
ties 

Judea Pearl & Thomas Verma 

Cognitive Systems Laboratory 
UCLA Computer Science Department, Los Angeles, CA 90024-1600 

Abstract 

Data-dependencies of the type “x can tell us more about y given 
that we already know z ” can be represented in various formal- 
isms: Probabilistic Dependencies, Embedded-Multi-Valued 
Dependencies, Undirected Graphs and Directed-Acyclic Graphs 
(DAGs). This paper provides an axiomatic basis, called a semi- 
graph& which captures the structure common to all four types 
of dependencies and explores the expressive power of DAGs in 
representing various types of data dependencies. It is shown that 
DAGs can represent a richer set of dependencies than undirected 
graphs, that DAGs completely represent the closure of their 
specification bases, and that they offer an effective computational 
device for testing membership in that closure as well as inferring 
new dependencies from given inputs. These properties might ex- 
plain the prevailing use of DAGs in causal reasoning and seman- 
tic nets. 

The notion of relevance or informational dependency is basic 
to human reasoning. People tend to judge the 3-place relation- 
ships of mediated dependency (i.e., x influences y via z ) with 
clarity, conviction and consistency. For example, knowing the 
departure time of the last bus is considered relevant for assess- 
ing how long we are about to wait for the next bus. Yet, once 
we learn the current whereabouts of the next bus, the former 
no longer provides useful information. These common- 
sensical judgments are issued qualitatively and reliably and 
are robust to the uncertainties which accompany the assessed 
events. Consequently, if one aspires to construct common- 
sensical reasoning systems, it is important that the language 
used for representing knowledge should facilitate a quick 
detection of mediated dependencies by a few primitive opera- 
tions on the salient features of the representation scheme. 

Making effective use of information about dependen- 
cies is a computational necessity, essential in any reasoning. If 
we have acquired a body of knowledge z and now wish to as- 
sess the truth of proposition x, it is important to know whether 
it would be worthwhile to consult another proposition y, 
which is not in z . In the absence of such information, an infer- 
ence engine would spend precious time on derivations bearing 
no relevance to the task at hand. A similar necessity exists in 
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truth maintenance systems. If we face a new piece of evi- 
dence, contradicting our previously held assumptions, we 
must retract some of these assumptions and, again, the need 
arises of quickly identifying those that are relevant to the con- 
tradiction discovered. But how would relevance information 
be encoded in a symbolic system? 

Explicit encoding is clearly impractical because the 
number of (X , y , z ) combinations needed for reasoning tasks is 
astronomical. Relevance or dependencies are relationships 
which change dynamically as a function of the information 
available at any given time. Acquiring new facts may destroy 
existing dependencies as well as create new ones. For exam- 
ple, learning a child’s age destroys the dependency between 
the size of his shoes and his reading ability, while learning 
that a patient suffers from a given symptom creates new 
dependencies between the diseases that could account for the 
symptom. What logic would facilitate these two modes of 
reasoning? 

B. my Logic? 

In probability theory, the notion of informational relevance is 
given precise quantitative underpinning using the device of 
conditional independence, which successfully captures our in- 
tuition about how dependencies should change with learning 
new facts. A variable x is said to be independent of y) given 
the information 2, if 

P(x,y Iz)=P(x Iz)P(y lz). (1) 

Clearly, x and y could be marginally dependent (i.e., depen- 
dent, when z is unknown) and become independent given z, 
and, conversely, x and y could be marginally independent and 
become dependent only upon learning the value of z. These 
dynamics are also captured by the qualitative notion of Em- 
bedded Multivalued Dependencies (F&MD) in relational data- 
bases. Thus, in principle, probability and database theories 
could provide the machinery for identifying which proposi- 
tions are relevant to each other with any given state of 
knowledge. 

Yet, it is flatly unreasonable to expect people or 
machines to resort to numerical equalities or relational tables 
in order to extract relevance information. FIuman behavior 
suggests that such information is inferred qualitatively from 
the organizational structure of human memory. Accordingly, 
it would be interesting to explore how assertions about 
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relevance can be inferred qualitatively and whether assertions 
similar to those of probabilistic or database dependencies can 
be derived logically without references to numbers or tables. 
Preliminary work related to probabilistic dependencies has 
been reported in [Pearl and Paz, 19861 and is extended in this 
paper to the qualitative notion of EIVIVD. 

