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Abstract

We describe anytime search procedures that (1) find digalgets of recorded variables for which
the members of each subset are d-separated by a single coomremmorded cause, if such exists;
(2) return information about the causal relations amonddtent factors so identified. We prove
the procedure is point-wise consistent assuming (a) theataalations can be represented by a
directed acyclic graph (DAG) satisfying the Markov Assuimptand the Faithfulness Assumption;
(b) unrecorded variables are not caused by recorded vesiadihd (c) dependencies are linear. We
compare the procedure with standard approaches over avafi@mulated structures and sample
sizes, and illustrate its practical value with brief stwdgd social science data sets. Finally, we
consider generalizations for non-linear systems.

Keywords: latent variable models, causality, graphical models

1. What We Will Show

In many empirical studies that estimate causal relationships, influential keriate unrecorded, or
“latent.” When unrecorded variables are believed to influence only ec@rded variable directly,
they are commonly modeled as noise. When, however, they influence tworernaasured vari-
ables directly, the intent of such studies is to identify them and their influehtcesany cases, for
example in sociology, social psychology, neuropsychology, epidenyiotdighate research, signal
source studies, and elsewhere, the chief aim of inquiry is in fact to idehtfgausal relations of
(often unknown) unrecorded variables that influence multiple recoraiéables. It is often assumed
on good grounds that recorded variables do not influence unedaeatiables, although in some
cases recorded variables may influence one another.

When there is uncertainty about the number of latent variables, which neglagariables they
influence, or which measured variables influence other measured leari#tie investigator who
aims at a causal explanation is faced with a difficult discovery problerwifdch currently avail-
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able methods are at best heuristic. Loehlin (2004) argues that whiledheseveral approaches
to automatically learn causal structure, none can be seem as competitopsooatry factor anal-
ysis: the usual focus of automated search procedures for cauged Bats is on relations among
observed variables. Loehlin’s comment overlooks Bayes net searcbgures robust to latent vari-
ables (Spirtes et al., 2000) and heuristic approaches for learningnstwibh hidden nodes (Elidan
et al., 2000), but the general sense of his comment is correct. For akimddel widely used in
applied sciences “multiple indicator models” in which multiple observed measures are assumed
to be effects of unrecorded variables and possibly of each etheachine learning has provided
no principled alternative to factor analysis, principal components, agrégsion analysis of proxy
scores formed from averages or weighted averages of measuianesyrthe techniques most com-
monly used to estimate the existence and influences of variables that aterdek The statistical
properties of models produced by these methods are well understadkeimiare no proofs, under
any general assumptions, of convergence to features of the trus sttusture. The few simulation
studies of the accuracy of these methods on finite samples with diversd saustures are not re-
assuring (Glymour, 1997). The use of proxy scores with regressenmnstrably not consistent,
and systematically overestimates dependencies. Better methods are needed.

Yet the common view is that solving this problem is actually impossible, as illustrgtéaeb
closing words of a popular textbook on latent variable modeling (BartholoamelKnott, 1999):

When we come to models for relationships between latent variables we laabede
a point where so much has to be assumed that one might justly conclude thaithe
of scientific usefulness have been reached if not exceeded.

This view results from a commitment to factor analysigresmethod to identify and measure
unrecorded common causes of recorded variables. One aim of theif@lawrk is to demonstrate
that such a commitment is unjustified, and to show that the pessimistic claim thatddftmw it is
false.

We describe a two part method for this problem. The method (1) finds cludtensasured
variables that are d-separated by a single unrecorded common casiseh) iéxists; and (2) finds
features of the Markov Equivalence class of causal models for the lagables. Assuming only
multiple indicator structure and principles standard in Bayes net searctitlahgs, principles as-
sumed satisfied in many domains, especially in the social sciences, the tveulypres converge,
probability 1 in the large sample limit, to correct information. The completenes® afthrmation
obtained about latent structure depends on how thoroughly confduhdeneasured variables are,
but when, for each unknown latent variable, there in fact exists atdesmmall number of measured
variables that are influenced only by that latent variable, the method settugrcomplete Markov
Equivalence class of the latent structure. To complement the theorescdtsteve show by simu-
lation studies for several latent structures and for a range of sampietkaehe method identifies
the unknown structure more accurately than does factor analysis aradishpd greedy search al-
gorithm. We also illustrate and compare the procedures with applications td scieiace cases,
where expert opinions about measurement are reasonably firmgeldasarso about causal relations
among the latent variables.

The focus is on linear models of continuous variables. Although most ofesuits do not
make special assumptions about the choice of a probability family, for papticposes we further
assume in the experiments that variables are multivariate Gaussian. Inytendesf the paper, we
consider possible generalizations of this approach for non-lineatGamssian and discrete models.
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The outline of this paper is as follows:

Section 2: lllustrative principles describes a few examples of the techniques we use to learn
causal structure in the presence of latent variables;

Section 3: Related workis a brief exposition of other methods used in latent variable learn-
ing. We note how the causal discovery problem cannot be reliably sbivetethods created
for probabilistic modeling only;

Section 4: Notation, assumptions and definitionsontains all relevant definitions and as-
sumptions used throughout this paper for the convenience of the reader

Section 5: Procedures for finding pure measurement modeldescribes the method we
use to solve the first half of the problem, discovering which latents existvainch observed
variables measure them;

Section 6: Learning the structure of the unobservedlescribes the method we use to solve
the second half of the problem, discovering the Markov equivalence ttas contains the
causal graph connecting the latent variables;

Section 7: Simulation studiesand Section 8: Real data applicationscontain empirical
results with simulated and real data;

Section 9: Generalizationds a brief exposition of related work describing how the methods
here introduced could be used to discover partial information in certain ctmses models;

Section 10: Conclusionsummarizes the contribution of this paper and suggests several av-
enues of research;

Proofs of theorems and implementation details are given in the Appendix.

2. lllustrative Principles

One widely cited and applied approach to learning causal graphs relgropating models that
entail different conditional independence constraints in the observegimab(Spirtes et al., 2000).
When latent variables are common causes of all observed variablesttesdomains described
in the introduction, no such constraints are expected to exist. Still, whenceneimon causes are
direct causes of just a few variables, there is much structure that can be elisdpalthough not
by observable independencies. One needs instead a framework thaguilshes among different
causal graphs from other forms of constraints in the marginal distributidreambserved variables.
This section introduces the type of constraints we use through a few illustestamples.

Consider Figure 1, wher¥ variables are recorded atdvariables (in ovals) are unrecorded

and unknown to the investigator. The latent structure, the dependericie=asured variables on
individual latent variables, and the linear dependency of the measar@bhles on their parents
and (unrepresented) independent noises in Figure 1 imply a patternsifaiots on the covariance
matrix among theX variables. For example;, Xz, X3 have zero covariances widy, Xg, Xg. Less
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X1 Xo X3 Xs4 Xs Xg X7 Xg Xg

Figure 1: A latent variable model which entails several constraints on $eredd covariance ma-
trix. Latent variables are inside ovals.

obviously, forX;, X», X3 and any one 0Ky, Xs, X, three quadratic constrainte{radconstraints) on
the covariance matrix are implied: e.g., &y

P12P34 = P14P23 = P13P24 (1)

wherep1, is the Pearson product moment correlation betw&ei,, etc. (Note that any two of the
three vanishing tetrad differences above entails the third.) The same iDtnég Xg, Xg and any
one of Xy, Xs, Xg; for X4, Xs, Xg, and any one 0Kz, Xp, X3 or any one ofX7, Xg, Xg. Further, for any
two of Xp, Xo, X3 or of X7, Xg, Xg and any two 0fXy, Xs, Xg, exactly one such quadratic constraint is
implied, e.g., forXg, Xo andXy, Xs, the single constraint

P14P25 = P15P24 (2)

The constraints hold as well if covariances are substituted for corredation

Statistical tests for vanishing tetrad differences are available for a widigyfaf distributions
(Wishart, 1928; Bollen, 1990). Linear and non-linear models can implyr abestraints on the
correlation matrix, but general, feasible computational procedures tordetearbitrary constraints
are not available (Geiger and Meek, 1999) nor are there any avaitaliktisal tests of good power
for higher order constraints. Tetrad constraints therefore providaaigal way of distinguishing
among possible candidate models, with a history of use in heuristic search ttatim the early
20th century (see, e.g., references within Glymour et al., 1987). Thir pgscribes a principled
way of using tetrad constraints in search.

In particular, we will focus on a class of “pure” latent variable models wHatents can be
arbitrarily connected in a acyclic causal graph, but where obseamables have at most one latent
parent.

Given a “pure” set of measured indicators of latent variables, as inr&igy- informally, a
measurement model specifying, for each latent variable, a set of nedlasriables influenced only
by that latent variable and individual, independent noisefie causal structure among the latent
variables can be estimated by any of a variety of methods. Standardgootiefs of latent variable
models (such as the chi-square test) can be used to compare models wititrend & specified
edge, providing indirect tests of conditional independence among lateaables. The conditional
independence facts can then be input to a constraint based Bayesrot algorithm, such as PC
or FCI (Spirtes et al., 2000), or used to guide a greedy search algasitbmas GES (Chickering,
2002).

This is not to say that we need to assume that the true underlying graplinsootdy pure
measures of the latent variables. In Figure 1, the measured variabtsahester into disjoint sets
of variables and the variables in any one set are influenced only byla smmgmon cause and there
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7

X1 Xz Xg X4 Xs XlO X1 X 12X 1

Figure 2: A latent variable model which entails several constraints on s$eredd covariance ma-
trix. These constraints can be used to discover a submodel of the meelelagiove.

are no influences of the measured variables on one another. In mhogseathe influences on the
measured variables do not separate so simply. Some of the measurelbganalp influence others
(as in signal leakage between channels in spectral measurementshna@aismany measured
variables may be influenced by two or more latent variables. For exampletéme structure of a
linear, Gaussian system shown in Figure 2 can be recovered by theglpres we propose by finding
asubsebf the given measures that are pure measures in the true graph. Ouweat ifollows is to
prove and use new results about implied constraints on the covariance afatasured variables
to form measurement models that enable estimation of features of the Magkivatence class
of the latent structure in a wide range of cases. We will develop the theestydi linear models
(mostly for problems with a joint Gaussian distribution on all variables, inclutditent variables),
and then consider possibilities for generalization.

3. Related Work

The traditional framework for discovering latent variables is factor aislgnd its variants (see,
e.g., Bartholomew et al., 2002). A number of factors is chosen basednoa saterion such as
the minimum number of factors that fit the data at a given significance lev#leonumber that
maximizes a score such as BIC. After fitting the data, usually assuming ai@adsstribution,
different transformations (rotations) to the latent covariance matrix grkedpn order to satisfy
some criteria of simplicity. The meaning of a latent variable is determined informa#lgdon the
magnitude of the coefficients relating each observed variable to each [Ebéits, by far, the most
common method used in several applied sciences (Glymour, 2002). Sceiates methodology
also contains various beam searches that begin with an initial latent vamialolel and iteratively
add or delete dependencies in a greedy search guided by significatxefteested models. In
simulation experiments (Glymour et al., 1987; Spirtes et al., 2000) thesedoreschave performed
little better than chance from data generated by true models in which some gwaatiables are
influenced by multiple latent varibles and by other measured variables.

In non-Gaussian cases, the usual methods are variations of indepeodgonent analysis,
such as independent factor analysis (Attias, 1999) and tree-basgtbnent analysis (Bach and
Jordan, 2003). These methods severely constrain the dependarstyrstramong the latent vari-
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ables. That facilitates joint density estimation or blind source separatioiit, isudf little use in
learning causal structure.

In a similar vein, Zhang (2004) represents latent variable models foretiiseariables (both
observed and latent) with a multinomial probabilistic model. The model is constr&inkd a
tree and every observed variable has one and only one (latent) pardtmo child. Zhang does
not provide a search method to find variables satisfying the assumptioas&utes a priori the
variables measured satisfy it.

