
-1-

A Discovery Algorithm for Directed Cyclic Graphs

Thomas Richardson1

Logic and Computation Programme
CMU, Pittsburgh PA 15213

1. Introduction
Directed acyclic graphs have been used fruitfully to represent causal
structures (see Pearl (1988)). However, in the social sciences and elsewhere
models are often used which correspond both causally and statistically to
cyclic graphs (Spirtes (1995)). Pearl (1993) discussed predicting the effects
of intervention in models of this kind, so-called linear non-recursive
structural equation models. This raises the question of whether it is possible
to make inferences about cyclic causal structure, from sample data. In
particular do there exist general, informative, feasible and reliable
procedures for inferring causal structure from conditional independence
relations among variables in a sample generated by an unknown causal
structure? In this paper I present a discovery algorithm that is correct in the
large sample limit, given commonly (but often implicitly) made plausible
assumptions, and which provides information about the existence or non-
existence of causal pathways from one variable to another. The algorithm is
polynomial on sparse graphs.

2. Directed Graph Models
A Directed Graph G consists of an ordered pair <V,E> where V is a set of
vertices, and E is a set of directed edges between vertices.2 If there are no
directed cycles3 in E then <V ,E> is called a Directed Acyclic Graph or
(DAG). A Directed Cyclic Graph (DCG) model (Spirtes (1995)) is an
ordered pair <G,P > consisting of a directed graph G (cyclic or acyclic) and
a joint probability distribution P over the set V in which certain conditional

1I thank P. Spirtes, C. Glymour, R. Scheines & C. Meek for helpful conversations.
Research supported by NSF grant 9102169.
2If <A,B>∈E then there is said to be an edge from A to B, represented by A→B. If
<A,B>∈E or <B,A>∈E, then in either case there is said to be an edge between A and B.
3By a ‘directed cycle’ I mean a directed path X0→X1…→Xn-1→X0 of n distinct vertices.

-2-

independence relations, encoded by the graph, are true.4 Directed Acyclic
Graph (DAG) models correspond to the special case in which G is acyclic.
The independencies encoded by a given graph are determined by a graphical
criterion called d-separation, as explained for the acyclic case in Pearl
(1988), and extended to the cyclic case in Spirtes (1995) (See also
Koster(1994)). The following definition can be applied to cyclic and acyclic
cases and is equivalent to Pearl’s in the latter:

Definition: d-connection / d-separation for directed graphs
For disjoint sets of vertices, X, Y and Z, X is d-connected to Y given Z
if and only if for some X∈X, and Y∈Y,5 there is an (acyclic) undirected

path U from X to Y, such that:
 (i) If there is an edge between A and B on U, and an edge between B

and C on U, and B∈Z, then B is a collider between A and C relative

to U, i.e. A→B←C is a subpath of U.

(ii) If B is a collider between A and C relative to U, then there is a
descendant D,6 of C, and D∈Z.

For disjoint sets of vertices, X, Y and Z, if X and Y are not d-connected
given Z then X and Y are said to be d-separated given Z.

The constraint relating G and P in a DCG model <G,P > is:

The Global Directed Markov Condition
A DCG model <G,P >, is said to satisfy the Global Directed Markov

Property if for all disjoint sets of variables A, B and C, if A is d-separated
from B given C in G then A ⊥⊥ B | C in P.7

This condition is important since a wide range of statistical models can be
represented as DAG models satisfying the Global Directed Markov
Condition, including recursive linear structural equation models with

4Since the elements of V , are both vertices in a graph, and random variables in a joint
probability distribution the terms ‘variable’ and ‘vertex' can be used interchangeably.
5Upper case Roman letters (V) are used to denote sets of variables, and plain face Roman
letters (V) to denote single variables. |V| denotes the cardinality of the set V.
6‘Descendant’ is defined as the reflexive, transitive closure of the ‘child’ relation, hence
every vertex is its own descendant. Similarly every vertex is its own ancestor.
7‘ X ⊥⊥ Y | Z’ means that ‘X is independent of Y given Z ’.

-3-

independent errors, regression models, factor analytic models, and discrete
latent variable models (via extensions of the formalism). An alternative, but
equivalent, definition of this condition is given by Lauritzen et al. (1990).

However, not all models can be represented thus as DAG models. Spirtes
(1995) has shown that the conditional independencies which hold in non-
recursive linear structural equation models8 are precisely those entailed by
the Global Directed Markov condition, applied to the cyclic graph naturally
associated with a non-recursive structural equation model9 with independent
errors. It can be shown that in general there is no DAG encoding the
conditional independencies which hold in such a model. Non-recursive
structural equation models are used to model systems with feedback, and
are applied in sociology, economics, biology, and psychology.
We make two assumptions connecting the probability distribution P and the
true causal graph G:

The Causal Markov Assumption:
A distribution generated by a causal structure represented by a directed
graph G satisfies the Global Directed Markov condition.
For linear structural equation models this is true by definition if the error
terms are independent.

The Causal Faithfulness Assumption
All conditional independence relations present in P are consequences of the
Global Directed Markov condition applied to the true causal structure G.

This is an assumption that any conditional independence relation true in P is
true in virtue of causal structure rather than a particular parameterization of
the model. (Further justification and discussion see Spirtes et al. 1993)

3 Discovery
(Cyclic or Acyclic) graphs G1 and G2 are Markov equivalent if any
distribution which satisfies the Global Directed Markov condition with

8A non-recursive structural equation model is one in which the matrix of coefficients not
fixed at zero is not lower triangular, for any ordering of the equations. (Bollen 1989)
9i.e. the directed graph in which X is a parent of Y, if and only if the coefficient of X in
the structural equation for Y is not fixed at zero by the model.

-4-

respect to one graph satisfies it with respect to the other and vice versa. The
class of graphs which are Markov Equivalent to G is denoted Equiv(G) .
It can be shown to follow from the fact that the Global Directed Markov
condition only places conditional independence constraints on distributions
that under this definition two graphs are Markov equivalent if and only if the
same d-separation relations hold in both graphs.

The Discovery Problem
Given an oracle for conditional independencies in a distribution P,
satisfying the Global Markov and Faithfulness conditions w.r.t. some
directed (cyclic or acyclic) graph G without hidden variables, is there an
efficient, reliable algorithm for making inferences about the structure of G?

Since if P satisfies the Global Markov and Faithfulness conditions w.r.t. to
G , then it also satisfies them w.r.t. every graph G * in Equiv(G) the
conditional independencies cannot distinguish between graphs in Equiv(G).
Thus a procedure solving the Discovery Problem will determine causal
features common to all graphs in a given Markov equivalence class
Equiv(G), given an oracle for conditional independencies in P .
I present an feasible (on sparse graphs) algorithm which outputs a list of
features common to all graphs in Equiv(G), given an oracle for conditional
independence relations in a distribution P, satisfying the Global Markov and
Faithfulness conditions w.r.t. some directed (cyclic or acyclic) graph G. The
strategy adopted is to construct a graphical object, called a Partial Ancestral
Graph (PAG) which represents features common to all graphs in the
Markov Equivalence class (See Figure 1).

Set of
conditional
independence
relations

Discovery
Algorithm

PAG
represents
features
common to

G 1

G n

Markov
Equivalence
Class

Figure 1

A PAG consists of a set of vertices V, a set of edges between vertices, and
a set of edge-endpoints, two for each edge, drawn from the set {o, –, >}.
In addition pairs of edge endpoints may be connected by underlining, or
dotted underlining. In the following definition '*' is used as a meta-symbol
indicating the presence of any one of {o, –, >}.

-5-

Partial Ancestral Graphs (PAGs)
Ψ is a PAG for Directed Cyclic Graph G with vertex set V, if and only if
(i) There is an edge between A and B in Ψ if and only if A and B are
d-connected in G given all subsets W ⊆ V\{A,B}.
(ii) If there is an edge in Ψ out of A (not necessarily into B), A–∗ B, then A
is an ancestor of B in every graph in Equiv(G).
(iii) If there is an edge in Ψ into B, A∗–>B, then in every graph in
Equiv(G), B is not an ancestor of A.
(iv) If there is an underlining A*—*B* —*C in Ψ then B is an ancestor of
(at least one of) A or C in every graph in Equiv(G).
(v) If there is an edge from A to B, and from C to B, (A→B←C), then the
arrow heads at B in Ψ are joined by dotted underlining, thus A—>B<—C,
only if in every graph in Equiv(G) B is not a descendant of a common child
of A and C.
(vi) Any edge endpoint not marked in one of the above ways is left with a
small circle thus: o—*.