Having a logic of dependency might be useful for testing 
whether a set of dependencies asserted by an expert is self- 
consistent and might also allow us to infer new dependencies 
from a given initial set of such relationships. However, such 
logic would not, in itself, guarantee that the inferences re- 
quired would be computationally tractable or that any se- 
quence of inferences would be psychologically meaningful, 
i.e., correlated with familiar mental steps taken by humans. 
To facilitate this latter feature, we must also make sure that 
most derivational steps in that logic correspond to simple local 
operations on structures depicting common-sensical associa- 
tions. We call such structures dependency graphs. 

The nodes in these graphs represent propositional vari- 
ables, and the arcs represent local dependencies among 
conceptually-related propositions. Graph representations are 
perfectly suited for meeting the requirements of explicitness, 
saliency and stability, i.e., the links in the graph permit us to 
qualitatievely encode dependence relationships, and the graph 
topology displays these relationships explicitly and preserves 
them, in fact, under any assignment of numerical parameters. 

It is not surprising, therefore, that graphs constitute the 
most common metaphor for describing conceptual dependen- 
cies. Models for human memory are often portrayed in terms 
of associational graphs (e.g., semantic networks woods, 
19751, constraint networks [Montanari, 19741, inference nets 
muda, Hart and Nilsson, 19761 conceptual dependencies 
[Schank 19721) and conceptual graphs [Sowa, 19831). 
Graph-related concepts are so entrenched in our language (e.g. 
“threads of thoughts,” “lines of reasoning,’ ’ “connected 
ideas,” “far-fetched arguments” etc.) that one wonders 
whether people can, in fact, reason any other way except by 
tracing links and arrows and paths in some mental representa- 
tion of concepts and relations. Therefore, a natural question to 
ask is whether the intuitive notion of informational relevancy 
or the formal notions of probabilistic and database dependen- 
cies can be captured by graphical representation, in the sense 
that all dependencies and independencies in a given model 
would be deducible from the topological properties of some 
graph. 

Despite the prevailing use of graphs as metaphors for 
communicating and reasoning about dependencies, the task of 
capturing dependencies by graphs is not at all trivial. When 
we deal with a phenomenon where the notion of neighborhood 
or connectedness is explicit (e.g., family relations, electronic 
circuits, communication networks, etc.), we have no problem 
configuring a graph which represents the main features of the 
phenomenon. However, in modeling conceptual relations 
such as causation, association and relevance, it is often hard to 

distinguish direct neighbors from indirect neighbors; so, the 
task of constructing a graph representation then becomes more 
delicate. The notion of conditional independence in probability 
theory provides a perfect example of such a task. For a given 
probability distribution P and any three variables x, y , z , 
while it is fairly easy to verify whether knowing z renders x 
independent of y , P does not dictate which variables should be 
regarded as direct neighbors. In other words, we are given the 
means to test whether any given element z intervenes in a re- 
lation between elements x and y, but it remains up to us to 
configure a graph that encodes these interventions. We shall 
see that some useful properties of dependencies and relevan- 
ties cannot be represented graphically and the challenge 
remains to devise graphical schemes that minimize such 
deficiencies. 

Ideally, we would like to represent dependency between ele- 
ments by a path connecting their corresponding nodes in some 
graph G. Similarly, if the dependency between elements x 
and y is not direct and is mediated by a third element, z, we 
would like to display z as a node that intercepts the connection 
between x and y , i.e., z is a cutset separating x from y . This 
correspondence between conditional dependencies and cutset 
separation in undirected graphs forms the basis of the theory 
of Markov fields [Lauritzen, 19821, and has been given an ax- 
iomatic characterization in [Pearl and Paz, 19861. 

The main weakness of undirected graphs stems from 
their inability to represent nontransitive dependencies; two in- 
dependent variables will end up being connected if there exists 
some other variable that depends on both. As a result, many 
useful independencies remain unrepresented in the graph. To 
overcome this deficiency, one can employ directed graphs and 
use the arrow directionality to distinguish between dependen- 
cies in various contexts. For instance, if the sound of a bell is 
functionally determined by the outcomes of two coins, we will 
use the network coin 1 + bell t coin 2, without connecting 
coin I to coin 2. This pattern of converging arrows is inter- 
preted as stating that the outcomes of the two coins are nor- 
mally independent but may become dependent upon knowing 
the outcome of the bell (or any external evidence bearing on 
that outcome). This facility of directed graphs forms the basis 
of causal networks which have a long tradition in the social 
sciences [Kenny, 19791, and have also been adopted for evi- 
dential reasoning tasks [Pearl, 19861. 