Elidan et al. (2000) introduces latent variables as common causes @lylenanected regions
of a DAG learned through Bayesian algorithms for learning Bayesian mnestuctures. Once one
latent is introduced as the parent of a set of nodes originally stronglyecteuh, the same search
algorithm is applied using this modified graph as the initial graph. The proecesfe iterated
to introduce multiple latents. Examples are given for which this proceduiteddaNDHIDDEN,
increases the fit over a latent-free graphical model, but for causatlimgdhe algorithm is not
known to be correct in the large sample limit. In a relevant sense, the algaréhnot be correct,
because its output yields particular models from among an indistinguishabteaflmodels that is
not characterized.

For instance, consider Figure 3(a), a model of two latents and fourvdsbeariables. Two
typical outputs produced byilRDHIDDEN given data generated by this model are shown in Figures
3(b) and 3(c). The choice of model is affected by the strength of theemtions in the true model
and the sample size. These outputs suggest correctly that there is a segfiledadition on which
all but one pair of observed variables are independent, althoughdestion of some direct causal
connection among a pair of indicators is false. The main problemnal HIDDEN here is that each
of these two models represents a different actual latent vatialblieh is not clear from the outpuit.
Graphs given Figures 3(b) and 3(c) are also generatedMyHiDDEN when the true model has
the graphical structure seen in Figure 3(d). In this case, one might de later that there is a
latent condition on which three of the indicators are independent, which tsuso

To report all possible structures indistinguishable by the data instead afbénary one is
the fundamental difference between purely probabilistically oriented ailics (as the ones that
motivate the INDHIDDEN algorithm) and causally oriented applications, as those that motivate
this paper. Algorithms such as the ones by Elidan et al. (2000) and Z2&0g)(are designed
to effectively perform density estimation, which is a very different probleven if good density
estimators provide one possible causal model compatible with the data.

To tackle issues of sound identifiability of causal structures, we prdyialeveloped an ap-
proach to learning measurement models (Silva et al., 2003). That precedjuires that the true
underlying graph has a “pure” submodel with three measures for etssit kariable, which is a
strong and generally untestable assumption. That assumption is not neg¢dedrocedures de-
scribed here, but the output is still a pure model.

One of the reasons why we focus on pure models instead of generdl Var&gable models
should be clear from the example in Figure 3: the equivalence class ofelt keariable models
that cannot be distinguished given the likelihood function might be verglafghile, for instance,
a Markov equivalence class for models with no latent variables can g nearesented by a single
graphical object known as “pattern” (Pearl, 2000; Spirtes et al., R@#0®same is not true for latent

1. AssumingT; in this Figure is the true latent that entails the same conditional independeci€ggure 3(b),T1
should correspond thy. In Figure 3(c), td_;. In the first case, however, the causal directiofointo bothX; and
Xz is wrong and cannot be correctly represented without the introductianather latent.
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X, X, xﬁm Xl\/XQ \X3 Xe % Xa \XL/X“ @\i X, XQR\X%
) (d)

(@) (b) (c

Figure 3: All four models above are undistinguishable in multivariate Gaus$similies according
to standard algorithms, but such algorithms do not report this fact.

variable models. The models in Figure 3 differ not only in the direction of tlgegdbut also in
the adjacencies themselves{(, X} adjacent in one case, but npXs, Xs}; {X3,X4} adjacent in
another case, but nd¥;, X2}) and the role of the latent variables (ambiguity about which latent
d-separates which observed variables, how they are connected,fetepresentation of such an
equivalence class, as illustrated by this very small example, can be cumigeasnd uninformative.

4. Notation, Assumptions and Definitions

Our work is in the framewaork of causal graphical models. Conceptshesedwithout explicit defi-
nition, such as d-separation and I-map, can be found in standarcesq@earl, 1988; Spirtes et al.,
2000; Pearl, 2000). We use “variable” and “vertex/node” interckabty, and standard kinship
terminology (“parent,” “child,” “descendant,” “ancestor”) for dited graph relationships. Sets of
variables are represented in bold, individual variables and symbaisdphs in italics. The Pearson
partial correlation oK, Y controlling forZ is denoted byxy.z. We assume i.i.d. data sampled from
a subseO of the variables of a joint distributioD on variables/ = OUL, subject to the following
assumptions:

Al D factors according to the local Markov assumption for a D@&Gvith vertex set/. That
is, any variable is independent of its non-descendan@ aonditional on any values of its
parents irG.

A2 No vertex inO is an ancestor of any vertex In. We call this property theneasurement
assumption

A3 Each variable irV is a linear function of its parents plus an additive error term of positive
finite variance;

A4 The Faithfulness Assumption: for &K,Y,Z} C V, X is independent oY conditional on
each assignment of values to variable<Zirf and only if the Markov Assumption foc
entails such conditional independencies. For models satisfying A1-A3 vétiss§ian dis-
tributions, Faithfulness is equivalent to assuming that no correlationsroalpzorrelations
vanish because of multiple pathways whose influences perfectly camealmther.

Definition 1 (Linear latent variable model) A model satisfying A+ A4 is a linear latent variable
model, or for brevity, where the context makes the linearity assumption eldatent variable
model.
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A single symbol, such a8, will be used to denote both a linear latent variable model and the
corresponding latent variable graph. Linear latent variable modelsbégeitous in econometric,
psychometric, and social scientific studies (Bollen, 1989), where treeysarally known as struc-
tural equation models.

Definition 2 (Measurement model) Given a linear latent variable model G, with vertex ¥etthe
subgraph containing all vertices M, and all and only those edges directed into vertice®ijris
called the measurement model of G.

Definition 3 (Structural model) Given a linear latent variable model G, the subgraph containing
all and only its latent nodes and respective edges is the structural mb@el o

Definition 4 (Linear entailment) We say that a DAG G linearly entails a constraint if and only
if the constraint holds in every distribution satisfying Al - A4 for G with covargamatrix pa-
rameterized byo, the set of linear coefficients and error variances that defines thditomal
expectation and variance of a vertex given its parents. We will assumeuwltss of generality
that all variables have zero mean.

Definition 5 (Tetrad equivalence class)Given a seC of vanishing partial correlations and van-
ishing tetrad differences, a tetrad equivalence cldg€) is the set of all latent variable graphs
each member of which entails all and only the tetrad constraints and vagighirtial correlations
among the measured variables entaileddy

Definition 6 (Measurement equivalence classfpn equivalence class of measurement mo@£(€)
for C is the union of the measurement models graphs(€). We introduce a graphical represen-
tation of common features of all elements¥f{C), analogous to the familiar notion of a pattern
representing the Markov Equivalence class of a Bayes net.

Definition 7 (Measurement pattern) A measurement pattern, denot@f?(C), is a graph repre-
senting features of the equivalence cl8¢$C) satisfying the following:

e there are latent and observed vertices;

¢ the only edges allowed in an MP are directed edges from latent variablesstrydd vari-
ables, and undirected edges between observed vertices;

e every observed variable in a MP has at least one latent parent;

e if two observed variables X and Y infd ?(C) do not share a common latent parent, then X
and Y do not share a common latent parent in any membgf (T);

e if observed variables X and Y are not linked by an undirected edgé#{(C), then X is not
an ancestor of Y in any memberf(C).

Definition 8 (Pure measurement model)A pure measurement model is a measurement model in

which each observed variable has only one latent parent, and nowdx$garent. That is, itis a
tree beneath the latents.
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Figure 4: A linear latent variable model with any of the graphical structaibese entails all possi-
ble tetrad constraints in the marginal covariance matriX;of Xs.

5. Procedures for Finding Pure Measurement Models

Our goal is to find pure measurement models whenever possible, ancos®thstimate the struc-

tural model. To do so, we first use properties relating graphical steiatudt covariance constraints
to identify a measurement pattern, and then turn the measurement pattern iméoragasurement

model.

The key to solving this problem is a graphical characterization of tetrastigints. Consider
Figure 4(a). A single latent d-separates four observed variablesen\Whis graphical model is
linearly parameterized as

X1 = ML+g&
Xo = AlL+¢&
X3 AsL+¢€3
Xa = ML+g4

it entails all three tetrad constraints among the observed variables. Taayishoice of values for
coefficients{A1,A2,A3,A4} and error variances implies

Ox%0xxs = (AA20f)(A3ha0f) = (A1A30f)(A2A40F) = Oxyx:Oxox
= (MA202)(Ash40f) = (AA402)(A2A307) = Oxux,Oxoxs

wherea? is the variance of latent variable

While this result is straightforward, the relevant result for a structummieg algorithm is the
converse, i.e., establishing equivalence classes from observablk d¢etratraints. For instance,
Figure 4(b) and (c) are different structures with the same entailed tetragtraints that should
be accounted for. The main contribution of this paper is to provide segéralch identification
results, and sound algorithms for learning causal structure based on tBach results require
elaborate proofs that are left to the Appendix. What follows are degmmigpof the most significant
lemmas and theorems, and illustrative examples. This is the core section ofpttre Saction 6
complements the approach by describing an algorithm for learning structadels.
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5.1 ldentification Rules for Finding Substructures of Latent Variable Graphs

We start with one of the most basic lemmas, used as a building block for latdtsrel is basi-
cally the converse of the observation above. Gdie a linear latent variable model with observed
variablesO:

Lemma 9 Let{X, X2, X3,X4} C O be such thabx, x, Oxsx, = Ox,X30%:Xs = Ox; X, Ox,x5- If pag # O
forall {A, B} C {X1, X2, X3, X4}, then there is a node P that d-separates all eleméXisXy, X3, X4}
in G.

It follows that, if no observed node d-separa{e§, X2, X3, X4}, then nodeP must be a latent
node.

In order to learn a pure measurement model, we basically need two piegderaiation: i.
which sets of nodes are d-separated by a latent; ii. which sets of nodest dbare any common
hidden parent. The first piece of information can provide possible indiéthildren/descendants)
of a specific latent. However, this is not enough information, since & skbbserved variables can
be d-separated by a latdntand yetS might contain non-descendantslofone of the nodes might
have a common ancestor withand not be a descendantlgffor instance). This is the reason why
we need tocluster observed variables into different sets when it is possible to show theyotan
share a common hidden parent. We will show this clustering allows us to eliminateppsssble
non-descendants.

There are several possible combinations of observable tetrad condinairaétiow one to iden-
tify such a clustering. Consider, for instance, the following case, in wiichdetermined that
certain variables do not share a common latent. Suppose we have aigatlifesvable variables,
X1, %2, X3,Y1,Y> andYs such that:

1. there is some latent node that d-separates all pa{i&irXz, X3, Y1 } (Figure 5(a));
2. there is some latent node that d-separates all pa{t&iryi, Yz, Ys} (Figure 5(b));
3. there is no tetrad constraioik, x, Oy,v, — Ox,v,0%,y; = 0;

4. no pairs in{Xy,...,Ys} x {Xg,...,Ys} have zero correlation;

Notice that is possible to empirically verify the first two conditions by using Lemmal®@v
suppose, for the sake of contradiction, tkaandY; have a common hidden pardntOne can show
thatL should d-separate all elements{i;, X2, X3, Y1}, and also in{ X1, Y1, Y2, Y3}. With some extra
work (one has to consider the possibility of node$Xa, X2, Y1, Y2} having common parents with
for instance), one can show that this implies thatseparate$Xs,Y: } from {Xz,Y2}. For instance,
Figure 5(c) illustrates a case whdrel-separates all of the given observed variables.

However, this contradicts the third item in the hypothesis (such a d-sepavatidmply the
forbidden tetrad constraint, as we show in the formal proof) and, asi\seqoence, no sudh
should exist. Therefore, the items above correspond idariification rulefor discovering some d-
separations concerning observed and hidden variables (in this casbpw thalX; is independent
of all latent parents of; given some latent ancestor Xf). This rule only uses constraints that can
be tested from the data.