Condition (i) differs from the other five conditions in stating necessary and
sufficient conditions for a symbol, an edge, to appear in a PAG. The other
five conditions merely give necessary conditions. For this reason there are
in fact many different PAGs for a graph G, though they all have the same
edges, though not necessarily endpoints. Some of the PAGs provide more
information than others about causal structure, e.g. they have fewer 'o's at
the end of edges.10 Some PAGs (providing less information) represent
graphs from different Markov equivalence classes. However, the PAGs
output by the discovery algorithm I present, provide sufficient information
so as to ensure that graphs with the features described by a particular PAG
all lie in one Markov equivalence class. By the definition of a PAG, if Ψ is
a PAG for G, then Ψ is also a PAG for every G * ∈Equiv(G). Hence a PAG
Ψ produced by the algorithm represents a unique Markov equivalence class.

10If one PAG has a '>' at the end of an edge, then every other PAG for the same graph
either has a '>' or a 'o' in that location. Similarly if one PAG has a '–' at the end of an
edge then every other PAG either has a '–' or an 'o' in that location.

-6-

Example:
A

B

X

Y

Equiv(G)
A

B

X

Y

A

B

X

Y

G

Figure 2

Consider the graph G in Figure 2. This graph entails that A ⊥⊥ B, and
A ⊥⊥ B | {X,Y} in any distribution P with respect to which it satisfies the
Global Directed Markov. In this case it can be proved that Equiv(G) includes
(only) the two graphs shown. Figure 3 shows the PAG given by the
algorithm I give, given a conditional independence oracle for a distribution
P satisfying the Global Directed Markov and Faithfulness w.r.t. G .

A

B

X

Y

A

B

X

Y

A

B

X

Y

PAG for
G given
by algorithm
(CCD)

Other PAGs
 for G

Figure 3

The PAG given by the algorithm allows us to make the following inferences
(among others) about every graph in Equiv(G), and hence about G :
(a) X is an ancestor of Y, and vice versa, hence there is a cycle.
(b) Neither X nor Y is an ancestor of A or B.
(c) Both A and B are ancestors of X and Y.
Note that not every edge in the PAG appears in every graph in Equiv(G).
This is because an edge in the PAG indicates only that the two variables
connected by the edge are d-connected given any subset of the other
variables. In fact it is possible to show that if there is an edge between two
vertices in a PAG, then there is a graph represented by the PAG in which
that edge is present. The algorithm I present does not always give the most
informative PAG for a given graph G in that there may be features common
to all graphs in the Markov equivalence class which are not captured by the
PAG the algorithm outputs. In this sense the algorithm is not complete,
though the algorithm is 'd-separation complete' in the sense that each PAG
it outputs represents a unique Markov equivalence class.
Two vertices, X, Y in a PAG are adjacent if there is an edge between them,
i.e. A*–*B. Adjacent(D,X) is the set of vertices adjacent to X in a PAG11

11Here as elsewhere '*' is a meta-symbol indicating any of the three ends -, o, >.

-7-

3.1 The Cyclic Causal Discovery (CCD) Algorithm

Input: A conditional independence oracle for a distribution P, satisfying
the Global Directed Markov and Faithfulness conditions w.r.t. a (cyclic or
acyclic) graph G with vertex set V.
(In practice of course statistical tests of conditional independence in sample
data take the place of the conditional independence oracle.)

Output: A PAG for the Markov equivalence class Equiv(G).
¶A Form a PAG E with an edge Xo–oY between every pair of vertices.
n =0
repeat
 repeat

Select an ordered pair of variables X and Y that are adjacent in E

s.t. |Adjacent(E,X)\{Y}| ≥ n, and a set S⊆ Adjacent(E,X)\{Y}
s.t. |S| =n.. If X ⊥⊥ Y | S, delete edge Xo-oY from E and record S
in Sepset(X,Y) and Sepset(Y,X).12

until all pairs of adjacent variables X,Y s.t. |Adjacent(E,X)\{Y}| ≥ n
and all sets S⊆ |Adjacent(E,X)\{Y}| s.t. |S| =n have been tested.
n =n +1;

until for all ordered pairs of adjacent vertices X,Y, |Adjacent(E,X)\{Y}|< n

¶B. For each triple of vertices A,B,C s.t. the pair A,B and the pair B,C are
each adjacent in E but the pair A, C are not adjacent in E , orient A∗—
∗B∗—∗C as A—>B<—C if and only if B ∉ Sepset<A,C>; orient A∗—
∗B∗—∗C as A∗—∗B∗—∗C if and only if B ∈ Sepset<A,C>.

¶C. For each triple of vertices <A,X,Y> in E such that (a) A is not adjacent
to X or Y, (b) X and Y are adjacent, (c) X ∉ Sepset<A,Y> then orient X
∗–∗Y as X<—Y if A \⊥⊥ X | Sepset<A,Y>.

¶D. For each vertex V in E form the following set: X∈Local(E ,V) ⇔ X
is adjacent to V in E, or there is a vertex Y s.t. X—>Y<—V in E .1 3

12Adjacent (E ,X) is updated when the graph E changes during ¶A. So
Y∉ Adjacent(E,X), X∉ Adjacent(E ,Y), after the edge Xo–oY is removed.
13Local(E,A) is not recalculated as the algorithm progresses.

-8-

m =0
repeat

repeat
select an ordered triple <A,B,C> such that A—>B<—C, A and C
are not adjacent, and |Local(E,A)\{B,C}| ≥ m, and a set T ⊆
Local(E,A)\{B,C}, | T |=m, and if A ⊥⊥ C | T∪{B} then orient
A — >B<—C as A—>B<—C, and record T ∪ {B} in
Supset<A,B,C>.

until for all triples such that A—>B<—C, (not A—>B<—C), A and C
are not adjacent, |Local(E,A)\{B}| ≥ m, every subset T⊆ Local(E ,A),
|T| = m has been considered.
m =m +1;

until for all ordered triples <A,B,C> s.t. A—>B<—C, A and C not
adjacent, are such that |Local(E,A)\{B}| < m.

¶E. If there is a quadruple <A,B,C,D> of distinct vertices in E such that (i)
A—>B<—C, (ii) A—>D<—C or A—>D<—C, (iii) B and D are adjacent,
then orient B∗–∗D as B—>D in E if D ∉ Supset<A,B,C>
else orient B∗–∗D as B∗—D.

¶F. For each quadruple <A,B,C,D> in E of distinct vertices s.t. D is not
adjacent to both A and C, and A—>B<—C, if A \⊥⊥ D | Supset<A,B,C>
∪ {D}, then orient B∗—∗D as B—>D in E

3.2 Soundness and Completeness

Theorem 1 (Soundness)
Given as input a conditional independence oracle for a distribution P,
satisfying the Global Directed Markov and Faithfulness assumptions w.r.t.
a (cyclic or acyclic) graph G, the CCD algorithm outputs a PAG Ψ for G .
The proof of Theorem 1 is given in §4.

Theorem 2 (d-separation Completeness)
If the CCD algorithm, when given as input conditional independence oracles
for distributions P1, P2 satisfying the Global Directed Markov and
Faithfulness w.r.t. graphs G1, G2, respectively produces as output PAGs

-9-

Ψ1, Ψ2 respectively, then Ψ1 ≡ Ψ2 if and only if G1 and G2 are Markov
equivalent.

The proof, (in Richardson(1996)) exploits the characterization of Markov
equivalence in Richardson (1994) to establish that if G1 and G2 are not
Markov equivalent then the algorithm produces different PAGs. (It follows
directly from Theorem 1 that if G1 and G2 are equivalent then Ψ1 ≡ Ψ2.)

3.3 Trace of CCD Algorithm
If given a conditional independence oracle for G in figure 2 the algorithm
runs as follows: (Steps ¶C and ¶F do not perform any orientations here.)

