Figure 7(e), in which the back-door path (dashed) is unblockable and yet P (yjx̂) is identi�able.2. A su�cient condition for the nonidenti�ability of P (yjx̂) is the existence of aconfounding path between X and any of its children on a path from X to Y , asshown in Figure 8(b) and (c). A stronger su�cient condition is that the graphcontain any of the patterns shown in Figure 8 as an edge-subgraph.3. With the exception of (c) and (h) all the graphs in Figure 8 are minimal, thatis, P (yjx̂) is rendered identi�able by removing any arc or arrow from any ofthese graphs. 25
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domized trial, then we can measure P (x; yjẑ), from which we can compute P (yjx̂)using P (yjx̂) = P (yjx; ẑ) = P (y; xjẑ)=P (xjẑ) (43)The validity of Eq. (43) can be established by �rst applying Rule 3 to add ẑ,P (yjx̂) = P (yjx̂; ẑ) because (Y k ZjX)GXZthen applying Rule 2 to exchange x̂ with x:P (yjx̂; ẑ) = P (yjx; ẑ) because (Y k XjZ)GXZThe use of surrogate experiments is not uncommon. For example, if we are inter-ested in assessing the causal e�ect of cholesterol levels (X) on heart disease (Y ), areasonable experiment to conduct would be to control subjects' diet (Z), rather thanexercising direct control over cholesterol levels in subjects' blood.The derivation leading to Eq. (43) explicates the conditions for qualifying a pro-posed variable Z as a surrogate for X: there must be no confounding path betweenX and Y and no direct path from Z to Y . Translated to our cholesterol example,this condition requires that there be no direct e�ect of diet on heart conditions andno confounding e�ect between cholesterol levels and heart disease.Note that, according to Eq. (43), only one level of Z su�ces for the identi�cationof P (yjx̂), for any values of y and x. In other words, Z need not be varied at all, justheld constant by external force, and, if the assumptions embodied in G are valid, ther.h.s. of Eq. (43) should attain the same value regardless of the level at which Z isbeing held constant. In practice, however, several levels of Z will be needed to ensurethat enough samples are obtained for each desired value of X. For example, if we areinterested in the di�erence E(Y jx̂1)� E(Y jx̂2), then we should choose two values z1and z2 of Z which maximize the number of samples in x1 and x2, respectively, andestimate E(Y jx̂1)� E(Y jx̂2) = E(Y jx1; ẑ1)� E(Y jx2; ẑ2)Figure 8(h) illustrates a more general condition for admitting a surrogate exper-iment. Unlike the condition leading to Eq. (43), randomizing Z now leaves a con-founding arc between X and Y . This arc can be neutralized through the mediatingvariable W , as in the front-door criterion of Eq. (23), and yields the formulaP (yjx̂) =Xw P (wjx; ẑ)Xx0 P (yjw; x0; ẑ)P (x0jẑ)Thus, the more general conditions for admitting a surrogate variable Z are:1. X intercepts all directed paths from Z to Y , and,2. P (yjx̂) is identi�able in GZ . 27



6 DiscussionThe major limitation of the methods proposed in this paper is that the results mustrest on the causal assumptions embedded in the graph, and that these cannot be testedin observational studies (though some of the assumptions are subject to falsi�cationtests [Pearl 1994a]). However, because any causal inferences from observational stud-ies must ultimately rely on some kind of causal assumptions about the domain, themethods described in this paper o�er an e�ective language for making those assump-tions precise and explicit, so they can be isolated for deliberation or experimentationand, once validated, be integrated with statistical data.A second limitation concerns an assumption inherent in identi�cation analysis,namely, that the sample size is so large that sampling variability may be ignored.The mathematical derivation of causal-e�ect estimands should therefore be consid-ered a �rst step toward supplementing these estimands with con�dence intervals andsigni�cance levels, as in traditional analysis of controlled experiments.We should remark, though, that having obtained nonparametric estimands forcausal e�ects does not imply that one should refrain from using parametric formsin the estimation phase of the study. Prior information about shapes of distribu-tions and the nature of causal interactions can be incorporated into the analysis bylimiting the