Given such identification rules, what is needed is a principled way of cantpthe partial
information they provide to build classes of latent variable models of interastfollowing section
explains the main rules and an algorithm for building an equivalence classagurement models.
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Xp Xy Xg Yy Xp Y Y, Yy Xy X XYY, Y,

(@ (b) (c)

Figure 5: If sets{X3, X2, X3,Y1} and{Xy, Y1, Y2, Y3} are each d-separated by some node (e.g., as in
Figures (a) and (b) above), the existence of a common paréatX; andY; implies a
common node d-separatifef, Y1 } from { Xy, Y2}, for instance (as exemplified in Figure

(©)).

5.2 Algorithms for Finding Equivalence Classes of Latent Variable Grajs

We start with one of the most basic lemmas, used as a building block for latétsre§Ve dis-
cover a measurement pattern as an intermediate step before learningragasterement model.
FINDPATTERN, given in Table 1, is an algorithm to learn a measurement pattern from ele éoa
vanishing partial correlations and vanishing tetrad differences. Tlogithion uses three rules, CS1,
CS2, CS3, based on Lemmas that follow, for determining graphical structumeconstraints on
the correlation matrix of observed variables.

Let C be a set of linearly entailed constraints satisfied in the observed covanaaicix. The
first stage of IND PATTERN searches for subsets©@fthat will guarantee that two observed variables
do not have any latent parent in common. Gebe the latent variable graph for a linear latent
variable model with a set of observed variabed et O’ = { Xy, X2, X3, Y1, Y2, Y3} C O such that for
all triplets {A,B,C}, {A,B} ¢ O’ andC € O, we havepag # 0, pasc # 0. Lett,x. represent the
tetrad constraint ;0. — 0k 03 = 0 and—1,3«. represent the complementary constraigox —
ok oy # 0. The following Lemma is a formal description of the example given earlier:

Lemma 10 (CSl Test)lf COﬂStI’aintS{Txlylxz)%,Txlylxgxz, TV X1 YaYss TY1X1Y5Yas ﬁTX1X2Y2Y1} all hold,
then X and Y do not have a common parent in G.

“CS” here stands for “constraint set,” the premises of a rule that caisée to test if two nodes
do not share a common parent. Figure 6(a) illustrates one situation WharedY; can be iden-
tified to not measure a same latent. In that Figure, some variables are speifiainexplained
correlations represented as bidirected edges between the varialtle®@ses could be due to in-
dependent hidden common causes, for instance). This illustrates timtotioms between elements
of {X2,X3,Y2,Y3} can occur.

Other sets of observable constraints can be used to reach the samesiconclfe call them
CS2 and CS3. To see one of the limitations of CS1, consider Figure 6(bje T$ino single latent
that d-separateX;,Y; and two other variables, as in CS1 cases. In Figure 6(c), there ar&ranb te
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Algorithm FINDPATTERN
Input: a covariance matrix

1. Start with a complete undirected graBlover the observed variables.

2. Remove edges for pairs that are marginally uncorrelated or undedetanditioned on a
third observed variable.

3. For every pair of nodes linked by an edgedntest if some rule CS1, CS2 or CS3 applies.
Remove an edge between every pair corresponding to a rule that applies.

4. LetH be a graph with no edges and with nodes corresponding to the obsamneiles.

5. For each maximal clique 8, add a new latent tbl and make it a parent to all corresponding
nodes in the clique.

6. For each paifA,B), if there is no other paifC,D) such thatbacOsp = OaApOBc = OABOCD,
add an undirected edge— Bto H.

7. ReturnH.

Table 1: Returns a measurement pattern corresponding to the tetradsaactér vanishing partial
correlations of.

constraints simultaneously involving,Y; and other observed variables that are children of the
same latent parent of;. These extra rules are not as intuitive as CS1. To fully understand how
these cases still generate useful constraints, some knowledge of pinécgiamplications of tetrad
constraints is necessary. To avoid interrupting the flow of the papereseride these properties
only in the Appendix along with formal proofs of correctness. In the maxagraphs, we just
describe rules CS2 and CS3.

Let the predicatd-actor(X,Y,G) be true if and only if there exist two nod¥¢ andZ in la-
tent variable grapl such thattywxyz and Twxzy are both linearly entailed b, all variables
in {W,X,Y,Z} are correlated, and there is no obser@ih G such thatpagc = 0 for {A,B} C
{W,X,Y,Z}:

Lemma 11 (CS2 Test)If constraintS{Tx,v;Y,x,, TxoYi¥s¥as TxiXoYoXs, IXXoYoy; b @ll hold such that
Factor(Xy, X2, G) = true, Factor(Y1, Y2, G) = true, X is not an ancestor of Xand Y is not an
ancestor of ¥, then X and ¥, do not have a common parent in G.

Lemma 12 (CS3 Test)If COﬂStraintS{Txlylyzys,Txlylygyz, T YaXoXa s T YaXaXo s T YaXoXa s
T VaXeXes TIXXoYoYs b @ll hold, then X and ¥ do not have a common parentin G.

The rules are not redundant: only one can be applied on each situatiomstnce, in Figure
6(a) the latent on the left d-separafe§, X2, X3, Y1}, which implies{tx,v;v,vs, Tx,v;vsv, - The latent
on the right d-separat€s<i, Y1, Y2, Y3}, which implies{Ty,x,v,vs, Ty,x,Yav, }- The constraintx, x,v,y,
can be shown not to hold given the assumptions. Therefore, this rule ¢efifoumation about the
unobserved structuré; andY; do not have any common hidden parent.
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(@) (b) (©)

Figure 6: Three examples with two main latents and several independertdatemon causes of
two indicators (represented by bidirected edges). In (a), CS1 appliesiot CS2 nor
CS3 (even when exchanging labels of the variables); In (b), CS2 afplésuming the
conditions forXy, X, andYi, Y>), but not CS1 nor CS3. In (c), CS3 applies, but not CS1
nor CS2.

For CS2 (Figure 6(b)), nodesandY are depicted as auxiliary nodes that can be used to verify
predicateg-actor. For instancefactor(Xi, Xz, G) is true because all three tetrads in the covariance
matrix of { Xz, Xz, X3, X} hold.

Sometime it is possible to guarantee that a node is not an ancestor of ansttexjuired, e.g.,
to apply CS2:

Lemma 13 If for some seD’ = {X1,X2,X3,X4} C O, Ox;%,0x%:% = OXyX:0%:Xs = Ox; X4 Oxox; and
for all triplets {A,B,C}, {A,B} ¢ O',C € O, we havepasc # 0 andpag # 0, then Ac O’ is not a
descendant in G of any element@f\{A}.

This follows immediately from Lemma 9 and the assumption that observed vareaigast
ancestors of latent variables. For instance, in Figure 6(b) the existdéribe observed nod&
(linked by a dashed edge to the parengf allows the inference thaf; is not an ancestor of,
since all three tetrad constraints hold in the covariance matfXoKi, X2, X3}.

We know have theoretical results that provide information concerningdackmmon parents
and lack of direct connections of nodes, given a set of tetrad aridhiag partial correlatiorC.

The algorithm FNDPATTERN from Table 1 essentially uses the given lemmas to construct a mea-
surement pattern, as defined in Section 4.

Theorem 14 The output ofFINDPATTERN is a measurement patter/ P(C) with respect to the
tetrad and zero/first order vanishing partial correlation constrai@Gtef 2.

The presence of an undirected edge does not mean that adjacergsvartihe pattern are
actually adjacent in the true graph. Figure 7 illustrates #isandXg share a common parentin the
true graph, but are not adjacent. Observed variables adjacent intih pattern always share at
least one parent in the pattern, but do not always share a common jpettem true DAG. Vertices
sharing a common parent in the pattern might not share a parent in theaplre(grg.X; andXsg in
Figure 7).
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Xp Xy X X Xo Xg X0 X X0 X, X X, X X, X X

S =

(@) (b)

Figure 7: In (a), a model that generates a covariance matiin (b), the output of FNDPATTERN
givenZ. Pairs in{Xy, X2} x {Xs,...,X7} are separated by CS2.

What is not obvious in the output ofifDPATTERN is how much more information it leaves
implicit and how to extract a (pure) model out of an equivalence classsdIssues are treated in
the next section.

5.3 Completeness and Purification

The ANDPATTERN algorithm is sound, but not necessarily complete. That is, there mighapé-gr
ical features shared by all members of the measurement model equivelags¢hat are not dis-
covered by INDPATTERN. For instance, there might be a CS4 rule that is not known to ue +
PATTERN might be complete, but we conjecture it is not: we did not try to construct uges
more than 6 variables (unlike CS1, CS2, CS3), since the more variabléslzas) the more com-
putational expensive and the less statistically reliabletlisarning a pure measurement model is
a different matter. We can find a pure measurement model with the largesenwf latents in the
true graph, for instance.

A pure measurement model implieslasteringof observed variables: each cluster is a set of
observed variables that share a common (latent) parent, and the sentsf thtfines a partition over
the observed variables. The output ofBPATTERN cannot, however, reliably be turned into a pure
measurement pattern in the obvious way, by removing fkbmll nodes that have more than one
latent parent and one of every pair of adjacent nodes, as attempee tojitkwing algorithm:

e Algorithm TRIVIAL PURIFICATION: remove all nodes that have more than one latent parent,
and for every pair of adjacent observed nodes, remove an arhitwaey of the pair.

TRIVIAL PURIFICATION is not correct. To see this, consider Figure 8(a), where with the excep-
tion of pairs in{Xs, ..., X7}, every pair of nodes has more than one hidden common cause. Giving
the covariance matrix of such model ton® PATTERN will result in a pattern with one latent only
(because no pair of nodes can be separated by CS1, CS2 or C&8), jzairs that are connected by
a double directed edge in Figure 8(a) will be connected by an undiredtgdie the output pattern.
One can verify that if we remove one node from each pair connected bpdirected edge in this
pattern, the output with the maximum number of nodes will be given by the gnafilgure 8(b).

2. Under very general conditions, there are also no rules using feaei6 variables, as shown by Silva (2005).
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Figure 8: In (a), a model that generates a covariance nmatrbhe output of FNDPATTERN given
> contains a single latent variable that is a parent of all observed nau#seseral ob-
served nodes that are linked by an undirected edge. In (b), the paitbrihe maximum
number of nodes that can be obtained RIVIAL PURIFICATION. It is still not a correct
pure measurement model for any latent in the true graph, since there iteno tlzat
d-separate$Xs, ..., X7} in the true model.

The procedure BiLD PURECLUSTERSbuilds a pure measurement model using as inpnbF
PATTERN and an oracle for constraints. UnlikeRIVIAL PURIFICATION, variables are removed
whenever appropriate tetrad constraints are not satisfied. Table entgessimplified version of
the full algorithm. The complete algorithm is given only in Appendix A to avoid infgting the
flow of the text, since it requires the explanation of extra steps that arefmotich relevance in
practice. We also describe the choices made in the algorithm (Steps 2, 4 anl¢l 51 the imple-
mentation given in Appendix A. The particular strategy for making such elsag not relevant to
the correctness of the algorithm.

The fundamental properties olB.D PURECLUSTERSare clear from Table 2: it returns a model
where each latent has at least three indicators, and such indicatdtscava to be d-separated
by some latent. Nodes that are children of different latents in the outpphgne known not to
be children of a common latent in the true graph, as defined by the initial nesasat pattern.
However, it is not immediately obvious how latents in the output graph are deiatatents in the
true graph.

The informal description is: there is a labeling of latents in the output grapbrédiog to the
latents in the true grap®, and in this relabeled output graph any d-separation between a measured
node and some other node will hold @ This is illustrated by Figure 9. Given the covariance
matrix generated by the true model in Figure 9(alyil®> PURECLUSTERS generates the model
shown in Figure 9(b).