(1) ¶A
A || B | ∅
⇒ A o–o B edge removed
Sepset<A,B> =Sepset<B,A> = ∅

(3) ¶D
A || B | {X,Y}
Supset<A,X,B> = {X,Y} ⇒ A–>X<–B
Supset<A,Y,B> = {X,Y} ⇒ A–>Y<–B

(2) ¶B
X ∉ Sepset<A,B> ⇒ A–>X<–B
Y ∉ Sepset<A,B> ⇒ A–>Y<–B

(4) ¶E
A–>X<–B, A–>Y<–B, Xo–oY,
Y∈Supset<A,X,B> ⇒ Xo—Y
X∈Supset<A,Y,B> ⇒ X—Y

A

B

X

Y

A

B

X

Y

A

B

X

Y

⇒
¶B

A

B

X

Y

A

B

X

Y

⇒
¶A

⇒
¶D

⇒
¶E

3.4 Complexity of the CCD Algorithm

Let r = MaxDegree(G) = Max

Y∈V
X | Y ← X, or X ← Y in G{ },

k = MaxAdj(G) = Max

Y∈V
X | X is adjacent to Y in any PAG for G{ },14

and n = no. of vertices in G. It then follows that in searching (possibly

unsuccessfully) for Sepset<X,Y> for every pair of distinct variables X,Y,

Total no. of tests of

conditional independence in ¶A
 ≤ 2⋅ n

2() n−2

i()
i =0

k

∑ ≤
(k +1)n2(n − 2)k +1

k!
.

Since MaxAdj(G) ≤ (MaxDegree(G))2, this step is O(nr 2 +3). (Even as a

14Note k≠r since there may be an edge between two variables X∗–∗Y in a PAG for G,
even if there is no edge between X and Y in G

-10-

worst case complexity bound this is loose.) ¶C performs at most one
conditional independence test for each triple satisfying the conditions given,
so this step is O(n3). In searching (possibly unsuccessfully) for sets
Supset<X,Y,Z> for triples of distinct variables <X,Y,Z>

Total no. of tests of conditional

 independence in ¶D
 ≤ 3⋅ n

3() n−3

i()
i =0

m

∑ ≤
(m +1)n3(n − 3)m+1

m!

where m = Max
Y ∈V

|{X | Local(E,X)} in ¶D. Since m ≤ (MaxDegree(G))2, it
follows that ¶D is O(nr 2 +4) . ¶F performs at most one test for each
quadruple satisfying the conditions, so this step is O(n4). (¶B and ¶E do not
perform any tests). Hence the complexity of the algorithm is polynomial in
the number of vertices for graphs of fixed degree (r); it is of course
exponential in r. Although there are exponentially many conditional
independence facts to check, the algorithm exploits entailment relations
between to obviate checking most of them when the graph is sparse.

4 Proof of Theorem 1 (Soundness)
The proof proceeds by showing that each section of the algorithm makes
correct inferences from conditional independencies in P, to the structure of
any graph satisfying the Global Directed Markov and Faithfulness
conditions w.r.t. to P. If P satisfies the Global Directed Markov and
Faithfulness conditions w.r.t. a graph G, then X ⊥⊥ Y | Z , if and only if X
is d-separated from Y by Z in G . Hence the oracle for conditional
independencies can be thought of as an oracle for testing d-separation
relations in G.

Sections ¶A

Lemma 1: Given a PAG Ψ for graph G, if in G either (i) X→Y or (ii)
Y←X or (iii) there is some vertex Z, s.t. X→Ζ←Y, and Z is an ancestor of
X or Y (or both) then X and Y are adjacent in Ψ , i.e. X and Y are
d-connected given any subset S⊆V\{X,Y} of the other vertices in G.

Proof: If (i) holds then the path X→Y d-connects X and Y given any
subset S⊆V\{X,Y}, hence X and Y are adjacent in any PAG Ψ for graph
G. The case in which (ii) holds is equally trivial: X←Y is a d-connecting
path given any set S⊆V\{X,Y}. If (iii) holds there is a common child (Z) of

-11-

X and Y which is an ancestor of X or Y; therefore either there is a directed
path X→ Z→ A 1→ … A n→ Y (n ≥ 0), or there is a directed path
Y→Z→A1→…An→X. Suppose without much loss of generality that it is
the former. Let S be an arbitrary subset of the other variables
(S⊆V\{X,Y}). If S ∩ {Z, A 1…An} ≠ ∅ then X→Z ←Y is a d-connecting
path given S. If S ∩{Z, A 1…A n} = ∅ then X→Z→A 1→…A n→Y is
d-connecting given S. ∴

Lemma 2 In a graph G, with vertices V, if all of the following hold:15

(i) X is not a parent of Y in G

(ii) Y is not a parent of X in G

(iii) there is no vertex Z s.t. Z is a common child of X and Y, and Z is an
ancestor of X or Y

then for any set Q, X and Y are d-separated given T defined as follows:

S = Children(X) ∩ Ancestors({X,Y}∪ Q)

T = [Parents(S∪{X}) ∪ S]\[Descendants (Children(X)∩Children(Y)) ∪
 {X,Y}]

Proof: Every vertex in S is an ancestor of X or Y or Q. Every vertex in T
is either a parent of X, a vertex in S, or a parent of a vertex in S, hence
every vertex in T is an ancestor of X or Y or Q.
Claim: If (i),(ii) and (iii) hold then X and Y are d-separated by T.
Suppose there is an undirected path P d-connecting X and Y. Let W be the
first vertex on P. ((i) and (ii) imply W≠Y.) There are two cases:
Case 1 The path P goes X←W…Y.

Subcase A: W is not a descendant of a common child of X and Y.
In this case W∈T (Since W is a parent of X). Thus since W is a

non-collider on P, P is not d-connecting given T. Contradiction.
Subcase B: W is a descendant of a common child of X and Y.
In this case since X is a child of W, then X is a descendant of some
common child Z of X and Y. But then Z is an ancestor of X,
contradicting (iii).

Case 2 The path P goes X→W… Y.

15i.e. None of the conditions in the antecedent of Lemma 1 hold.

-12-

Subcase A: W is not a descendant of a common child of X and Y.
Let V be the next vertex on the path.

Sub-subcase a: The path P goes X→W←V…Y.

If P is d-connecting then some descendant of W is in T , but then
some descendant of W is an ancestor of X or Y or Q. So W is an
ancestor of X, Y or Q, hence W ∈ S. Moreover, since W is (by

hypothesis) not a descendant of a common child, V ≠ Y, and V is not

a descendant of a common child of X and Y. Now V is a parent of W,
W∈S, X≠V≠Y so V∈T. Hence P fails to d-connect given T.

Sub-subcase b: The path P goes X→W→V…Y.

 If P d-connects given T then W is either an ancestor of Y or some
vertex in T. However if W is an ancestor of some vertex in T, then W
is an ancestor of X, Y or Q, so W∈S. Since W is (by hypothesis) not

a descendant of a common child of X and Y, and X ≠ W ≠ Y, W

∈T . Since in this case W occurs as a non-collider on P, P fails to

d-connect given T. (This allows for the possibility that V=Y).
Subcase B: W is a descendant of a common child.
Thus Descendants (W) ∩ T = ∅, since descendants of W are also

descendants of common children of X and Y and so cannot occur in T.
Since no descendant of W is in T, if W occurs on d-connecting path P
then W is a non-collider on P. Suppose that there is a collider on P,
take the first collider on the path after W, let us say <A,B,C>, so that P
now takes the form: X→W→…→…→A→B←C…Y. Since <A,B,C>

is the first collider after W, it follows that B is a descendant of W. But if
P is d-connecting then there is some descendant D of B, s.t. D∈ T. But

then since D is a descendant of B, and B is a descendant of W,
D∈Descendants (W) which is a contradiction since Descendants (W) ∩ T
= ∅. Hence every vertex on P is a non-collider.

As there are no colliders on P it follows that W is an ancestor of Y. But
then W is a descendant of a common child of X and Y, and an ancestor
of Y. But this contradicts (iii).