This paper treats directed graphs as a language of ex- 
pressing dependencies. Section II presents formal definitions 
for two models of data dependencies (Probabilistic and 
EMVD) and two models of graphical dependencies (undirect- 
ed and directed). An axiomatic definition is then provided for 
a relational structure called semi graphoid which covers all 
four models, thus formalizing the general notion of mediated 
dependence. Section III compares the expressive power of 
directed graphs to that of undirected graphs and shows the su- 
periority of the former. Section IV, explores the power of 
directed graphs to cover data dependencies of the type pro- 
duced by probabilistic or logical models. The main contibu- 
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tion of the paper lies in showing that directed acyclic graphs 
(DAGs) are powerful tools for encoding and inferring data 
dependencies of both types, identifying the scource of that 
power, and highlighting its limitations. 

Definition: An Undirected Graph Dependency model (UGD) 
& is defined in terms of an undirected graph G . If X, Y and 
2 are three disjoint subsets of nodes in G then by definition 
Z(X, 2, Y)o iff every path between nodes in X and Y contains 
at least one node in Z. In other words, 2 is a cutset separating 
X from Y. A complete axiomatization of UGD is given in 
[Pearl and Paz, 19861. 

Definition: A Directed Acyclic Graph Dependency model 
Definition: A Dependency Model M over a set of objects U is (DAGD) Mo is defined in terms of a directed acyclic graph 
any subset of triplets (X , 2, Y) where X , Y and Z are three dis- (DAG) G . If X, Y and Z are three disjoint subsets of nodes in 
joint subsets of U. The triplets in M represent independen- G , then by definition Z(X, Z, Y), iff there is no bi-directed 
ties, that is, (X, Z, Y) E M asserts that X and Y interact only path from a node in X to a node in Y along which every node 
via Z, or, “X is independent of Y given Z”. This statement is with converging arrows either is or has a descendent in Z and 
also written as Z(X, Z, Y) with an optional subscript to clarify every other node is outside Z . 
the type of the dependency when necessary. 

Definition: A Probabilistic Dependency model (PD) Mp is 
defined in terms of a probability distribution P over some set 
of variables U, i.e. a function mapping any instantiation of the 
variables in U to a non-negative real number such that the sum 
over the range of P is unity. If X, Y and Z are three subsets 
of U and x, y and z any instantiation of the variables in these 
subsets, then by definition I (X , Z , Y), iff 

P(x Izy)=P(x lz) (2) 

The latter condition corresponds to ordinary cutset 
separation in undirected graphs while the former conveys the 
idea that the inputs of any causal mechanism become depen- 
dent once the output is known. This criteriorn was called d- 
separation in [Pearl, 19861. In Figure 1, for example, X = 12) 
and Y = 13) are d -separated by Z = {l) (i.e. (2,1,3) E MG ) be- 
cause knowing the common cause 1 renders its two possible 
consequences, 2 and 3, independent. However X and Y are not 
d-separated by Z’ = {l, 51 because learning the value of the 
consequence 5, renders its causes 2 and 3 dependent, like 
opening a pathway along the converging arrows at 4. This definition is equivalent to that given in (1) and conveys 

the idea that, once Z is fixed, knowing Y can no longer 
influence the probability of X . pawid, 19791. 

Definition: A dependency model iV is said to be in PD, M E 
PD, if there exists a probability distribution P such that the 
definition above @q.(2)) holds for every triplet (X, Z, Y) in M . 
Thus, PD (and, similarly, PD-, UGD, DAGD, and SG defined 
below) represents a class of dependency models, all sharing a 
common criterion for selecting triplets in M . 

Definition: A Non-Extreme Probabilistic Dependency model 
(PO-) is any model Mp in PD where the range of P is restrict- 
ed to the positive real numbers, (Le., excluding O’s and l’s). 