Since the labeling of the latents is arbitrary, we need a formal descriptioe ¢d¢hthat latents
in the output should correspond to latents in the true model up to a relabelisgofimal graphical
properties of the output of BLD PURECLUSTERS (as given in Appendix A) are summarized by
the following theorem:
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Algorithm BuIiLD PURECLUSTERS SIMPLIFIED
Input: a covariance matrix

1. G«—FINDPATTERN(Y).

2. Choose a set of latents (5. Remove all other latents and all observed nodes that are not
children of the remaining latents and all clusters of size 1.

3. Remove all nodes that have more than one latent paréht in

4. For all pairs of nodes linked by an undirected edge, choose onerdlefmeach pair to be
removed.

5. If for some set of node§A, B,C}, all children of the same latent, there is a fourth n&die
G such thabagOcp = 0acOBD = OapOgc IS NOttrue, remove one of these four nodes.

6. Remove all latents with less than three children, and their respective regasu

7. if G has at least four observed variables, ref@rrOtherwise, return an empty model.

Table 2: A general strategy to find a pure measurement measurementah@dabset of the latents
in the true graph. As explained in the body of the text, implementation details gsutle
choices made in Steps 2 and 4) are left to Appendix A.

Theorem 15 Given a covariance matriX assumed to be generated from a linear latent variable
model G with observed variabl€sand latent variablet , let Gy be the output oBUILD PURE-
CLUSTERYX) with observed variable®,; C O and latent variables ot. Then Gy is a measure-
ment pattern, and there is an unique injective mappinglMy; — L with the following properties:

1. Let Loyt € Lout. Let X be a child of byt in Gout. Then MLoyt) d-separates X fror®ey:\ X in
G;

2. M(Lout) d-separates X from every latent L in G for which ML) is defined;

3. LetO’ C Ogyt be such that each pair i@’ is correlated. At most one element@i has the
following property: (i) it is not a descendant of its respective mapped tggarent in G or
(ii) it has a hidden common cause with its respective mapped latent parént in

For each group of correlated observed variables, we can guagahtdeat most one edge from
a latent into an observed variable is incorrectly directed. By “incorredtcted,” we mean the
condition defined in the third item of Theorem 15: although all observeidblas are children of
latents in the output graph, one of these edges might be misleading, sincériretbeaph one of the
observed variables might not be a descendant of the respective lakénis illustrated by Figure
10.

Notice also that we cannot guarantee that an observed Xawigh latent parent. oy in Gout
will be d-separated from the latents@not in Gy, givenM (Loyt): if X has a common cause with
M(Lout), thenX will be d-connected to any ancestor Mf(Loyt) in G given M(Loyt). This is also
illustrated by Figure 10.
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Figure 9: Given as input the covariance matrix of the observable vasixble X;, connected ac-
cording to the true model shown in Figure (a), theiB> PURECLUSTERSalgorithm will
generate the graph shown in Figure (b). It is clear there is an injectiv@ingap!(.)
from latents{T;, T} to latents{L1,L>} such thatM(T;) = L; andM(T,) = L, and the
properties described by Theorem 15 hold.

Figure 10: Given as input the covariance matrix of the observable Vesixlh — X; connected
according to the true model shown in Figure (a), one of the possible owtpBtsILD -
PURECLUSTERSalgorithm is the graph shown in Figure (b). It is clear there is an injec-
tive mappingM(.) from latents{T, T>} to latents{L1,L2, L3, L4} such thaM(T;) =L,
andM(T,) = Ls. However, in (b) the edg®& — X; does not express the correct causal
direction of the true model. Notice also th#i is not d-separated frorhs given
M(T1) = Lz in the true graph.

5.4 An Example

To illustrate BuiLD PURECLUSTERS suppose the true graph is the one given in Figure 11(a), with
two unlabeled latents and 12 observed variables. This graph is unknd@nito PURECLUSTERS
which is given only the covariance matrix of variablg%;,Xo,...,X12}. The task is to learn a
measurement pattern, and then a purified measurement model.

In the first stage of BILD PURECLUSTERS the HNDPATTERN algorithm, we start with a fully
connected graph among the observed variables (Figure 11(b)),emgdribceed to remove edges ac-
cording to rules CS1, CS2 and CS3, giving the graph shown in Figucg. Tllifere are two maximal
cliques in this graph{Xi, X2, X3, X7, Xg, X11, X12} and{Xa, Xs, X, Xg, Xo, X10, X12}. They are distin-
guished in the figure by different edge representations (dashedédd svith the edgeXg — Xi2
present in both cliqgues). The next stage takes these maximal cliquesestescan intermediate
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Figure 11: A step-by-step demonstration of how a covariance matrix geloy graph in Figure
(a) will induce the pure measurement model in Figure (f).

graphical representation, as depicted in Figure 11(d). In Figurg,Méeadd the undirected edges
X7 — Xg, Xg — X12, Xg — X190 andXy; — Xy, finalizing the measurement pattern returned byoHPAT-
TERN. Finally, Figure 11(f) represents a possible purified output 0ftB PURECLUSTERSgiven
this pattern. Another purification with as many nodes as in the graph in Fidyfeslibstitutes

nodeXg for nodeXq.
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There is some superficial similarity between B PURECLUSTERSand the INDHIDDEN al-
gorithm (Elidan et al., 2000) cited in Section 3. Both algorithms select cliquesufastructures
close to a clique) and introduce a latent as a common cause of the variablaisdligie. The algo-
rithms are, however, very different:BLD PURECLUSTERSknows that each selected clique should
correspond to a latedtand creates all of its latents at the same timevDFHIDDEN creates one
latent a time, and might backtrack if this latent is not supported by the datee fdodamentally,
there is no clear description of whatNB HIDDEN actually learns (as illustrated in Section 3), and
even if asymptotically it can always find a pure measurement subrfiodel.

5.5 Parameterizing the Output ofBuILD PURECLUSTERS

Recall that so far we described only an algorithm for learning measutenmefels. Learning the
structure among latents, as described in Section 6, requires explorisfyaints in the covariance
matrix of the observed variables. SinceiBD PURECLUSTERSreturns only a marginal of the true
model, it is important to show that this marginalized graph, when parameteszetireear model,
also represents the marginal probability distribution of the observed \esiab

The following result is essential to provide an algorithm that is guaranteédda Markov
equivalence class for the latentsNH{L oyt) using the output of BiLD PURECLUSTERS as in Sec-
tion 6. It guarantees that one can fit a linear model using the structuee QiwBuILD PURECLUS-
TERSand have a consistent estimator of the observed covariance matrix (keldwted variables)
in families such as Gaussian distributions. This is important, since the covarizatcix of the ob-
served variables in the model is used to guide the search for a structung éaents, as discussed
in Section 6.

Theorem 16 Let M(Lout) € L be the set of latents in G obtained by the mapping functign M
Let 3o, be the population covariance matrix Gf. Let the DAG (‘sﬂtg be G, augmented by
connecting the elementslo§,; such that the structural model of{§ is an I-map of the distribution
of M(Loyt). Then there exists a linear latent variable model usirﬁ?@s the graphical structure
such that the implied covariance matrix©f: equalsZo,,,.

5.6 Computational Issues and Anytime Properties

A further reason why we do not provide details of some stepswi BPURECLUSTERS at this
point is because there is no unique way of implementing it, and differentqatiifns might be of
interest. For instance, one might be interested in the pure model that hasgée [zossible num-
ber of latents. Another one might be interested in the model with the largestemwhbbserved
variables. However, some of these criteria might be computationally intradtablghieve. Con-
sider for instance the following criterion, which we denotelds”: given a measurement pattern,
decide if there is some choice of observed nodes to be removed sucheheastiiting graph is a
pure measurement model of all latents in the pattern and each latent has ttdea children. This
problem is intractable:

Theorem 17 ProblemM 22 is NP-complete.

3. Some latents might be eliminated for not having enough indicators, thoug
4. This, of course, bears no fundamental implication on the abilitybHIDDEN to generate a model that provides a
good fit to the data, but it is a crucial limitation in causal analysis.
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There is no need to solve a NP-hard problem in order to have the thebimantees of
interpretability of the output given by Theorem 15. For example, theretige $n FND PATTERN
where it appears necessary to find all maximal cliques, but, in fact, it isdettifying more cliques
increases the chance of having a larger output (which is good) by theféhe algorithm, but it is
not required for the algorithms correctness. Stopping at Step S\afFATTERN before completion
will not affect Theorems 15 or 16.

Another computational concern is ti@N°®) loops in Step 3 of RNDPATTERN, whereN is
the number of observed variabRsAgain, it is not necessary to compute this loop entirely. One
can stop Step 3 at any time at the price of losing information, but not the tiedrguarantees of
BuiLD PURECLUSTERS This anytime property is summarized by the following corollary:

Corollary 18 The output oBuiLD PURECLUSTERS etains its guarantees even when rules CS1,
CS2 and CS3 are applied an arbitrary number of time&IimD PATTERN for any arbitrary subset
of nodes and an arbitrary number of maximal cliques is found.

It is difficult to assess how an early stopping procedure might affectohepleteness of the
output. In all of our experiments, we were able to enumerate all maximal cliguetew seconds
of computation. This is not to say that one should not design better wayderirg the clique enu-
meration (using prior knowledge of which variables should not be clu$teggether, for instance),
or using other alternatives to an anytime stop.

In case there are possibly too many maximal cliques to be enumeratedbfPATTERN, an
alternative to early stopping is to triangulate the graph, i.e., adding edgesaomg some non-
adjacent pair of nodes in a chordless cycle. This is repeated until mdlebs cycles remain in the
graphG constructed at the end of Step 3 aNBPATTERN (Table 1). Different heuristics could be
use to choose the next edge to be added, e.g., by linking the pair of natlesitfost strongly corre-
lated. The advantage is that cliques in a triangulated graph can be founédntiime. For the same
reasons that validate Corollary 18, such a triangulation will not affeatdnectness of the output,
since the purification procedure will remove all nodes that need to be eximdw general, adding
undirected edges to grajfihin FINDPATTERN does not compromise correctness. As a side effect,
it might increase the robustness of the algorithm, since some ed@eareflikely to be erroneously
removed in small sample studies, although more elaborated ways of addestssitk would need
to be discussed in detail and are out of the scope of this paper. Suclmgutation procedure,
however, might still cause problems, since in the worst case we will obtailtyacbnnected (and
uninformative) grapi.

6. Learning the Structure of the Unobserved

The real motivation for finding a pure measurement model is to obtain relitgilstigal access to
the relations among the latent variables. Given a pure and correct rapesurmodel, even one
involving a fairly small subset of the original measured variables, a vanifedygorithms exist for
finding a Markov equivalence class of graphs over the set of latents gitben measurement model.

5. This immediately follows from, e.qg., the definition of CS1: we have ta finsl a foursome{Xz,X2,Y1,Y>} where
Ox,% 0Y,Y, — OX,Y, Oy, 7 0, which is aO(N“) loop. Conditioned on this foursome, we have to find two independent
(but distinct)X3 andYs. This requires two (almost) independent loop©gRN) within the O(N*) loop.

6. We would like to thank an anonymous reviewer for the suggestions indhégmph.

210



LEARNING THE STRUCTURE OFLINEAR LATENT VARIABLE MODELS

6.1 Constraint-Based Search

Constraint-based search algorithms rely on decisions about indepenaesh conditional indepen-
dence among a set of variables to find the Markov equivalence clasthege variables. Given a
pure and correct measurement model involving at least 2 measuresguey e can test for inde-
pendence and conditional independence among the latents, and thalsfeeaquivalence classes
of structural models among the latents, by taking advantage of the followingeting Spirtes et al.,

2000):

Theorem 19 Let G be a pure linear latent variable model. Let L, be two latents in G, an@® a
set of latents in G. Letbe a measure of, X, be a measure of, and X, be a set of measures
of Q containing at least two measures per latent. Thernid.d-separated from L.givenQ in G

if and only if the rank of the correlation matrix gy, Xo} UXq is less than or equal t¢Q| with
probability 1 with respect to the Lebesgue measure over the linear ¢gerfi@nd error variances
of G.