This completes the proof of Lemma 2.∴

-13-

Corollary A
Given a graph G, and PAG Ψ for G , X and Y are adjacent in Ψ if and only
if one of the following holds in G: (a) X is a parent of Y, (b) Y is a parent
of X (c) There is some vertex Z which is a child of both X and Y, such that
Z is an ancestor of either X or Y (or both)
Proof: 'If' is proved by Lemma 1, 'Only if' by Lemma 2 with Q=∅ ∴

X and Y are said to be adjacent in G if at least one of (a), (b), (c) holds for
X,Y in G . By Corollary A X and Y are adjacent in G if and only if X and Y
are adjacent in every PAG for G. Therefore I refer to a pair of variables as
adjacent without specifying whether in a graph G or a PAG for G.

Corollary B
In a graph G, if X and Y are d-separated by some set R, then X and Y are
d-separated by a set T in which every vertex is an ancestor of X or Y.
Further, either T is a subset of the vertices adjacent to X or X is an ancestor
of Y.
Proof: Let S, T be the sets defined in Lemma 2 with Q=∅. By Lemma 2
X and Y are d-separated given T. Every vertex in S is an ancestor of X or
Y. Every vertex in T is either a parent of X, a vertex in S, or a parent of a
vertex in S, hence T ⊆ Ancestors{X,Y}. Moreover, every vertex in T is
either a parent of X, a child of X, or a parent V of some vertex C in S, s.t.
X→C. Any vertex in the first two categories is clearly adjacent to X. Any
vertex in the last category is adjacent to X if C is an ancestor of X. Since C
is in S, C is an ancestor of X or Y.
If X is not an ancestor of Y then no child C of X is an ancestor of Y, so C is
an ancestor of X; hence any parent V of C is also adjacent to X.∴

Lemma 3
If A and B are not adjacent, then either A and B are d-separated given a set
TA of vertices adjacent to A or by a set TB of vertices adjacent to B.

Proof: By Corollary B to Lemma 2, if A and B are not adjacent then A and

B are d-separated given TA where: SA = Children(A) ∩ Ancestors({A,B})

TA = (Parents(S ∪ {A}) ∪ S)\(Descendants (Children(A)∩Children(B))
∪ {A,B}),

-14-

Case 1: A is not an ancestor of B
From the Corollary B to Lemma 2, since A is not an ancestor of B,
TA ⊆ {X | X adjacent to A}.

Case 2: B is not an ancestor of A.
It follows again by symmetry that A and B are d-separated given TB,
where TB is defined symmetrically to TA in Case 1.

Case 3: B is an ancestor of A and A is an ancestor of B.
Now any vertex V in TA is either a child of A, a parent of A or a parent
of some vertex C in SA , s.t. A→C. Clearly vertices in the first two
categories are adjacent to A; as before, vertices in the last category are
adjacent to A if C is an ancestor of A. Any vertex in SA is an ancestor
of A or B. Since A is an ancestor of B, and B is an ancestor of A, it
follows that every vertex in SA is an ancestor of A, hence every vertex in
TA is adjacent to A. ∴

Let G be any graph satisfying the Global Markov and Faithfulness

conditions w.r.t. the distribution P given as input. To find a set which

d-separates some pair of variables A and B in G the algorithm tests subsets

of the vertices which are adjacent to A in E, and subsets of vertices which

are adjacent to B in E to see if they d-separate A and B. Since the vertices

which are adjacent to A and B in G are at all times a subset of the vertices

adjacent to A and B in E 16 Lemma 3 implies that step ¶A is guaranteed to

find a set which d-separates A and B, if any set d-separates A and B in G.

Section ¶B
Lemma 4 Suppose that Y is not an ancestor of X or Z or a set R. If there is
a set S, R⊂S, such that Y∈S and every proper subset T s.t. R⊆T⊂S, not
containing Y, d-connects X and Z then S d-connects X and Z.
Proof Let T * = Ancestors({X,Z}∪R)∩S. Now, R⊆T * , and T * is a
proper subset of S, so by hypothesis there is a d-connecting path, P,
conditional on T* . By the definition of a d-connecting path, every element

16This is because if a pair of vertices X,Y are adjacent in G then no set is found which
d-separates them hence the edge between X and Y in E is never deleted.

-15-

on P is either an ancestor of one of the endpoints, or T * . Moreover, by
definition, every element in T* is an ancestor of X or Z or R. Thus every
element on the path P is an ancestor of X or Z or R. Since neither Y nor any
element in S\T* is an ancestor of X or Z or R, it follows that no vertex in
S\T * lies on P. Since T * ⊂S the only way in which P could fail to
d-connect given S would be if some element of S\T* lay on the path (every
collider active given T * will remain active given S). Hence P still
d-connects X and Z given S.∴

S is said to be a minimal d-separating set for X and Y if X and Y are
d-separated given S, and are d-connected given any proper subset of S.

Corollary : If S is a minimal d-separating set for X and Y, then any vertex
in S is an ancestor of X or Y.
Proof: Follows by contraposition from Lemma 4 with R = ∅ ∴
This shows that the unshielded non-collider orientation rule in ¶B is correct:
If A and B, and B and C are adjacent, but Sepset(A,C) contains B, then by
the nature of the search procedure A and C are not d-separated given any
subset of Sepset(A,C) hence it follows that B is an ancestor of A or C,
hence A∗—∗B∗—∗C should be oriented as A∗-∗B∗-∗C.

I will make frequent use of the following Lemma, which I state here without

proof (It is a simple extension to the cyclic case of Lemma 3.3.1 in Spirtes

et al., 1993, p.376) The Lemma gives conditions under which a set of

d-connecting paths may be joined to form a single d-connecting path.

Lemma 3.3.1+ (Richardson 1994, p.82)
In a directed (cyclic or acyclic) graph G over a set of vertices V, IF R is a
sequence of distinct vertices in V from A to B, R ≡ <A≡X0,…Xn+1≡B>,
S ⊆ V \{A,B} and T is a set of undirected paths such that
(i) for each pair of consecutive vertices in R, Xi and Xi+1, there is a unique

undirected path in T that d-connects Xi and Xi+1 given S\{X i,Xi+1}.
(ii) if some vertex Xk in R, is in S, then the paths in T , that contain Xk as

an endpoint collide at Xk.

-16-

(iii) if for three vertices Xk–1, Xk, Xk+1 occurring in R, the d-connecting
paths in T between Xk–1 and Xk, and Xk and Xk+1, collide at Xk then Xk

has a descendant in S.
THEN there is a path U in G that d-connects A≡X0 and B≡Xn+1 given S.

Lemma 5: If A and B are adjacent, B and C are adjacent, and B is an
ancestor of A or C then A and C are d-connected given any set S\{A,C},
s.t. B ∉ S.
Proof: Without loss of generality, let us suppose that B is an ancestor of C.
It is sufficient to prove that A and C are d-connected conditional on S.
There are two cases to consider:

Case 1: Some (proper) descendant of B is in S.
It follows from Lemma 1 and the adjacency of A and B, that given any
set S, conditional on S\{A,B}, there is a d-connecting path from A to B,
and likewise a d-connecting path from B to C, conditional on S\{B,C}.
Since some descendant of B is in S\{A,C}, but B ∉ S\{A,C}, it follows
by Lemma 3.3.1+ that A and C are d-connected, since it does not matter
whether or not the path from A to B and from B to C collide at B.
Case 2: No descendant of B is in S.
Again by Lemma 1 there is a path d-connecting from A to B. Since no
descendant of B is in S the directed path B→…→C is also d-connecting.
Since B∉S, Lemma 3.3.1+ implies A and C are d-connected by S.∴

It follows by contraposition from Lemma 5 that if A and B are adjacent, B
and C are adjacent, A and C are d-separated given Sepset<A,C>, and
B∉Sepset<A,C>, then B is not an ancestor of A or C, hence ¶B correctly
orients A∗—∗B∗—∗C as A—>B<—C.