distributions in the estimand formulas to speci�c parametric family offunctions. For example, if the assumptions of Gaussian, zero-mean disturbances andadditive interactions are deemed reasonable, then the estimand given in Eq. (23) canbe converted to the product E(Y jx̂) = Rxz�zy�xx (44)where �zy�x is the standardized regression coe�cient [Pearl 1994a], and the estimationproblem reduces to that of estimating regression coe�cients (e.g., by least-squares).More sophisticated estimation techniques, tailored speci�cally for causal inference,can be found in [Robins 1989, Sec. 17][Robins et al. 1992, pp. 331-333].Several extensions of the methods proposed in this paper are noteworthy. First,the analysis of atomic interventions can be generalized to complex policies in whicha variable X is made to respond in a speci�ed way to some set Z of other variables,say through a functional relationship X = g(Z) or through a stochastic relationshipwherebyX is set to x with probability P �(xjz). In [Pearl 1994b] it is shown that com-puting the e�ect of such policies is equivalent to computing the expression P (yjx̂; z). A second extension concerns the use of the intervention calculus (Theorem 3.3) innonrecursive models, that is, in causal diagrams involving directed cycles or feedbackloops. The basic de�nition of causal e�ects in term of \wiping out" equations from themodel (De�nition 2.2) still carries over to nonrecursive systems [Strotz & Wold 1960,Sobel 1990], but then two issues must be addressed. First, the analysis of identi-�cation must ensure the stability of the remaining submodels [Fisher 1970]. Sec-ond, the d-separation criterion for DAGs must be extended to cover cyclic graphs as28



well. The validity of d-separation has been established for nonrecursive linear modelsand extended, using an augmented graph, to any arbitrary set of stable equations[Spirtes 1994]. However, the computation of causal e�ect estimands will be harderin cyclic networks, because symbolic reduction of P (yjx̂) to hat-free expressions mayrequire the solution of nonlinear equations.Finally, a few comments regarding the notation introduced in this paper. Tradi-tionally, statisticians have approved of only one method of combining subject-matterconsiderations with statistical data: the Bayesian method of assigning subjectivepriors to distributional parameters. To incorporate causal information within theBayesian framework, plain causal statements such as \Y is a�ected by X" must beconverted into sentences capable of receiving probability values, e.g., counterfactuals.Indeed, this is how Rubin's model has achieved statistical legitimacy: causal judg-ments are expressed as constraints on probability functions involving counterfactualvariables.Causal diagrams o�er an alternative language for combining data with causal in-formation. This language simpli�es the Bayesian route by accepting plain causalstatements as its basic primitives. These statements, which merely identify whethera causal connection between two variables of interest exists, are commonly used innatural discourse and provide a natural way for scientists to communicate experi-ence and organize knowledge. It is hoped, therefore, that the language of causalgraphs will �nd applications in problems requiring substantial use of subject-matterconsiderations.The language is not new. The use of diagrams and structural equations modelsto convey causal information has been quite popular in the social sciences and econo-metrics. Statisticians, however, have generally found these models suspect, perhapsbecause social scientists and econometricians have failed to provide an unambigu-ous de�nition of the empirical content of their models, that is, of the experimentalconditions under which the outcomes are constrained by a given structural equation.As a result, even such basic notions as \structural coe�cients" or \missing links" be-come the object of serious controversy [Freedman 1987] and con