We can then use this constraint to fefsir conditional independencies among the latents. Such
conditional independence tests can then be used as an oracle foaturssdtisfaction techniques
for causality discovery in graphical models, such as the PC algorithmtéSgt al., 2000) or the
FCI algorithm (Spirtes et al., 2000).

We define the algorithm PC-MIMBILD® as the algorithm that takes as input a measurement
model satisfying the assumption of purity mentioned above and a covariaridg, raad returns
the Markov equivalence class of the structural model among the latents mmethgurement model
according to the PC algorithm. A FCI-MIMBLD algorithm is defined analogously. In the limit
of infinite data, it follows from the preceding and from the consistency®@falRd FCI algorithms
(Spirtes et al., 2000) that

Theorem 20 Given a covariance matriX assumed to be generated from a linear latent variable
model G, and @, the output oBuILD PURECLUSTERSQgivenZ, the output oPC-MIMBUILD or
FCI-MIMBUILD given(Z,Goyt) returns the correct Markov equivalence class of the latents in G
corresponding to latents in & according to the mapping implicit iBulLD PURECLUSTERS

For most common families of probabilities distributions (e.g., multivariate Gaugstasam-
ple covariance matrix is a consistent estimator of the population covariandg.ridiis fact, com-
bined with Theorem 20, shows we have a point-wise consistent algorithtedming a latent
variable model with a pure measurement model, up to the measurement etévelkess described
in Theorem 15 and the Markov equivalence class of the structural model.

6.2 Score-Based Search

Score-based approaches for learning the structure of Bayesiaorksfwuch as GES (Meek, 1997,
Chickering, 2002) are usually more accurate than PC or FCI when themoesomitted common
causes, or in other terms, when the set of recorded variables is casisffiityent. We know of

7. One way to test if the rank of a covariance matrix in Gaussian modelsniesty is to fit a factor analysis model
with g latents and assess its significance.

8. MIM stands for “multiple indicator model”, a term in structural equatiordelditerature describing latent variable
models with multiple measures per latent.
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no consistent scoring function for linear latent variable models that caasiey computed. This
might not be a practical issue, since any structural model with a fixed measnt model generated

by BuiLD PURECLUSTERShas an unique maximum likelihood estimator, up to the scale and sign
of the latents. That is, the set of maximum likelihood estimators is a single pointadefea
complicated surface. This sidesteps most of the problems concerningyfthdiproper complexity
penalization for a candidate model (Spirtes et al., 2000).

We suggest using the Bayesian Information Criterion (BIC) function as@edunction. Using
BIC with STRUCTURAL EM (Friedman, 1998) and GES results in a computationally efficient way
of learning structural models, where the measurement model is fixed aBds@&stricted to modify
edges among latents only. Assuming a Gaussian distribution, the first step®IfRUCTURAL EM
implementation uses a fully connected structural model in order to estimate thexfiected latent
covariance matrix. That is followed by a GES search. We call this algoritla®-®&IMBUILD
and use it as the structural model search component in all of the studiesudated and empirical
data that follow.

7. Simulation Studies

In the following simulation studies, we draw samples of three different sinas 9 different latent
variable models. We compare our algorithm against exploratory facttysssmand the DAG hill-
climbing algorithm FNDHIDDEN (Elidan et al., 2000), and measure the success of each on the
following discovery tasks:

DP1. Discover the number of latents@
DP2. Discover which observed variables measure each latent

DP3. Discover as many features as possible about the causal relgastong the latents iG.

Since factor analysis addresses only tasks DP1 and DP2, we compéaexilydo BuILD-
PURECLUSTERSON DP1 and DP2. For DP3, we use our procedure and factor analysismoute
measurement models, then discover as much about the features of theratnmodel among the
latents as possible by applying GES-MIMRBRD to the measurement models output by BPC and
factor analysis.

We hypothesized that three features of the problem would affect tfierpemce of the algo-
rithms compared: sample size; the complexity of the structural model; and, tmgleoaty and
level of impurity in the generating measurement model. We use three diffeaemple sizes for
each study: 200, 1,000, and 10,000. We constructed nine generatimgviatable graphs by using
all combinations of the three structural models and three measurement mo&ésiia 12. For
structural model SM3, the respective measurement models are augmectediragly.

MM1 is a pure measurement model with three indicators per latent. MM2 ham#lieators
per latent, one of which is impure because its error is correlated with arinthieator, and another
because it measures two latents directly. MM3 involves six indicators pet,la@hof which are
impure.

SM1 entails one unconditional independence among the latentsindependents. SM2 en-
tails one first order conditional independentgl L3|L», and SM3 entails one first order conditional
independencd:, | L3|L3, and one second order conditional independence reldtiont 4| {L,, L3}.
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O—O—O O——O—0O —

SM1 SM2 SM3
X X X X >< X X, Xy X 10 11 12 13 X14X 12 13 14 1
MM1 MM2 MM3

Figure 12: The Structural and Measurement models used in our simulattesstu

Thus the statistical complexity of the structural models increases from SMI3@8d the impurity
of measurement models increases from MM1 to MM3.

For each generating latent variable graph, we used the Tetrad [Vamdgyrith the following

procedure to draw 10 multivariate normal samples of size 200, 10 at si@6,136d 10 at size
10,000.

1. Pick coefficients for each edge in the model randomly from the intendab, —0.5]U[0.5,1.5].

2. Pick variances for the exogenous nodes (i.e., latents without par@htxi@r nodes) from
the interval[1, 3].

3. Draw one pseudo-random sample of size N.

This choice of parameter values for simulations implies that, on average,fithl ariance
of the indicators of an exogenous latent is due to the error term, makingdbé&epr of structure
learning more particularly difficult for at least some clusters.

We used three algorithms in our studies:

1. BPC: BUILDPURECLUSTERS+ GES-MIMBUILD
2. FA: Factor Analysis + GES-MIMBILD
3. FH: ENDHIDDEN, using the same sort of hill-climbing procedure used by Elidan et al. (2000)

BPC is the implementation of LD PURECLUSTERSand GES-MIMBUILD described in Ap-
pendix A. FA involves combining standard factor analysis to find the meamumemodel with
GES-MIMBUILD to find the structural model. For standard factor analysis, we Lisetanal

9. Available atht t p: / / ww. phi | . crru. edu/ proj ect s/ tetrad.
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from R 1.9 with the oblique rotation promax. FA and variations are still widelyl@se are per-
haps the most popular approach to latent variable modeling (Bartholoméw28G62). We choose
the number of latents by iteratively increasing its number until we get a sigmiifitaabove 0.05,
or until we have to stop due to numerical instabilities.

Our implementation of RKDHIDDEN follows closely the implementation suggested by Elidan
et al. (2000): in that implementation, a candidate latent is introduced as a coparemt of the
nodes in a dense subgraph of the current graph (such a subgreplfessemicliqueby Elidan
et al.). We implemented the most computational expensive versionnafHRDDEN, where all
semicliques are used to create new candidate graphs, and a full hill-climimiogdure with tabu
search is performed to optimize each of them. The score function is Bldnikia&graph is a fully
connected DAG among observed variatiés.

We also added to INKDHIDDEN the prior knowledge that all edges should be directed from
latents into observed variables, and we split the search into two main stageorfly edges into
observed variables are modified, while keeping a fully connected staliotadel. After finding the
measurement model, we proceed to learn the structural model using the ganoé iyll-climbing
procedure suggested by Elidan et al. Without these two modifications,HEDDEN results are
significantly worse!

In order to compare the output of BPC, FA, and FH on discovery tasis(fiitling the correct
number of underlying latents) and DP2 (measuring these latents apprlypriate must map the
latents discovered by each algorithm to the latents in the generating models, atmust define
a mapping of the latents in the,; to those in the true grapB.

We do the mapping by first fitting each model by maximum likelihood to obtain estinttésef
parameters. For each latent in the output model, we sum the absolute Viaheedge coefficients
of their observed children, grouping the sum according to their true lptgeints. The group with
the highest sum will define the label of the output latent. That is, for eaehtla, in the output
model, the following procedure is performed:

e for all latentsL,,...,Lg in the true model, le§ =0, 1<i <k

e for every childO that measureky; in the output model with edge coefficiekto, such that
O has a single parei in the true model, increasg by |A o]

e letM be such tha§,, is maximum among, ..., S. LabelLqy asby.

For example, leto; be a latent node in the output gra@g,;. Supposes, is the sum of the
absolute values of the edge coefficients of the childrelygfthat measure the true latelnt, and
S is the respective sum for the measures of true ldigntf S, > S;, we rename.q; asbo. If two
output latents are mapped to the same true latent, we label only one of themtagettatent by

10. Which is the true graph among observed variables in most simulatié¥aschose the initialization point to save
computational costs of growing an almost fully connected DAG withoutédmiddariables first.

11. Another important modification in our implementation was in tf® &TURAL EM implementation: to escape
out of bad local minima within 8RUCTURAL EM, we do the following whenever the algorithm arrives in a local
minimum: we apply the same search operators, but usingubkeBIC scoreevaluation instead of theTRUCTURAL
EM-BIC score, which is a lower bound on the regular BIC score. Thisalso crucial to get better results withng -
HIDDEN, but considerably slowed down the algorithm, since computing the true scoomputationally expensive
and requires an evaluation of the whole model.
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choosing the one that corresponds to the highest sum of absolute Ipadimg other one remains
unmapped and receives an arbitrary label.

We compute the following scores for the output mo@egl; from each algorithn? where the
true graph is labelle:

e latent omission the number of latents i that do not appear if5,; divided by the total
number of true latents i;

e latent commission the number of latents iGg that could not be mapped to a latentGn
divided by the total number of true latents@®

e mismeasurementthe number of observed variables@g,; that are measuring at least one
wrong latent divided by the number of observed variables;in

To be generous to factor analysis, we considered only latents with atheasindicators. Even
with this help, we still found several cases in which latent commission errens more than 100%.
We eliminated from IWDHIDDEN any latent that ended up with no observed children.

Table 3 evaluates all three procedures on the first two discovery t&8dk&:and DP2. Each
number is the average error across 10 trials with standard deviationemipeses for sample sizes
of 200, 1000, 10,000. Over all conditions, FA has very low rates of fatemission, but very
high rates of latent commission. In particular, FA is very sensitive to the paofitige generating
measurement model. With MM2, the rate of latent commission for FA was modevititelMM3
it was abysmal. Because indicators are given too many latent parents imdty, indicators are
removed during purification, resulting in high indicator omission errors.

BPC does reasonably well on all measures in Tables 3 at all sample siz&s all generating
models. Our implementation ofiRkDHIDDEN also does well in most cases, but has issues with
SM113

In the final piece of the simulation study, we applied the best causal matehsalgorithm we
know of, GES, modified for this purpose as GES-MBMLD, to the measurement models output
by BPC and FA. We evaluate FH both by 1. using its default structural madhéth is obtained
by a standard hill-climbing with tabu search, and by 2. fixing its measuremerglrand applying
GES to re-learn the corresponding structural model.