Section ¶C

Lemma 6: Suppose X is an ancestor of Y. If there is a set S such that A
and Y are d-separated given S, X and Y are d-connected given S, and
X∉S, then A and X are d-separated given S, and some subset T⊆S is a
minimal d-separating set for A and X.
Proof: Let X be an ancestor of Y. Let S be any set s.t. there is a path Q

-17-

which d-connects X and Y given S, X∉S, and A and Y are d-separated by
S. Suppose, for a contradiction, that there is a path P d-connecting A and X
given S. There are now two cases:
Case 1: Some descendant of X is in S. Since X∉S, and some descendant
of X is in S, Lemma 3.3.1+ implies that the d-connecting paths P and Q,
can be joined to form a path d-connecting A to Y given S, a contradiction.
Case 2: No descendant of X is in S. In this case since X is an ancestor of
Y, there is a d-connecting directed path Q* , X→…→Y, given S. By
Lemma 3.3.1+ P and Q* can be joined to form a path d-connecting A and
Y given S, a contradiction.

Thus under the conditions in the antecedent, S is a d-separating set for A
and X. Let T be the smallest subset of S which d-separates A and X, T is a
minimal d-separating set for A and X.∴

Lemma 7: Let A, X and Y be three vertices in a graph, s.t. X and Y are
adjacent. If there is a set S s.t. X∉S, A and Y are d-separated given S,
while A and X are d-connected given S, then X is not an ancestor of Y.
Proof: If X and Y are adjacent then X and Y are d-connected by every set
S, s.t. X,Y∉S. If there is a set S which d-separates A and Y but does not
contain any subset which d-separates A and X, where X is adjacent to Y,
and X ∉S, then S does not contain a (minimal) d-separating set for A and
X, hence, by Lemma 6 X is not an ancestor of Y.∴

¶C simply applies Lemma 7: If A and X are d-connected given
Sepset<A,Y>, and X ∉ Sepset<A,Y>, then since Sepset<A,Y>
d-separates A and Y, by Lemma 7, ¶C correctly orients X∗–*Y as X<—Y.

Section ¶D
Lemma 8: If in a graph G, Y is a descendant of a common child of X and
Z then X and Z are d-connected by any set S s.t. Y∈S, X,Z∉S.
Proof: If Y is a descendant of a common child C of X and Z then the path
X→C←Z d-connects X and Z given any set S, s.t. Y∈S, X,Z∉S.

Corollary: If in a graph G, X and Y are adjacent, Y and Z are adjacent,
but X and Z are not adjacent, Y is not an ancestor of X or Z, and there is

-18-

some set S such that Y∈S, and X and Z are d-separated given S, then Y is
not a descendant of a common child of X and Z.

Lemma 9: If in graph G, Y is not a descendant of a common child of X and
Z, then X and Z are d-separated by the set T, defined as follows:

S = Children(X) ∩ Ancestors({X,Y,Z})

T = (Parents(S ∪ {X}) ∪ S)\(Descendants (Children(X)∩Children(Z)) ∪
{X,Z})

Further, if X and Y, and Y and Z are adjacent then Y∈T.
Proof: Lemma 2, with Q={Y} implies that X and Z are d-separated by T.
If Y is a child of X, then since Y is an ancestor of Y, Y∈ S. Since Y is not
a descendant of a common child of X and Z, Y∈T . If Y is a parent of X
then since Y is not a descendant of a common child of X and Z, Y∈T. If X
and Y have a common child C that is an ancestor of X or Y, then C∈S;
since Y is a parent of C, and Y is not a descendant of a common child of X
and Z then Y∈T. So if X and Y are adjacent then Y∈T. ∴

¶D considers each triple A—>B<—C in E, A and C are not adjacent, in
turn, and tries to find a set R⊆ Local(E ,A)\{B,C} s.t. A and C are
d-separated by R ∪ {B}. If A and C are d-separated by a set containing B,
then Lemma 8 implies that B is not a descendant of a common child of A
and C. It then follows from Lemma 9 that the set T in Lemma 9 is s.t.
B∈T , A and C are d-separated by T , and T ⊆ Local(E,X). So ¶D will
find a set which d-separates A and C, but contains B, if such a set exists.

Section ¶E

Lemma 10: If in a graph G, A and D are adjacent, D and C are adjacent, A
and C are not adjacent, D is an ancestor of B then any set S such that B∈S,
and A and C are d-separated by S, also contains D.

Proof Suppose for a contradiction that A and C were d-separated by a set
S, s.t. B∈S, D∉S. Since A is adjacent to D, (D,A∉S), by Lemma 1 there
is an undirected path P d-connecting A and D given S. Likewise there is a
path Q d-connecting D and C given S. Since D is an ancestor of B, B∈S,

-19-

but D∉S, Lemma 3.3.1+ implies that P and Q can be joined to form a new
path d-connecting A and C given S. This is a contradiction.∴

By contraposition Lemma 10 justifies ¶E in the case where A—>B<—C,
A—>D<—C, D∉Supset<A,B,C>, and so B∗–∗D is oriented as B—>D.

In the case in which A—>B<—C, A—>D<—C, and D∈Supset<A,B,C>
Lemma 4, and the nature of the search for Supset<A,B,C> 17 imply that D
is an ancestor of {A,B,C}. But since there are arrowheads at D on the edges
A–>D<–C, D is not an ancestor of A or C, so D is an ancestor of B. So ¶E
correctly orients B∗–∗D as B∗—D.

In the case where A—>B<—C, A→D←C in E, (A and C not adjacent and
no dotted line A—>D<—C), Lemma 8 implies that, since A and C are
d-connected by any set S s.t. D∈S, (A,C∉S), D is a descendant of a
common child of A and C. Since A and C are d-separated by
Supset<A,B,C>, and B∈Supset<A,B,C>, then B is not a descendant of
D. So ¶E correctly orients B*–*D as B<—D.

Section ¶F
Lemma 11: If X and Z are d-separated by some set R, then for all sets Q
⊆ Ancestors(R ∪ {X,Z})\{X,Z}, X and Z are d-separated by R ∪ Q.
Proof: Suppose, for a contradiction that there is a path P d-connecting X
and Z given R ∪ Q. It follows that every vertex on P is an ancestor of
either X, Z, or R ∪ Q. Since Q ⊆ Ancestors(R ∪ {X,Z}) it follows
that every vertex on P is an ancestor of X, Z or R.
Let A be the collider furthest from X on P which is an ancestor of X and not
R (or X if no such collider exists), let B be the first collider after A on P
which is an ancestor of Z and not R (or Z if no such exists). The paths
X←…←A, and B→…→Z are d-connecting given R, since no vertex on
the paths is in R. The subpath of P between A and B is also d-connecting
given R since every collider is an ancestor of R, and no non-collider lies in
R, since, by hypothesis P d-connects given R ∪ Q. Lemma 3.3.1+ implies
that these three paths can be joined to form a path d-connecting X and Z
given R. This is a contradiction.∴

17Namely, that ¶D looks for the smallest set containing B, which d-separates A and C.

-20-

In ¶F, since A and C are d-separated by Supset<A,B,C> ⊇ {B}, by
Lemma 11, if A and C are d-connected given Supset<A,B,C> ∪ {D}
then D is not an ancestor of B. Further, since B and D are adjacent, B is an
ancestor of D. So ¶F correctly orients B∗—∗D as B—>D in E.

This completes the proof of the correctness of the algorithm. ∴

§4.2 Proof of Theorem 2: d-separation Completeness
All that is required is to show that if two graphs G1, and G2 when used as a
d-separation oracle for the CCD algorithm, result in the same PAG being
produced as output, then G1 and G2 are equivalent. We shall do this by
proving that if G1 and G2 when used as input to the CCD algorithm
produce the same PAG, then G1, and G2 satisfy five conditions of the
Cyclic Equivalence Theorem CET(I)-(V) (given below) with respect to one
another. I have already shown in Richardson(1994b) that two graphs G1

and G2 are equivalent to one another if and only if they satisfy these 5
conditions.

Before stating the Equivalence Theorem we require a number of extra
definitions:

Definition: Unshielded Conductor and Unshielded Non-

Conductor
In a cyclic graph G, we say triple of vertices <A,B,C> forms an unshielded

conductor if:

(i) A and B are adjacent, B and C are adjacent, A and C are not

adjacent

(ii) B is an ancestor of A or C
If <A,B,C> satisfies (i), but B is not an ancestor of A or C, we say
<A,B,C> is an unshielded non-conductor.