Figure 1. A DAG displaying d-separation: (2,1,3) E 1Mc 
while (2,{1,51,3) d & 

Definition [Fagin, 19771: An Embedded Multivalued Depen- 
Definition: An I-map of a dependency model M is any model 

dency model (EMVD) MR is defined in terms of a database R 
11$ such that M’ c_ 1~. For example, the undirected graph 

over a set of attributes U, i.e. a set of tuples of values of the 
X&YisanZ-mapoftheDAGX+ZtY. 

attributes. The notation <aI a2 * . + a,> is conventionally used 
to denote that the tuple is in the relation R. If X , Y and Z are 
three disjoint subsets of U and x1, x2, yl,y2, z any instantia- 
tions of the corresponding attributes in X , Y and Z, then by 
definition Z (X , Z, Y), iff 

Definition: A D-map of a dependency model M is any model 
M’ such that M’ 1 M. For example, if a relation R contains all 
tuples having non-zero probability in P then MR is a D -map of 
IM,. 

CXlYlZ >& <x2yzz > 3 cx1y2z > (3) 

In other words, the existence of the subtuples c x t y I z > and 
cx2y2z > guarantees the existence of cx1y2z >. EMVD is a 
powerful class of dependencies used in databases and it con- 
veys the idea that, once Z is fixed, knowing Y cannot further 
restrict the range of values permitted for X. This definition 
was also used by Shenoy and Shafer [1986] to devise a “‘qual- 
itative” extension of probabilistic dependencies. 

Definition: A Perfect-map of a dependency model M is any 
model M’ such that M’= M. For example, the undirected 
graph X-Z-Y is a perfect map of the DAG X + Z + Y . 

We will be primarily interested in mapping data depen- 
dencies into graphical structures, where the task of testing 
connectedness is easier than that of testing membership in the 
original model M. A D -map guarantees that vertices found to 
be connected are, indeed, dependent; however, it may occa- 
sionally display dependent variables as separated vertices. An 
Z-map works that opposite way: it guarantees that vertices 
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found to be separated always correspond to genuinely in- 
dependent variables but does not guarantee that all those 
shown to be connected are, in fact, dependent. Empty graphs 
are trivial D -maps, while complete graphs are trivial I-maps. 

AxIoMmc 
CHARAC3ERIZAllDNS 

Definition: A semi-graphoid (SG) is any dependency model 
M which is closed under the following properties: 

DATA DEPENDENCIES 

Symmetry: (X,Z,Y)E M <=> (Y,Z,X)E M I 

Decomposition (X,Z, YlV) E M =$ (X,Z, Y) E M 

Weak Union (X,Z,Yw)E M * (X,zw,Y)E M 
GRAPfllCAl. 

Contraction (X,ZY, W) & (X,Z, Y) E M * (X,Z, YW) E M(4) 
DEPENDENCIES 

E 

It is straight forward to show that all the specialized classes of 
dependency models presented thus far are semi-graphoids, and 
in view of this generality, these four properties are selected to 
represent the general notion of mediated dependence between 
items of information. 

With the exception of UGD, none of the specialized 
dependency classes possesses complete parsimonious ax- 
iomatization similar to that of semi-graphoids. EMVD is 
known to be non-axiomatizable by a bounded set of Horn 
clauses [Parker, 19801, and a similar result has recently been 
reported for DAGD [Geiger, 19871. PD is conjectured to be 
equivalent to SC (i.e., M E PD <=> M E SG) but no proof (nor 
disproof) is in sight. 

Figure 2.Hierarchy among six classes of dependency models. 

Definition: Let M be a dependency model from some class 44 
of dependency models. A subset B GM of triplets is a 
M-basis of M iff every model M’ E M which contains $3 -also 
contains M. Thus, a basis provides a complete encoding of the 
information contained in M; knowing B and M enables us, in 
principle, to decide what triplets belong to ~4. 

One of the main advantages of graphical representa- 
tions is that they posses extremely parsimonious bases and ex- 
tremely efficient procedures for testing membership in the cloy 
sures of these bases. For example, to encode all dependencies 
inferable from a given undirected graph G = (V, E) we need 
only specify the set of neighbors N(x) for each node x in G, 
and this corresponds to specifying a neighborhood basis: 

BN =i(x,N(x), U -x -N(x)),Vx E v) (6) 
Definition: A graphoid is any semi-graphoid M which is also 
closed under the following property: 

Intersection: 

(X,zY,W)h (X,zw,Y)E M =s(X,Z,Yw)E M (5) 

Testing membership of an arbitrary triplet (X , Z, Y) in the clo- 
sure of BN simply amounts to testing whether Z is a cutset of 
G separating the nodes in X from those in Y. 