If the output measurement model has no errors of latent omission or commigsa scoring
the result of the structural model search is fairly easy. The GES-BMIMD search outputs an
equivalence class, with certain adjacencies unoriented and certaierclgg oriented. If there is
an adjacency of any sort between two latents in the output, but no sudeadyan the true graph,
then we have an error of edge commission. If there is no adjacency sangetween two latents
in the output, but there is an edge in the true graph, then we have an tadg®omission. For
orientation, if there is an oriented edge in the output that is not oriented irytheadence class for

12. Other types of errors, such as missing indicators that could haegreserved (in BPC) or adding edges among
indicators when they should not exist (as iINBHIDDEN) are not directly comparable and not as important with
respect to the task of finding latents and causal relations among lateshtbeagfore not considered in this simulation
study.

13. One possible explanation for the difficulties with SM1 is the fact that, in tteermediate stages of the algorithm,
there will be paths connectifgy, X2, X3} and{X7,Xg, Xg} due to latent variables, but such paths that have to amount
to zero correlation in order to reproduce the marginal covariance matrig might be difficult to obtain with single
edge modifications, considering that introducing an edge might came® sorrelations but increase others.
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Evaluation of output measurement models

Latent omission Latent commission Mismeasurements

Sample] BPC | FA | FH BPC [ FA [ FH BPC [ FA [ FH

SM; + MM,

200 | 0.10(.2) | 0.00{.0) | 0.50(.3) | 0.00(.0) | 0.00(.0) | 0.00{.0) | 0.01(.0) | 0.41(.3) | 0.52(.3)
1000 | 0.17(.2) | 0.00(.0) | 0.17(.3) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.19(.2) | 0.18(.3)
10000 | 0.07(.1) | 0.00(.0) | 0.23(.2) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.14(.2) | 0.23(.2)

SM; +MM;

200 [ 0.00(.0) | 0.03(.1) | 0.27(.3) | 0.03(.1) | 0.77(.2) | 0.00(.0) | 0.01(.0) | 0.92(.1) | 0.47(.3)
1000 | 0.00(.0) | 0.00(.0) | 0.17(.2) | 0.00(.0) | 0.47(.2) | 0.07(.1) | 0.00(.0) | 0.59(.1) | 0.27(.3)
10000 | 0.00(.0) | 0.00(.0) | 0.27(.3) | 0.03(.1) | 0.33(.3) | 0.07(.1) | 0.02(.1) | 0.55(.2) | 0.33(.3)

SM; +MM3

200 | 0.00(.0) | 0.00{.0) | 0.10(.2) | 0.07(.1) | 1.13(.3) | 0.07(.1) | 0.03(.1) | 0.90(.1) | 0.36(.3)
1000 | 0.00(.0) | 0.00(.0) | 0.07(.1) | 0.07(.1) | 0.87(.3) | 0.00(.0) | 0.03(.1) | 0.72(.1) | 0.15(.2)
10000 | 0.03(.1) | 0.00(.0) | 0.23(.3) | 0.00(.0) | 0.70(.3) | 0.03(.1) | 0.00(.0) | 0.60(.2) | 0.30(.3)

SM+MM;

200 [ 0.10(.2) | 0.00(.0) | 0.27(.3) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.06(.1) | 0.43(.2) | 0.28(.3)
1000 | 0.03(.1) | 0.00(.0) | 0.17(.3) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.02(.1) | 0.23(.2) | 0.19(.3)
10000 | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.11(.1) | 0.00(.0)

SM; + MM>

200 [ 0.03(.1) [ 0.00(.0) | 0.17(.2) | 0.07(.1) | 0.80(.3) | 0.00(.0) | 0.06(.1) | 0.85(.1) | 0.32(.2)
1000 | 0.00(.0) | 0.00(.0) | 0.03(.1) | 0.00(.0) | 0.53(.3) | 0.07(.1) | 0.00(.0) | 0.68(.1) | 0.24(.2)
10000 | 0.00(.0) | 0.00(.0) | 0.03(.1) | 0.00(.0) | 0.27(.3) | 0.03(.1) | 0.00(.0) | 0.53(.2) | 0.08(.1)

SM+MM3

200 [ 0.00(.0) | 0.03(.1) | 0.03(.1) | 0.00(.0) | 1.13(.3) | 0.07(.1) | 0.01(.0) | 0.91(.1) | 0.29(.2)
1000 | 0.00(.0) | 0.00(.0) | 0.07(.1) | 0.00(.0) | 0.73(.3) | 0.07(.1) | 0.00(.0) | 0.71(.2) | 0.15(.1)
10000 | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.97(.3) | 0.03(.1) | 0.00(.0) | 0.78(.2) | 0.03(.1)

SMs + MM,

200 0.12(.2) [ 0.02(.1) | 0.40(.2) | 0.00(.0) | 0.05(.1) | 0.00(.0) | 0.05(.1) | 0.66(.2) | 0.43(.2)
1000 | 0.10(.2) | 0.02(.1) | 0.02(.1) | 0.00(.0) | 0.02(.1) | 0.00(.0) | 0.01(.0) | 0.30(.2) | 0.03(.1)
10000 | 0.05(.1) | 0.00(.0) | 0.05(.1) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.00(.0) | 0.21(.1) | 0.07(.1)

SMz + MMy

200 ] 0.02(.1) | 0.05.2) | 0.10(.1) | 0.10(.2) | 0.62(.1) | 0.02(.1) | 0.03(.1) | 0.89(.1) | 0.31(.2)
1000 | 0.02(.1) | 0.02(.1) | 0.02(.1) | 0.02(.1) | 0.38(.2) | 0.05(.1) | 0.01(.0) | 0.68(.2) | 0.15(.1)
10000 | 0.00(.0) | 0.05(.1) | 0.05(.2) | 0.00(.0) | 0.35(.2) | 0.02(.1) | 0.00(.0) | 0.72(.2) | 0.15(.2)

SMs+MM3

200 [ 0.02(.1) [ 0.02(.1) | 0.02(.1) | 0.05(.1) | 0.98(.3) | 0.02(.1) | 0.04(.1) | 0.91(.1) | 0.24(.2)
1000 | 0.02(.1) | 0.08(.2) | 0.00(.0) | 0.00(.0) | 0.72(.3) | 0.08(.1) | 0.00(.0) | 0.77(.1) | 0.08(.1)
10000 | 0.00(.0) | 0.08(.1) | 0.00(.0) | 0.00(.0) | 0.60(.3) | 0.05.2) | 0.00(.0) | 0.70(.2) | 0.04(.0)

Table 3: Results obtained withuBLD PURECLUSTERS(BPC), factor analysis (FA) and FindHid-
den (FH) for the problem of learning measurement models. Each numberassesage
over 10 trials, with standard deviation in parenthesis.

the true structural model, then we have an error of orientation commissiomrdéfihan unoriented
edge in the output which is oriented in the equivalence class for the trud madeave an error of
orientation omission.
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Evaluation of output structural models
Edge omission Edge commission
Samplefl BPC | FA | FH | FHG BPC | FA | FH [ FHG

SM; + MM,
200 | 0.05—-09 | 0.05—-09 | 0.00—10| 0.00—10 | 0.10—09 | 0.30—07 | 0.00—10 | 0.10—09
1000 | 0.05—09 | 0.10-08 | 0.00—10 | 0.00—10 | 0.20—08 | 0.30—07 | 0.60—04 | 0.20—09
10000| 0.00—10 | 0.05—-09 | 0.00—10 | 0.00—10 | 0.00—10 | 0.00—10 | 0.30—07 | 0.00—10
SM; +MM;
200 | 0.00-10| 0.15-07 | 0.00—10 | 0.00—-10 | 0.00—10| 0.40—06 | 0.40—06 | 0.210—09
1000| 0.00—10| 0.00—10 | 0.00—10 | 0.00—10| 0.10—09 | 0.40—06 | 0.40—06 | 0.00—-10
10000| 0.00—10 | 0.05—-09 | 0.00—10 | 0.00—10 | 0.20—08 | 0.50—05 | 0.50—05 | 0.10—09
SM; +MM3
200 | 0.00—10| 0.25—-05 | 0.00—10 | 0.05—09 | 0.20—08 | 0.70—03 | 0.50—05 | 0.30—07
1000 | 0.00—10| 0.15-07 | 0.00—10| 0.00—10 | 0.10—-09 | 0.70—03 | 0.60—04 | 0.20—09
10000| 0.00—10 | 0.05—-09 | 0.05—-09 | 0.00—10 | 0.00—10 | 0.40—06 | 0.50—-05 | 0.10—09
SM+MM;
200 | 0.00—10 | 0.00—10 | 0.00—10 | 0.00—10 | 0.20—08 | 0.30—07 | 0.00—10 | 0.10—09
1000 | 0.00—10| 0.05—-09 | 0.00—10 | 0.00—10 | 0.00—10 | 0.30—07 | 0.00—10 | 0.00—-10
10000| 0.00—10 | 0.00—10 | 0.00—10 | 0.00—10 | 0.20—08 | 0.30—07 | 0.00—10 | 0.20—08
SM; + MM,
200 | 0.00—10| 0.15—-07 | 0.00—10 | 0.00—10 | 0.40—06 | 0.30—07 | 0.00—10 | 0.00—10
1000 | 0.00—10| 0.10—09 | 0.05—-09 | 0.05—-09 | 0.10—09 | 0.60—04 | 0.10—09 | 0.20—08
10000| 0.00—10 | 0.05—09 | 0.05—-09 | 0.00—-10 | 0.20—09 | 0.70—-03 | 0.10—09 | 0.20—08
SM+MM3
200 | 0.00-10 | 0.15-07 | 0.00—10 | 0.05—09 | 0.20—08 | 0.70—03 | 0.10—09 | 0.20—08
1000 | 0.00—-10| 0.15-07 | 0.00—10 | 0.00—10 | 0.20—08 | 0.40—06 | 0.00—10 | 0.30—-07
10000| 0.00—10 | 0.10—-08 | 0.00—10 | 0.00—10 | 0.00—10 | 0.50—-05| 0.00—10 | 0.00—10
SMs+ MM,
200 | 0.12—-05| 0.12—-06 | 0.05—-08 | 0.00—10 | 0.20—-06 | 0.20—06 | 0.00—10 | 0.00—10
1000 | 0.05-08 | 0.08—-08 | 0.10—-06 | 0.00—10 | 0.15—-08 | 0.10—08 | 0.55—-03 | 0.20—07
10000| 0.05—-08 | 0.15—-04 | 0.05—-08 | 0.02—09 | 0.15—-08 | 0.15—-08 | 0.50—03 | 0.15—-08
SMz + MMy
200 | 0.02—-09 | 0.28—03 | 0.15—-06 | 0.02—09 | 0.55—-03 | 0.55—02 | 0.20—06 | 0.10—08
1000 | 0.00—10| 0.12—07 | 0.08—07 | 0.00—10 | 0.25—07 | 0.75—02 | 0.60—02 | 0.15-08
10000| 0.00—10 | 0.00—-10 | 0.02—09 | 0.02—09 | 0.10—-08 | 0.80—02 | 0.65—01 | 0.20—07
SMs+MM3
200 | 0.02—09 | 0.32—-02 | 0.20—03 | 0.10—-06 | 0.40—05 | 0.50-02 | 0.45—-03 | 0.20—07
1000 | 0.08—-07 | 0.02—-09 | 0.10—-07 | 0.05—-08 | 0.30—06 | 0.65—02 | 0.45—-04 | 0.25—-06
10000| 0.00—10 | 0.05—08 | 0.02—09 | 0.00—10 | 0.15—07 | 0.65—03 | 0.70—01 | 0.10—08

Table 4: Results obtained with the application of GES-MIMBD to the output of BJILD-
PURECLUSTERS and factor analysis, plusiRDHIDDEN and ANDHIDDEN + GES-
MIMB uILD results, with an indication of the number of perfect solutions over these trials

If the output measurement model has any errors of latent commission, gheimply leave out
the excess latents in the measurement model given to GES8MJIND. This helps FA primarily,
as it was the only procedure of the three that had high errors of latemhession.
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Evaluation of output structural models