Definition: Unshielded Perfect and Imperfect Non-Conductors
In a cyclic graph G, we say triple of vertices <A,B,C> is an unshielded

perfect non-conductor if:

-21-

(i) A and B are adjacent, B and C are adjacent, but A and C are not

adjacent.

(ii) B is not an ancestor of A or C.

(iii) B is a descendant of a common child of A and C.

If <A,B,C> satisfies (i) and (ii) but B is not a descendant of a common

child of A and C, we say <A,B,C> is an unshielded imperfect non-

conductor.

Definition: Itinerary
If <X0,X1,…Xn+1 > is a sequence of distinct vertices s.t. ∀i 0 ≤ i ≤ n, Xi

and Xi+1 are adjacent then we will refer to <X0,X1,…Xn+1> as an

itinerary.

Definition: Mutually Exclusive Unshielded Conductors with

respect to an itinerary
If <X0,…Xn+1> is an itinerary such that:

(i) ∀t 1≤ t ≤ n, <Xt-1, Xt, Xt+1> is an unshielded conductor.

(ii) ∀k 1≤ k ≤ n, Xk-1 is an ancestor of Xk, and Xk+1 is an ancestor of

Xk.

(iii) X 0 is not a descendant of X1, and Xn is not an ancestor of Xn+1,

then <X0,X1,X2> and <Xn-1,Xn,Xn+1> are mutually exclusive (m.e.)

unshielded conductors on the itinerary <X0,…Xn+1>.

Definition: Uncovered itinerary
If <X0,…Xn+1> is an itinerary such that ∀i,j 0 ≤ i < j−1< j ≤ n+1 Xi and

Xj are not adjacent in the graph then we say that <X0,…Xn+1> is an

uncovered itinerary.. i.e. an itinerary is uncovered if the only vertices on the

itinerary which are adjacent to other vertices on the itinerary, are those that

occur consecutively on the itinerary.

Cyclic Equivalence Theorem: (Richardson 1994) Graphs G1 and G2

are d-separation equivalent if and only the following five conditions hold:

-22-

CET(I) G1 and G2 have the same p-adjacencies,

CET(II) G1 and G2 have the same unshielded elements i.e.

(IIa) the same unshielded conductors, and

(IIb) the same unshielded perfect non-conductors,

CET(III) For all triples <A,B,C> and <X,Y,Z>, <A,B,C> and
<X,Y,Z> are m.e. conductors on some uncovered itinerary
P ≡<A,B,C,…X,Y,Z> in G1 if and only if <A,B,C> and <X,Y,Z>
are m.e. conductors on some uncovered itinerary
Q ≡<A,B,C,…X,Y,Z> in G2 ,

CET(IV) If <A,X,B> and <A,Y,B> are unshielded imperfect non-
conductors (in G1 and G2), then X is an ancestor of Y in G1 iff X is
an ancestor of Y in G2,

CET(V) If <A,B,C> and <X,Y,Z> are mutually exclusive
conductors on some uncovered itinerary P ≡<A,B,C,…X,Y,Z> and
<A,M,Z> is an unshielded imperfect non-conductor (in G1 and G2),
then M is a descendant of B in G1 iff M is a descendant of B in G2.

Lemma 12: Given a sequence of vertices <X0,…Xn+1> in a directed

graph G having the property that ∀k, 0 ≤ k ≤ n, Xk is an ancestor of

Xk+1, and Xk is adjacent to Xk+1 there is a subsequence of the Xi’s, which

we label the Yj’s having the following properties:

(a) X0≡Y0

(b) ∀j, Y j is an ancestor of Yj+1

(c) ∀j,k If j < k, Y j and Yk are adjacent in the graph if and only if k

= j+1. i.e. the only Yk’s which are adjacent are those that occur

consecutively.

Proof. The Yk’s can be constructed as follows:

Let Y0 ≡ X0.

Let Yk+1 ≡ Xη where η is the greatest h > j such that Xh is adjacent to Xj
where Xj≡Yk.

-23-

Property (a) is immediate from the construction. Property (b) follows from

the transitivity of the ancestor relation, and the fact that the Yk’s are a

subsequence of the Xi’s. It is also clear, from the construction that if k =

j+1 then Yj and Yk are adjacent. Moreover, if Yj≡Xα18 and Yk≡Xβ are

adjacent, and j < k, then it follows again from the construction that if

Y j+1≡X γ, then β ≤ γ, so k ≤ j+1. (This is because the Yk ’s are a

subsequence of the Xi’s.) Hence Yj+1≡Yk.∴

Lemma 13: Let G1 and G2 be two graphs satisfying CET(I)–(III) Suppose

there is a directed path D1→…Dn, in G1. Let D0 be a vertex distinct from

D1,…,Dn, s.t. D0 is adjacent to D1 in G1 and G2, D0 is not adjacent to

D2,…Dn in G1 or G2 and D0 is not a descendant of D1 in G1 or G2. It then

follows that D1 is an ancestor of Dn in G2.

Proof. By induction on n.

Base Case: n = 2. Since, by hypothesis, D0 is not adjacent to D2, it

follows that <D0, D1, D2> forms an unshielded conductor in G1 (since D1

is an ancestor of D2). Hence this triple of vertices also forms an unshielded

conductor in G2, by CET(IIa). Hence D1 is an ancestor of D0 or D2 in G2.

Since, by hypothesis D1 is not an ancestor of D0 in G2, it follows that D1 is

an ancestor of D2 in G2.

Induction Case: Suppose that the hypothesis is true for paths of length n.

It follows from Lemma 12 that there is a subsequence <Dα(0)≡D0,Dα(1),

Dα(2)…Dα(r)≡Dn> such that the only adjacent vertices are those that occur

consecutively, and in G1 each vertex is an ancestor of the next vertex in the

sequence. Moreover, since, by hypothesis, D0 is not adjacent to D2,…Dn, it

follows that Dα(1)≡D1. Since G1 and G2 satisfy CET(I), they have the same

adjacencies, hence in G2 the only vertices that are adjacent are those that

18 That is, the jth vertex in the sequence of Y vertices is the αth vertex in the sequence of
X vertices.

-24-

occur consecutively in the sequence. Suppose, for a contradiction that

Dα(r-1) is not an ancestor of Dα(r) in G2. Let s be the smallest j such that

Dα(j) is not an ancestor of Dα(j-1) in G2. (Such a j exists since Dα(1)≡D1 and

D α (0)≡ D 0 is not a descendant of D1 .) It then follows that

<Dα(s-1),Dα(s),Dα(s+1)> and <Dα(r-2),Dα(r-1),Dα(r)> are mutually exclusive

conductors on the unshielded itinerary <Dα(s-1),…Dα(r)> in G2. But these

two triples are not mutually exclusive in G1 since Dα(r-1) is an ancestor of

D α (r) in G 1; hence G 1 and G 2 fail to satisfy CET(III), which is a

contradiction.

It follows that Dα(r-1) is an ancestor of Dα(r) in G2. It then follows from the

induction hypothesis that D1 is an ancestor of Dα(r)≡Dn. ∴

Theorem 2: (d-separation Completeness) If the CCD algorithm, when

given as input d-separation oracles for the graphs G1, G2 produces as output

PAGs Ψ1, Ψ2 respectively, then Ψ1 is identical to Ψ2 if and only if G1 and

G2 are d-separation equivalent, i.e. G2 ∈ Equiv(G1) and vice versa.

Proof. We will show that if two graphs, G1 and G2 are not d-separation

equivalent, then the PAGs output by the CCD algorithm, given d-separation

oracles for G1 and G2 as input, would differ in some respect.

It follows from the Cyclic Equivalence Theorem that if G1 and G2 are not

d-separation equivalent, then they fail to satisfy one or more of the five

conditions CET(I)-(V). Let Ψ1 and Ψ2 denote, respectively, the PAGs

output by the CCD algorithm when given d-separation oracles for G1 and G2

as input.

Case 1: G1 and G2 fail to satisfy CET(I). In this case the two graphs have

different adjacencies. Let us suppose without loss of generality that there is

some pair of variables, X and Y which are adjacent in G1 and not adjacent in

G2. Since X and Y are adjacent in G1, X and Y are d-connected conditional

upon any subset of the other vertices. Hence there is an edge between X and

-25-

Y in Ψ1.