It is straight forward to show that classes PD-, UGD, and 
DAGD are all graphoids. Only EMVDs and pure PDs do not 
comply to this axiom. 

DAGs also possess efficient bases; to encode all 
dependencies inferable from a given DAG G, we need only 
specify the parents PA(x) for each node x E G. To encode 
those in the form of a basis we arrange the nodes in any total - 

in UG, and permit the construction of graphical I-maps from 

The most important properties of graphoids [Pearl and 

local dependencies. By connecting each variable x to any sub- 
set of variables which renders x conditionally independent of 

Paz, 19861 are that they possess unique edge-minimal I-maps 

all other variables in U, we obtain a graph that is an I-map of 
u. Such local construction is not guaranteed for semi- 
graphoids. The reason this paper focuses on semi-graphoids is 
to include dependency models representing logical, functional 
and definitional constraints; such constraints are excluded 
from PD-. In Section IV, we will show that the use of DAG’s 
provides a local construction of I-maps for every semi- 
graphoid. The relationships between the six classes of depen- 
dency models are shown in the hierarchy of Figure 2, where 

order xi,. . . 

B =i(xi,PA(Xi),~Xxlt..., Xi-I]-PA(Xi)) I i=l,..., n), (7) 

,x, consistent with the arrows of G and construct 
the stratified set of triplets: 

stating that PA (Xi) d-separates xi from its other predecessors. 
B is a DAG-basis of G since the closure of B coincides with 
the independencies displayed by G . 

One would normally expect that the introduction of direc- 
tionabty into the language of graphs would render them more 
expressive, capable of portraying a more refined set of depen- 
dencies, e.g., non-transitive. Thus, it is natural to ask: 

arrows stand for set inclusions. 
1. Are all dependencies representable by undirected 

graphs also representable by a DAG? 

2. How well can DAGs represent the type of data depen- 
dencies induced by probabilistic or logical models? 
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while 
The second question will be treated in Section IV 

the answer to the first question is, clearly, negative. For 
instance, the dependency structure of the diamond-shaped 
graph of Fig.3(a) asserts the two independencies: 
Z(A,BC,D)andZ(B,AD,C). NoDAGcanexpressthesetwo 
relationships simultaneously and exclusively. If we direct the 
arrowsfromA toD,wegetZ(A,BC,D)butnotZ(B,AD,C); 
if we direct the arrows from B to C, we get the latter but not 
the former. This limitation will always be encountered in non- 
chordal graphs, i.e., graphs containing a chordless cycle of 
length 24 [Tarjan & Yannakakis, 19841; no matter how we 
direct the arrows, there will always be a pair of non-adjacent 
parents sharing a common child, a configuration which yields 
independence in undirected graphs but dependence in DAGs. 
This problem does not exists in chordal graphs and, conse- 
quently, we have 

Theorem 1: UGD and DAGD intersect in a class of depen- 
dency models representable by chordal graphs. 

Non-chordal graphs represent the one class of depen- 
dencies where undirected graphs exhibit expressiveness supe- 
rior to that of DAGs graphs. However, this superiority can be 
eliminated by the introduction of auxiliary variables. Consider 
the diamond-shaped graph of Figure 3(a). Introducing an aux- 
iliary variable E in the manner shown in Figure 3(b) creates a 
DAG model on five variables which also asserts Z (C , B , D ). 

Figure 3. Expressing dependencies of undirected graph (a) 
- - by a DAG (c) using auxiliary nodes. 

If we “clamp” the auxiliary variable E at some fixed value 
E = e i, as in-Figure 3(c), the dependency structure projected 
on A, B, C, D is identical to the original structure of Figure 
3(a),i.e.,Z(A,BC,D)andZ(B,AD,C). 

In general, since every arc C-D in an undirected graph 
is equivalent to the bi-directed path C +YtD (with E 
“clamped”), we have: 

Theorem 2: Every dependency model expressible by an un- 
directed graph is also expressible by a DAG, with some auxili- 
ary nodes. 