Orientation omission

Orientation commission

Sample

FA

[ FH

FHG

BPC

| FA

FH

FHG

SM; + MM,

200
1000
10000

0.15-08
0.00—-10
0.00—-10

0.10-09
0.60—04
0.30—-07

0.10—-09
0.10-09
0.00—-10

0.00—-10
0.00—-10
0.00—-10

0.00—10
0.05-09
0.00—10

0.00—10
0.00—-10
0.00—-10

0.00—-10
0.00—-10
0.00—-10

SM; +MM;

200
1000
10000

0.20—-07
0.20—-07
0.25-05

0.40—-06
0.40—-06
0.50-05

0.10—-09
0.00-10
0.10-09

0.00—-10
0.00—-10
0.00-10

0.05—-09
0.00—-10
0.00—-10

0.00—-10
0.00—-10
0.00—-10

0.00—-10
0.00—-10
0.00—-10

SM; +MM3

200
1000
10000

0.40-04
0.10—-09
0.30—-06

0.60—-04
0.70—-03
0.50-05

0.20—-08
0.10—-09
0.10-09

0.00-10
0.00—-10
0.00—-10

0.05-09
0.10—-08
0.00—-10

0.00-10
0.00—10
0.00—-10

0.05-09
0.00—-10
0.00—-10

SM+MM;

200
1000
10000

0.00—-10
0.00—-10
0.00—-10

0.00—-10
0.00—-10
0.00—-10

0.00—-10
0.00—-10
0.00—-10

0.00—-10
0.00—-10
0.00—-10

SM; + MM>

200
1000
10000

0.00-10
0.00-10
0.00—-10

0.00—-10
0.10-09
0.10-09

0.00—-10
0.00-10
0.05-09

0.00—-10
0.00-10
0.00—-10

SM+MM3

200
1000
10000

0.00—-10
0.00-10
0.00—-10

0.10-08
0.05-09
0.05-09

0.00—-10
0.00—-10
0.00—-10

0.00—-10
0.00—-10
0.00—-10

SMs + MM,

200
1000
10000

0.00-10
0.00-10
0.00-10

0.00-10
0.65—-03
0.65-03

0.00—-10
0.10-09
0.05-09

0.22—-07
0.10-09
0.04—-09

0.35-06
0.00-10
0.00-10

0.10-09
0.04—-09
0.04—-09

0.00—-10
0.00—-10
0.04—-09

SMz + MMy

200
1000
10000

0.30—-06
0.45-04
0.40—-06

0.20—-07
0.65—-03
0.85-01

0.10—-09
0.30—-07
0.25-07

0.08—-09
0.00—-10
0.00-10

0.16—-07
0.05-09
0.00—-10

0.08—-09
0.11-08
0.00—-10

0.08—-09
0.05-09
0.00—-10

SMs+MM3

200
1000
10000

0.15-08
0.35-05
0.35-05

0.85-01
0.50—-04
0.85-01

0.35-05
0.05-09
0.10-09

0.19-06
0.15-07
0.00-10

0.14—-08
0.02—-09
0.00—-10

0.20—-07
0.04—-09
0.04—-09

0.48—-02
0.11—-08
0.00—-10

Table 5: Results obtained with the application of GES-MIMB> to the output of BILD-

PURECLUSTERS and factor analysis, plusiRDHIDDEN and ANDHIDDEN + GES-
MIMB uILD results, with an indication of the number of perfect solutions over these trials

If the output measurement model has errors of latent omission, then weacetg marginal
involving the latents in the output model for the true structural model grapletoutput structural
model equivalence class. For each of the structural models we sel&\NHd,SM2, and SM3,
all marginals can be represented faithfully as DAGs. Our measure oéssfat causal discovery,
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therefore, for a measurement model involving a small subset of the latehis irue graph is very
lenient. For example, if the generating model was SM3, which involves feemtis but the output
measurement model involved only two of these latents, then a perfechsesdt in this case
would amount to finding that the two latents are associated.

In summary then, our measures for assessing the ability of these algorithanestctly discover
at least features of the causal relationships among the latents are asfollow

e edge omission (EO)the number of edges in the structural modetzahat do not appear in
Gout divided by the possible number of edge omissions @Ng andSM,, and 4 inSM;, i.e.,
the number of edges in the respective structural models);

e edge commission (EC)the number of edges in the structural modeGgf; that do not exist
in G divided by the possible number of edge commissions (onlySNkh andSM, and 2 in
SMe);

e orientation omission (OO), the number of arrows in the structural model@®that do not
appear inGyy; divided by the possible number of orientation omission&if2 in SM; and
SM, 0in SMp);

e orientation commission (OC) the number of arrows in the structural model&f,; that do
not exist inG divided by the number of edges in the structural modébgf;

Tables 4 and 5 summarize the results. Along with each average we providerttoer of trials
where no errors of a specific type were made.

Factor analysis is particularly flawed. This is because FA infers so mamyidatghich leads
to spurious dependence paths among the latents we scored. The defadttiBDEN is also sub-
optimal in these small models, due to limitations in the hill-climbing procedure comparei &
SM3 has a high proportion of “compelled” edges (Chickering, 2002) gdges that are oriented in
the pattern corresponding to the Markov equivalence class, which ritdiasler for an algorithm
that searches among DAGs instead of equivalence classes. Themtincluded in Tables 4
and 5 a variation of RKDHIDDEN, labeled FHG, where we fix the measurement model given by
FINDHIDDEN and learn the structural model using GES. Results are not significantyatifffrom
BPC + GES, except at sample size of 200, whenedHIDDEN has a tendency to miss latents,
inflating its performance in the structural model evaluation (since with fewientia there is less
chance of committing mistakes).

Figure 13 provides a summary evaluation of all algorithms, BPC, FA and FilGrespect to
the number of perfect structural models obtained for each graphicatste (from 0 to 10). This
includes not only getting the exact number of latents, but also the corétoMequivalence class
defined in the true model. Factor analysis is competitive when the true modekishut is com-
pletely ineffective otherwise. For models based on structural model 8M8pes not get any fully
correct structure when the measurement model is impure. Moreover]agisthat while learning
the measurement model can be reasonably performedunypBPURECLUSTERSand ANDHID-
DEN with sample sizes of 200, learning the structural model is not an easy tkeslsunore data is
available.

In summary, factor analysis provides little useful information out of thergdegasets that were
not generated by pure models. In contrast, the combinatioruafdBPURECLUSTERSand GES-
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Figure 13: A comparison of the number of perfect solutions in all synthatiz sets.

MIMB uILD largely succeeds. IKDHIDDEN (with GES, i.e., FHG) has generally good results,
although it behaves erractly with SM4.

8. Real Data Applications

We now briefly present the results for two real data sets. Data collededduch domains may
pose significant problems for exploratory data analysis since sampleasizesually small and
noisy, nevertheless they have a very useful property for our emipgieduation. In particular,

data obtained by questionnaires are designed to target specific latens f@gtich as “stress”, “job
satisfaction”, and so on) and a theoretical measurement model is dedvélpp&perts in the area to
measure the desired latent variables. Very generally, experts are ordigent about their choice
of measures than about the structural model. Such data thus provide &obbasmparison with the

output of our algorithm. The chance that various observed varialdescapure measures of their

14. This can probably be improved by adopting other schema of sefiellization and extra heuristics for escaping
local minima. However, it can also be a much slower algorithm than BP@isasssed before.
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Figure 14: A theoretical model for the interaction of religious coping, steesl depression. The
signs on the edges depicts the theoretical signs of the correspondicig effe

theoretical latents is high. Measures are usually discrete, but ofterabvdith a Likert-scale that
can be treated as normally distributed measures with little loss (Bollen, 1988 #xamples, we
compare our procedures with models produced by domain researchers.

8.1 Stress Religious Coping and Depression

Bongjae Lee from the University of Pittsburgh conducted a study of relggpiritual coping and
stress in graduate students. In December of 2003, 127 students edsveprestionnaire intended to
measure three main factors: stress (measured with 21 items), depressisui@aewith 20 items)
and religious/spiritual coping (measured with 20 items). The full questioamgigiven by Silva
and Scheines (2004). Lee’s model is shown in Figure 14.

This model fails a chi-square test: p = 0. The measurement model prodhyc8d LD -
PURECLUSTERS is shown in Figure 15(a). Note that the variables selected automatically are
proper subsets of Lee’s substantive clustering. The full model autatiatiroduced with GE-
MIMB uILD with the prior knowledge that STRESS is not an effect of other latenthasas given
in Figure 15(b). This model passes a chi square test, p = 0.28, evaghttteuBP C algorithm itself
does not try to directly maximize the fit of the algorithm.

Our ENDHIDDEN implementation took a couple of days to execture and did not perform pro-
duce a reasonable output if the theoretical model should be taken addhstagalard: five latents
were found to have 20 indicators altogether, but they have no corrdepoe to the theoretical clus-
tering. This is not unexpected, since the sample size is very smalliandDDEN tries to create a
model that includes all 61 variablesuB. b PURECLUSTERScan be seen as a way of doing feature
selection by focusing on the easier, simpler pure models.

8.2 Test Anxiety

A survey of test anxiety indicators was administered to 335 grade 12 malenssuih British
Columbia. The survey consisted of 20 measures on symptoms of anxietytasteonditions. The
covariance matrix as well as a description of the variables is given by @antlew et al. (2002}°

15. The data are available online at http://multilevel.ioe.ac.uk/team/aimdgs.htm
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Figure 15: The output of BPC and GES-MIMB.D for the coping study.
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Figure 16: A theoretical model for psychological factors of test anxiety

Using exploratory factor analysis, Bartholomew et al. concluded that t&otlaommon causes
underly the variables in this data set, agreeing with previous studies. Wieabistudy identified
items{x, Xg, X0, X10, X15, X16, X18} as indicators of an “emotionality” latent factor (this includes phys-
iological symptoms such as jittery and faster heart beatting), and {tems;, Xs, X, X7, X14, X17, X20}
as indicators of a more psychological type of anxiety labeled “worry” bytilomew et al. No
further description is given about the remaining five variables. Barthaloateal.'s factor analysis
with oblique rotation roughly matches this model. Bartholomew et al.'s explgréotor analysis
model for a subset of the variables is shown in Figure 16. This model istsotded to be pure.
Instead, the figure represents which of the two latents is more “strongtyiemed to each indi-
cator. The measurement model itself is not constrained. Trying to fit this Irasde pure model
(i.e., using the graph in Figure 16 instead of a two-factor multivariate Gaussiael with a fully
connected measurement model) gives a p-value of zero according its@uetne test.

BPC provides the measurement model given in 1%&yhe labels in the latents were given
to us and should be seen as our particular interpretation. Applying GBE8BWILD to the this
measurement model results in the model shown in Figure 17(b). The masiispa chi-square

16. We allowed a latent with less than three indicators. It might corresigom@re than one latent in the true model.
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test handily, p = 0.47, even though we used constraint-satisfaction teesniat did not try to
maximize the fithess of the model directly. To summarize, BPC provided a mogjebdad by
the data that is very close to a submodel of the theoretical model (varigh¥ss, X17, Xo0 were

removed), except that:

e one of the latents is split in two. To see how this is supported by the data, tryimgge
latents “Cares about achieving” and "Self-defeating” will result in a nhoflp-value of zero;

e variableXy; is used, which is not considered by Bartholomew et al.'s model,

What is remarkable in this case is the ability of reconstructing much of the tiednmodel
without using prior knowledge. The model is very simple, i.e., each indicatassures a single
latent, while Bartholomew et al.’'s model seems to artificially add edges fromtatitiinto all
indicators to get a model that fits the data. Escaping this artificiality is one of theations behind
variable selection in factor analysis methods, such as the one propoEathdynd Harada (2000):
finding a submodel that is a pure model can provide a better understarfdimg causal process
being measured than allowing an impure model, whose extra edges might beethama patch
to account for residual correlation among indicators, without nedgseaisting in the true model.
Kano and Harada’s method, however, requires an initial measurement todee purified,” while
BPC works from scratch.