Since X and Y are not adjacent in G2, there is some subset S, (X,Y∉S)

such that X and Y are d-separated in G2 given S. It follows from Lemma 6

that X and Y are d-separated by a set of variables T, such that either T is a

subset of the vertices adjacent to X, or T is a subset of the vertices adjacent

to Y. It follows that in step ¶A of the CCD algorithm the edge between X

and Y in Ψ2 would be removed. Since edges are not added back in at any

later stage of the algorithm, there is no edge in Ψ2 between X and Y. Hence

Ψ1 and Ψ2 are different.

Case 2: G1 and G2 fail to satisfy CET(IIa). We assume that G1 and G2

satisfy CET(I). In this case the two graphs have different unshielded non-

conductors. Thus we may assume, without loss of generality, that there is

some triple of vertices <X,Y,Z> such that in G1, Y is an ancestor of X or Z,

while Y is not an ancestor of either X or Z in G2.

If Y is an ancestor of X or Z then it follows from Lemma 8 that every set

which d-separates X and Z includes Y. Hence Y∈Sepset(X,Z) in G1. It

then follows from the correctness of the algorithm that in Ψ1, either X—

>Y—∗Ζ, X∗—Y<—Ζ, or X∗–∗Y∗–∗Ζ.

If Y is not an ancestor of X or Z in G2, then Y is not in any minimal d-

separating set for X and Z. In particular Y∉Sepset(X,Z) for G2. Again it

follows from the correctness of the algorithm that <X,Y,Z> is oriented as

X∗–>Y<–∗Z or X∗–>Y<–∗Z in Ψ2. Thus Ψ1 and Ψ2 are different.

Case 3: G1 and G2 fail to satisfy CET(IIb). We assume that G1 and G2

satisfy CET(I), CET(IIa). In this case the two graphs have different

unshielded imperfect non-conductors, i.e. there is some triple <X,Y,Z>

such that it forms an unshielded non-conductor in both G1 and G2, but in

one graph Y is a descendant of a common child of X and Z, while in the

other graph it is not. Let us assume that Y is a descendant of a common

-26-

child of X and Z in G1, while in G2 it is not.

It follows from Lemma 5 that in G1, X and Z are d-connected given any

subset containing Y. In this case the search in CCD section ¶D will fail to

find any set Supset<X,Y,Z>. Hence <X,Y,Z> will be oriented as X

–>Y<– Ζ (i.e. without dotted underlining) in Ψ1. If Y is not a descendant

of a common child of X and Z, then it follows from Lemma 9 that there is

some subset T of Local(Ψ,X), such that X and Z are d-separated given T

∪ {Y}. Section ¶D will find such a set T , and hence <X,Y,Z> will be

oriented as X∗–>Y<–∗Ζ in Ψ2. Since no subsequent orientation rule

removes or adds dotted underlining, it follows that Ψ1 and Ψ2 are different.

Case 4: G1 and G2 fail to satisfy CET(III). We assume that G1 and G2

satisfy CET(I), CET(IIa), CET(IIb). In this case the two graphs have the

same adjacencies, and the same unshielded conductors, perfect non-

conductors, and imperfect non-conductors. However, the two graphs have

different mutually exclusive conductors. Hence in both G1 and G2 there is an

uncovered itinerary, <X0,…Xn+1> such that every triple <Xk-1,Xk,Xk+1>

(1≤k≤n) on this itinerary is a conductor, but in one graph <X0,X1,X2> and

<Xn-1,Xn,Xn+1> are mutually exclusive, i.e. X1 is not an ancestor of X0,

and Xn is not an ancestor of Xn+1, while in the other they are not mutually

exclusive. Let us suppose without loss of generality that <X0,X1,X2> and

<Xn-1,Xn,Xn+1> are mutually exclusive in G1, while in G2 they are not.

It follows from the definition of m.e. conductors that the vertices X1,…Xn,

inclusive are not ancestors of X0 or Xn+1 in G1. Hence {X1,…Xn} ∩
Sepset(X0,Xn+1) = ∅ , since Sepset(X0,Xn+1) is minimal, and so is a

subset of An(X0,Xn+1). (Sepset(X0,Xn+1) is calculated for G1.) For the

same reason Descendants({X1,…Xn}) ∩ Sepset(X 0,Xn+1) = ∅ . It

follows from the definition of a pair of m.e. conductors on an itinerary that

Xk is an ancestor of Xk+1 (1 ≤ k < n), thus there is a directed path Pk≡
Xk→…→Xk+1. Since no descendant of X1,…,Xn is in Sepset(X0,Xn+1),

-27-

each of the directed paths Pk d-connects each vertex Xk to its successor

X k+1 (1 ≤ k < n), conditional on Sepset(X0,Xn+1). In addition, since

X0 and X1 are adjacent there is some path Q d-connecting X0 and X1 given

Sepset(X 0,X n+1). Since each P i is out of Xi (i.e. the path goes

X i→…→X2), by applying Lemma 3.3.1+, with T = {Q,P1,…Pn}, and S

= Sepset(X0,Xn+1) that we can form a path d-connecting X0 and Xn given

Sepset(X0,Xn+1). A symmetric argument shows that X1 and Xn+1 are also

d-connected given Sepset(X0,Xn+1). It then follows that the edges X0∗—

∗X1 and Xn∗—∗Xn+1 are oriented as X0—>X1 and Xn<—Xn+1 by stage

¶C of the CCD algorithm (unless they have already been oriented this way

in a previous stage of the algorithm). Thus again, by the correctness of the

algorithm these arrowheads will be present in Ψ1. (Subsequent stages of the

algorithm only add '–' and '>' endpoints, not 'o' endpoints. If either of the

arrowhead at X1 or Xn were replaced with a '–' the algorithm would be

incorrect.)

Since by hypothesis, <X0,X1,X2> and <Xn-1,Xn,Xn+1> are not mutually

exclusive in G2, either X1 is an ancestor of X0, or Xn is an ancestor of

Xn+1. It follows from the correctness of the orientation rules in the CCD

algorithm that the edges X0∗—∗X1 and Xn∗—∗Xn+1 will not both be

oriented as X0∗—>X1 and Xn<—∗Xn+1 in Ψ2. Thus Ψ1 and Ψ2 will once

again be different.

Case 5: G1 and G2 fail to satisfy either CET(IV) or CET(V). We assume

that G1 and G2 satisfy CET(I)–(III).19 If G1 and G2 fail to satisfy either

CET(IV) or CET(V), then in either case we have the following situation:

There is some sequence of vertices in G1 and G2 <X0,X1,…Xn, Xn+1>, 20

satisfying the following:

19The conditions under which CET(IV) or CET(V) fail are quite intricate precisely
because the assumption that CET(I)-(III) are satisfied implies that the graphs agree in
many respects.
20 In the case where CET(IV) fails n=1, while if CET(V) fails, n>1.

-28-

(a) if i > j then Xi and Xj are adjacent if and only if i = j+1,

(b) X1 is not an ancestor of X0, and Xn is not an ancestor of Xn+1, and

(c)∀k, 1 ≤ k ≤ n, Xk-1, and Xk+1 are ancestors of Xk.

In addition there is some vertex V, adjacent to X0 and Xn+1 in G1 and G2 ,

not an ancestor of X0 or Xn+1 in G1 or G2 and not a descendant of a

common child of X0 and Xn+1 in G1 or G2. As explained in case 3, this

implies that in both of the PAGs Ψ1 and Ψ2, X0—>V<—Xn+1.

Since G1 and G2 fail to satisfy CET(IV) or CET(V), in one graph V is a

descendant of X1, while in the other graph V is not a descendant of X1. Let

us suppose without loss of generality that V is a descendant of X1 in G1,

and V is not a descendant of X1 in G2. As in previous cases it is sufficient to

show that if Ψ1 and Ψ2 are the CCD PAGs corresponding to G1 and G2

respectively, then Ψ1 and Ψ2 are different. We may suppose, again without

loss of generality that V is the closest such vertex to any Xk (1≤ k ≤ n) in

G1, in the sense that the shortest directed path P≡Xk→…→V in G1 contains

at most the same number of vertices as the shortest directed path in G1 from

any Xk (1≤ k ≤ n) to some other vertex V’ satisfying the conditions on V.