I-V. s? 
Suppose someone (e.g., an expert) provides us with a list L of 
positive and negative triplets, representing a set of indepen- 
dencies and dependencies in some (undisclosed) dependency 
model M, of a known class. Several questions arise: 

1. How can we test whether L is consistent and/or non 
redundant? 

2. How can we deduce all the implications of L, or, at 
least test whether a given triplet is logically implied by 
L? 

3. What additional triplets are required to make the model 
completely specified? 

These questions are extremely difficult to answer if M 
does not possess a convenient basis or if L does not coincide 
with that basis. Even in a neatly axiomatized system such as 
semi-graphoids the answers to these questions involve intract- 
able proof procedures. 

Graph representations can be harnessed to alleviate 
these difficulties; we construct a graph model that entails L 
and draw inferences from G instead of L. The quality of 
inferences will depend, of course, on how faithfully G cap- 
tures the closure of L. The following results (see [Verma, 
19871 for proofs) uncover the unique powers of DAGs in per- 
forming this task. 

Let Ua(“) represent the set of elements smaller than n 
under some total ordering 8 on the elements of U, i.e., 
{u E u I e(u) < e(n)]. 

efinition: A stratified protocol LO of a dependency model M 
is any set of pairs 

such that 

(-GWE Le~(X.SX,uqx)-Sx)E M (9) 

Intuitively, LB lists, for each x E U, a set of predecessors S, of 
x which renders x conditionally independent of all its other 
predecessors (in the order 0). In causal modeling, Le specifies 
the set of direct causes of event x. For example, the causal 
model of Figure 1 is specified by the protocol: 

L, = fo)), (2, ill), (3, fU), (4,129 31), (59 141) 

Stratified protocols were used in [Pearl 19861 to con- 
struct DAG representations (called Bayesian Networks) of 
probabilistic dependencies by connecting the elements in S, as 
direct parents of x . The following results justify this construc- 
tion and generalize it to any semi-graphoid, including, in par- 
ticular, the qualitative dependencies of EIMVD. 

The first result states that the DAG constructed in this 
fashion can faithfully be used to infer dependency informa- 
tion; any independence inferred from that DAG must be true 
in M and, furthermore, every independence which is implied 
by the protocol will be displayed in the DAG. 

Theorem 3: If M is any semi-graphoid then the DAG gen- 
erated from any stratified protocol L, of M is an Z -map of M . 

378 Default Reasoning 



Corrollary: If L, is any stratified protocol of some depen- 
dency model M , the DAG generated from L, is a perfect map 
of the semi-graphoid closure of L,. 

Another interesting corollary of Theorem 3 is a gen- 
eralization of the celebrated Mar&v-chain property. It states 
(informally) that if in a sequence of variables 
Xl,X,,*..,Xi *.* each Xi “shields” its successor Xj+l from 
the influence of its predecessors, then each Xi is “shielded” 
from all other variables by its two nearest neighbors, Xisl and 
xi+l- (The converse holds only in graphoids). This property 
has been used extensively in probability theory and Theorem 3 
permits its application to qualitative dependencies as well. 

Note that, since the topology of the DAG depends only 
on the set of child-parents pairs contained in the protocol, the 
order 0 used in generating Lo need not be known; Theorem 3 
holds for any generating order, and the only consistency re- 
quirement on the structure of L is that 10, , x) I y E S,) consti- 
tutes a partial order. 

The second result states that every independence in a 
semi-graphoid cau be inferred from at least one stratified pro- 
tocol. 

Theorem 4: If M is any semi-graphoid then the set of DAGs 
generated from all stratified protocols of M is a perfect map of 
Iki. (The criterion for separation relative to a set of DAGs is 
that d-separation must exist in at least one of the DAGs.) 

Thus, even though every triplet in a stratified protocol 
asserts an independency relative to a singleton element; the 
sum total of such triplets is sufficient to encode all the set-to- 
set independencies embedded in the semi-graphoid. 

This paper demonstrates that directed acyclic graphs (DAGs) 
possess powerful inferential properties. If an input set of 
dependencies is given in the form of a stratified protocol, then 
all implications of this input can be deduced efficiently, by 
graphical manipulations, instead of logical derivations. 

No equivalent protocol of similar parsimony is known 
to work for undirected graphs, unless the generating model is 
a full graphoid, namely, unless logical, functional and 
definitional constraints are excluded from the model. Thus, 
DAGs appear to provide powerful inference tools for handling 
data dependencies of the type encountered in both probabilis- 
tic and logical reasoning. This feature helps explain the pre- 
vailing use of DAGs in causal models and semantic nets. 
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