icting interpretations[Wermuth 1993].To a large extent, this history of controversy and miscommunication stems fromthe absence of an adequate mathematical notation for de�ning basic notions of causalmodeling. Indeed, standard probabilistic notation cannot express the empirical con-tent of the coe�cient b in the structural equation Y = bX+U if one is not prepared toassume that U (an unobserved quantity) is uncorrelated with X. Nor can any prob-abilistic meaning be attached to the analyst's excluding from the equation certainvariables that are highly correlated with X or Y .The notation developed in this paper gives these notions a clear empirical inter-pretation, because it permits one to specify precisely what is being held constant ina controlled experiment. The meaning of b is simply E(Y jx̂)=x, namely, the (normal-ized) expectation of Y in an experiment in whichX is held constant (at x) by externalcontrol. This interpretation holds regardless of whether U and X are correlated and,29



moreover, the notion of randomization need not be invoked. Similarly, the analyst'sdecision as to which variables should be included in the equation for Y is based on ahypothetical controlled experiment in which several variables are controlled indepen-dently. A variable Z is excluded from the equation for Y if the analyst can identifysome other variable, say X, which, if held �xed, would prevent Z from in
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Appendix I (Proof of Theorem 4.1)1. Rule 1 follows from the fact that deleting equations from the model in Eq. (8)results, again, in a recursive set of equations in which all � terms are mutuallyindependent. The d-separation condition is valid for any recursive model, henceit is valid for the submodel resulting from deleting the equations for X. Finally,since the graph characterizing this submodel is given by GX , (Y k ZjX;W )GXimplies the conditional independence P (yjx̂; z; w) = P (yjx̂; w) in the post-intervention distribution.2. The graph GXZ di�ers from GX only in lacking the arrows emanating from Z,hence it retains all the back-door paths from Z to Y that can be found in GX .The condition (Y k ZjX;W )GXZ ensures that all back-door paths from Z toY (in GX) are blocked by fX;Wg. Under such conditions, setting (Z = z) orconditioning on Z = z has the same e�ect on Y . This can best be seen from theaugmented diagram G0X , to which the intervention arcs FZ ! Z were added. Ifall back-door paths from FZ to Y are blocked, the remaining paths from FZ toY must go through the children of Z, hence these paths will be blocked by Z.The implication is that Y is independent of FZ given Z, which means that theobservation Z = z cannot be distinguished from the intervention FZ = set(z).3. (After D. Galles) Consider the augmented diagramG0X to which the interventionarcs Fz ! Z are added. If (FZ k Y jW;X)G0X , then P (yjx̂; ẑ; w) = P (yjx̂; w).If (Y k ZjX;W )GX Z(W ), and (FZ 6k Y jW;X)G0X , there must be an unblockedpath from a member FZ0 of FZ to Y that passes either through a head-to-tailjunction at Z 0, or a head-to-head junction at Z 0. If there is such a path, let Pbe the shortest such path. We will show that P will violate some premise, orthere exists a shorter path, either of which leads to a contradiction.If the junction is head-to-tail, that means that (Y 6k Z 0jW;X)G0X , but (Y k Z 0jW;X)G0X Z(W ).So, there must be an unblocked path from Y to Z 0 that passes through somemember Z 00 of Z(W ) in either a head-to-head or a tail-to-head junction. Thisis impossible. If the junction is head-to-head, then some descendant of Z 00 mustbe inW for the path to be unblocked, but then Z 00 would not be in Z(W ). If thejunction is tail-to-head, there are two options : either the path from Z 0 to Z 00ends in a arrow pointing to Z 00, or an arrow pointing away from Z 00. If it endsin an arrow pointing away from Z 00, then there must be a head-to-head junctionalong the path from Z 0 to Z 00. In that case, for the path to be unblocked, Wmust be a descendant of Z 00, but then Z 00 would not be in Z(W ). If it ends inan arrow pointing to Z 00, then there must be an unblocked path from Z 00 to Yin GX that is blocked in GX Z(W ). If this is true, then there is an unblockedpath from FZ00 to Y that is shorter than P, the shortest path.If the junction through Z 0 is head-to-head, then either Z 0 is in Z(W ), in whichcase that junction would be blocked, or there is an unblocked path from Z 0 to34



Y in GX; Z(W ) that is blocked in GX . Above, we proved that this could notoccur.So (Y k ZjX;W )GX Z(W ) implies (FZ k Y jW;X)G0X , and thus P (yjx̂; ẑ; w) =P (yjx̂; w).
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