Claim: Let W be the first vertex on P which is adjacent to V, (both in G1

and G2 since by CET(I) G1 and G2 have the same adjacencies). We will

show that the assumption that V is the closest such vertex to any Xk (in G1)

together with the assumption that G1 and G2 satisfy CET(I)-(III) imply that

W is a descendant of X1 in G2. We prove this by showing that every vertex

in the directed subpath P(Xk, W)≡Xk→…W in G1 is also a descendant of

X1 in G2.

Proof of Claim: By induction on the vertices of the path P(Xk, W).

Base Case: Xk.

By hypothesis Xk is a descendant of X1 in both G1 and G2.

Induction Case: Consider Yr, where P(Xk, W)≡ Xk→Y1→…→Y r→

-29-

… Y t, and Yt≡W. By the induction hypothesis, for s < r, Ys is a

descendant of X1 in G2. Now there are two subcases to consider:

Subcase 1: Not both X0 and Xn+1 are adjacent to Yr. Suppose without

loss that X0 is not adjacent to Yr. Since in G1 there is a directed path

X0→…Xk→Y1→…Y r, by Lemma 12 it then follows that there is some

subsequence of this sequence of vertices, Q≡<X 0,…Y r> such that

consecutive vertices in Q are adjacent, but only these vertices are adjacent.

Moreover, since X0 is not adjacent to Yr, this sequence of vertices is of

length greater than 2, i.e. Q≡<X0,D…Yr> where D is the first vertex in the

subsequence after X0, hence either D≡X κ (1 ≤ κ ≤ k) or D≡Y µ ,

(1 ≤ µ < r). Since in either case D is a descendant of X1 in both G1 and

G2, (either by the induction hypothesis or by the hypothesis of case 5), but

X0 is not a descendant of X1 in G1 or G2 it follows that D is not an ancestor

of X0 in G1 or G2. Hence we may apply Lemma 13, to deduce that Yr is a

descendant of D. Hence Yr is a descendant of X1, since X1 is an ancestor of

D.

Subcase 2: Both X0 and Xn+1 are adjacent to Yr. First note that in G1 the

vertex Yr is a descendant of Xk, and Xk is not an ancestor of X0 or Xn+1. It

follows that Yr is not an ancestor of X0 or Xn+1 in G1 . Moreover, since X0
and Xn+1 are not adjacent, <X0, Yr, Xn+1> forms an unshielded non-

conductor in G1. Hence <X0, Yr,Xn+1> forms an unshielded non-conductor

in G2, since by hypothesis G1 and G2 satisfy CET(IIa). So Yr is not an

ancestor of X0 or Xn+1 in G1 or G2. Further, since Yr is an ancestor of V in

G1 and V is not a descendant of a common child of X0 and Xn+1 in G1, it

follows that Yr is not a descendant of a common child of X0 and Xn+1 in G1.

Thus <X0, Yr,Xn+1> forms an unshielded imperfect non-conductor in G1.

Since G1 and G2 satisfy CET(IIb), <X0, Yr,Xn+1> forms an unshielded

imperfect non-conductor in G2. Now, if Yr were not a descendant of X1 in

G2 , then Yr would satisfy the conditions on V, yet be closer to Xk than V

-30-

(Yr occurs before V on the shortest directed path from Xk to V in G1). This

is a contradiction, hence Yr is a descendant of Xk in G2.

This completes the proof of the claim. We now show that Ψ1 and Ψ2 are

different.

Consider the edge W∗–∗V in Ψ1. In G1, W is an ancestor of V, hence it

follows from the correctness of the algorithm in Ψ1 this edge is oriented as

Wo–∗V or W—∗V. In G2, however, since X1 is not an ancestor of V, but,

as we have just shown X1 is an ancestor of W, it follows that W is not an

ancestor of V. There are now two cases to consider:

Subcase 1: n = 1 and W≡X1. In this case X0—>X1<—X 2, in Ψ2 (and

Ψ 1). Supset(X 0,V,X 2) is the smallest set containing {V} which

d-separates X0 and X2, in the sense that no subset of Supset(X0,V,X2)

which contains V d-separates X0 and X2. It follows from Lemma 7 (with R

= {V}) that every vertex in Supset(X0,V,X2) is an ancestor of X0, X2 or

V. X1 is not an ancestor of X0, X2, or V in G2. Hence in step ¶D of the

algorithm given a d-separation oracle for G 2 as input X1∉
Supset(X0,V,X2). Thus step ¶E of the CCD algorithm will orient W∗–∗V

in Ψ2 as W<–∗V (unless the edge has already been oriented this way in a

previous stage of the algorithm). Thus Ψ1 and Ψ2 are not the same.

Subcase 2: n > 1, or W is not equal to X1.

Claim: X0 and Xn+1 are d-connected given Supset(X0,V,Xn+1)∪{W} in

G2.

Proof. We have already shown that W is a descendant of X1, and so also

of Xn in G1 and G2. Since in both G1 and G2 X0 is adjacent to X1, but X1 is

not an ancestor of X0, it follows that X0 is an ancestor of X1. Hence in both

G1 and G2 there is a directed path P0 from X0 to X1 on which every vertex

except for X0 is a descendant of X1. (In the case X0→X1, the last assertion

is trivial. In the case where X0 and X1 have a common child that is an

-31-

ancestor of X0 or X1, and X1 is not an ancestor of X0, it merely states a

property of the path X0→C→…X1, where C is a common child of X0 and

X1..) Since W is a descendant of X1, it follows that there is a directed path

P1 from X1 to W. Concatenating P0 and P1 we construct a directed path P*

from X0 to W on which every vertex except X0 is a descendant of X1.

Since X1 is not an ancestor of X0, Xn+1 or V, it follows that no vertex on

P*, except X0, is an ancestor of X0, Xn+1 or V. Similarly we can construct

a path from Q* from Xn+1 to W on which no vertex, except Xn+1, is an

ancestor of X0, Xn+1 or V.

Since every vertex in Supset(X0,V,Xn+1) is an ancestor of X0, Xn+1 or V,

it follows that no vertex in Supset(X0,V,Xn+1) lies on P* or Q* (X0,

Xn+1 ∉ Supset(X0,V,Xn+1) by definition). It now follows by Lemma

3.3.1+ that we can concatenate P* and Q* to form a path which d-connects

X0 and Xn+1 given W.

It follows directly from this claim that step ¶F of the CCD algorithm will

orient V*–*W as V—>W in Ψ2 (unless the edge has already been oriented

this way in a previous stage of the algorithm). Hence Ψ1 and Ψ2 are

different.

Since Cases 1-5 exhaust the possible ways in which G1 and G2 may fail to

satisfy CET(I)-(V), this completes the proof that the CCD algorithm locates

the d-separation equivalence class. ∴

References
BOLLEN, K. (1989) Structural Equations with Latent Variables, Wiley, NY.

KOSTER, J.T.A.(1994) Markov Properties of Non-Recursive Causal
Models. MS.

LAURITZEN, S, DAWID , A., LARSEN, B., LEIMER, H., (1990).
Independence properties of directed Markov fields, Networks 20

PEARL, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan

-32-

Kaufmann, San Mateo, CA.

PEARL, J. (1993). On the Statistical Interpretation of Structural Equations.
Technical Report R-200, Cognitive Systems Lab., UCLA.

RICHARDSON, T. (1994). Properties of Cyclic Graphical Models. MS
Thesis, Carnegie Mellon University

RICHARDSON, T. (1996). Discovering Cyclic Causal Structure. Tech
Report CMU-PHIL 68.

SPIRTES, P. (1995). Directed Cyclic Graphical Representations of
Feedback Models. Proceedings UAI 95, ed. P. Besnard and S.
Hanks, Morgan Kaufmann San Mateo, CA 491-498.

SPIRTES, P., GLYMOUR , C. & SCHEINES , R. (1993) Causation,
Prediction & Search. Lecture Notes in Statistics, Springer-Verlag.

VERMA, T. & PEARL, J., (1990). On Equivalence of Causal Models.
Technical Report R-150, Cognitive Systems Lab., UCLA.