We applied FINDHIDDEN to this data set, obtaining the model shown in Figure 18(a). To sim-
plify presentation, we removed nodes that were not children of any lat¢me output model (e.q.,
X3 was not a child of any of the latents, which results on its removal from therpictlihree latents,
labeled by us as “Emotionality 1”, “Emotionality 2” and “Worry” were genedatBoth “Emotion-
ality 1” and “Emotionality 2” seem to be a combination of some of the theoretical ‘tiemality”
indicators (Figure 16) plus some indicators not included the theoreticallmbB&gure 16. There
are also lots of edges corresponding to impurities for which no equivalelass is known. As
discussed in Section 3, these edges might correspond to very diféengsal mechanisms than they
might suggest.

Since 5 of the variables are not present in the theoretical model, it is redsgoto compare
this model against the theoretical model. Therefore, we also providesuk tieat is obtained from
FINDHIDDEN when the data contains only the 15 indicators used in Figure 16. The rethdtose
shown in Figure 18(b), where we adopted the same latent labels used i3 BitQut. The result
is, surpringly, very different. The model has now a much closer resemmdlto BPC’s output,
supporting the plausability of BPC’s output. However, while it seems that BRable to find a
pure model among all 20 indicatorsiNBHIDDEN in this case was able to find an (almost) pure
modelonly when variables were properly pre-selected.

9. Generalizations

In many social science studies, latent structure is represented by sb“calierecursive” structure.
In graphical terms, the dependency graph is cyclic. Richardson J1886developed a consis-
tent constraint based search for cyclic graphical models of linearmmgstnd our procedures for
identifying measurement models can be combined with it to search for suctuséu

The procedure we have described here can, however, straigatfiywbe generalized to cases
with measured variables taking a small finite range of values by treating thetdis@riables as
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Figure 17: The output of BPC and GES-MIMB.D for the test anxiety study.
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Figure 18: The output of IKDHIDDEN when using all 20 variables (a) and when using only the

variables present in the theoretical model (b).
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Figure 19: A model with no pure submodel with three indicators per latent.

projections from a Gaussian distribution. These are sometimes called laiemadels in the
literature (Bartholomew and Knott, 1999). Much larger sample sizes audreeicthan for linear,
Gaussian measured variables.

In previous works (Silva et al., 2003; Silva and Scheines, 2005), welalged an approach to
learn measurement models even when the functional relationships among &tenon-linear. In
practice, that generality is of limited use because there are at presenhsistent search meth-
ods available for structures with continuous, non-linear variables. A mddifiesion of BJILD-
PURECLUSTERS however, exists for the problem of learning equivalence classes asumement
models for non-linear structural models. Some of the results here dedatapaot be carried on to
the non-linear case (e.g., rule CS3). Others are substantially modified (L8mWéth extra prior
knowledge, however, much of the measurement model for non-lineatwtalimodels can still be
learned from data.

Finally, there are ways of reliably learning some types of impure models usinggh#s dis-
cussed in this paper. For instance, only two of the three latents in the modiglure L9 can be
generated by BiILD PURECLUSTERS A small modification of the algorithm, which would include
an equivalence class accounting for some types of impurities, would btoablonstruct all latents
in this example. A more systematic exploration of such extensions will be treatefdiiure work.

10. Conclusion

This paper introduced a novel algorithm for learning causal structulieear models which, to

the best of our knowledge, presents the first published solution forrtidem of learning causal
models with latent variables in a principled way where observed conditiotepandencies are not
expected to exist. It has the following properties:

e it was designed to learn multiple indicator models, i.e., models where obsemiablesa are
not causes of the hidden variables of interest, but which still encompasesclass of useful
models;

e no assumptions about the number of hidden variables and how they awextet to observed
variables are needed;

e it is a two-stage algorithm, which first learns equivalence classes of megasat models

(i.e., which latents exist and which observed children they have) anddlmasa choice of
measurement model, returns an equivalence class of causal modelsthmatignts;
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e it is provably correct, in the sense that given the assumptions explicitlyideddn the pa-
per and in the limit of infinite data, all causal claims made by the output graphitnote
population;

e it provides a framework which can be partially extended to cover othestypeata (discrete,
ordinal) and causal relations (non-linear, non-Gaussian);

Our experiments provide evidence that our procedures can be useifctice, but there are
certainly classes of problems whereslBb PURECLUSTERS will not be of practical value. For
instance, learning the causal structure of general blind sourceatiepgrroblems, where measures
are usually indicators of most of the latents (i.e., sources) at the same time.

A number of open problems invite further research, including these:

e completeness of the tetrad equivalence class of measurement modelse ichemtify all the
common features of measurement models in the same tetrad equivalence class?

e using the more generic rank constraints of covariance matrices to learnmaeant models,
possibly identifying the nature of some impure relationships;

e better treatment of discrete variables. Bartholomew and Knott (1999)ysdifferent ways
of integrating factor analysis and discrete variables that can be readibfeatj but the com-
putational cost of this procedure is high;

¢ finding non-linear causal relationships among latent variables givered fiixear measure-
ment model, and in other families of multivariate continuous distributions besidesahs-
sian;

The fundamental point is that common and appealing heuristics (e.g., fatation methods)
fail when the goal is structure learning with a causal interpretation. In roasgs it is preferable
to model the relationships of a subset of the given variables than tryingde fobad model over
all of them (Kano and Harada, 2000). Better methods are available noviugher improvements
will surely come from machine learning research.
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Appendix A. BuIiLD PURECLUSTERS Full Algorithm and Implementation

We now introduce the complete version obBBD PURECLUSTERS This version has additional
steps that deal with exceptional, but arguably less relevant, situatiorsstefjuires removing addi-
tional nodes due to vanishing correlations, as well as merging some clubkergull algorithm is
given in Table 6.
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Algorithm BuiLD PURECLUSTERS
Input: a covariance matrix

1. G —FINDPATTERN(Y).

2. Choose a set of latents (5. Remove all other latents and all observed nodes that are not
children of the remaining latents and all clusters of size 1.

3. Remove all nodes that have more than one latent par&ht in

4. For all pairs of nodes linked by an undirected edge, choose onerdlefmeach pair to be
removed.

5. If for some set of node§A, B,C}, all children of the same latent, there is a fourth nGde
G such thabbagocp = 0acOBD = OaADORc iS Nottrue, remove one of these four nodes.

6. For every latent with at least two children{A, B}, if there is some nod€ in G such that
oac = 0 andogc # 0, splitL into two latentd_ ; andL,, wherel; becomes the only parent of
all children ofL that are correlated wit@, andL, becomes the only parent of all children of
L that are not correlated wit®;

7. Remove any cluster with exactly 3 variable§, Xo, X3} such that there is n¥, where all
three tetrads in the covariance matx= {Xi, X2, X3, X4} hold, all variables oX are cor-
related and no partial correlation of a pair of elements<ak zero conditioned on some
observed variable;

8. While there is a pair of clusters with latemsandL j, such that for all subse{sA, B,C,D} of
the union of the children df;, L; we haveoas0cp = 0acOBp = 0apOBc, and no marginal or
conditional independencies (where the condition set is of size 1) aeswauokin this cluster,
setL; = L; (i.e., merge the clusters);

9. Again, verify all implied tetrad constraints and remove elements accordiiighate Steps
6-7-8 until no changes happen;

10. Remove all latents with less than three children, and their respectiveimegas

11. if G has at least four observed variables, ref@rrOtherwise, return an empty model.

Table 6: The complete version ofuB.D PURECLUSTERS
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Figure 20: The true graph in (a) will generate at some point a purified uregagnt pattern as in
(b). Itis desirable to merge both clusters.

It might be surprising that we merge clusters of variables that we knonotahare a common
latent parent in the true graph. However, we are not guaranteed ta fimdje enough number
of pure indicators for each of the original latent parents, and as aquaesace only a subset of
the true latents will be represented in the measurement pattern. It might basth¢hat, with re-
spect to the variables present in the output, the observed variables infterertt clusters might
be directly measuring some ancestor common to all variables in these two clésteas illustra-
tion, consider the graph in Figure 20(a), where double-directed edpessent independent hidden
common causes. Assume any sensible purification procedure will choeBmioate all elements
in {\a,Ws,X2,X3,Y2,Y3,Z2,Z3} because they are directly correlated with a large number of other
observed variables (extra edges and nodes not depicted).

Meanwhile, one can verify that all three tetrad constraints hold in the iemaa matrix of
{Wi,X1,Y1,2Z; }, and therefore there will be no undirected edges connecting pairsoéets in this
set in the corresponding measurement pattern. Rule CS1 is able to séfyaeatd X; into two
different clusters by using\\b, s, X2, X3} as the support nodes, and analogously the same happens
toY; andZ;, Wy andY;, X; andZ;. However, no test can separslite andZ;, norX; andY;. If we do
not merge clusters, we will end up with the graph seen in Figure 20(b)rasfpaur output pattern.
Although this is a valid measurement pattern, and in some situations we might warptdg such
a model, it is also true th&t4 andZ; measure a same latey (as well asX; andY;). It would be
problematic to learn a structural model with such a measurement model. Tlredeisrministic
relation between the latent measuredWdy and Z;, and the latent measured by andY;: they
are the same latent! Probability distributions with deterministic relations are ndiufaiind that
causes problems for learning algorithms.

Finally, we show examples where Steps 6 and 7 oftB PURECLUSTERSare necessary. In
Figure 21(a) we have a partial view of a latent variable graph, wherettn latents are marginally
independent. Suppose that nodgsXs andXs are correlated to many other measured nodes not in
this figure, and therefore are removed by our purification procedfune ignore Step 6, the result-
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Figure 21: Suppose (a) is our true model. If for some reason we neediwve nodeXy, Xs and
Xs from our final pure graph, the result will be as shown in Figure (blesswe apply
Step 6 of BJILDPURECLUSTERS There are several problems with (b), as explained in
the text.

ing pure submodel ovefXy, Xz, X3, X7, Xg, X9} Will be the one depicted in Figure 21(b)X1, X2}
are clustered apart frofX;, Xg, Xo} because of marginal zero correlation, afxds clustered apart
from {X7, Xs, Xo} because of CS1 applied {&X3, X4, Xs} x {X7,Xg,X9}). However, no linear latent
variable model can be parameterized by this graph: if we let the two latentsaoristated, this
will imply X; andX; being correlated. If we make the two latents uncorrelaXgdind X; will be
uncorrelated.

Step 7 exists to avoid rare situations where three observed variabldsistered together and
arepairwisepart of some foursome entailing all three tetrad constraints with no vanishirggmah
and partial correlation, but still should be removed because they asmuoltaneouslyn such a
foursome. They might not be detected by Step 4 if, e.g., all three of themmamgrelated with all
other remaining observed variables.

In the rest of this section, we describe a practical implementationuof BPURECLUSTERS
The algorithm is described for a given covariance matrix to simplify the e&pos Since typi-
cally one has only a sample covariance matrix, we need a statistical decismedpre. Statistical
tests for tetrad constraints are described by Spirtes et al. (2000). Ahhibus known that in
practice constraint-based approaches for learning graphical mwdeiuse are outperformed on
accuracy by score-based algorithms such as GES (Chickering,,2002xvor a combination of
a constraint-based approach and a score-based approach duetmasthgputational efficiency.
A smart implementation of constraint-satisfaction algorithms can avoid many statstarécom-
ings. If the experimental results are any indication of success, we ci@am k& provide such an
implementation.

We also describe in full detail how particular choices iniBb PURECLUSTERS(e.g., Step 2,
where one has to choose a set of latents from the measurement pattesolyvad in our implemen-
tation. We stress that the particularities of the implementation bear no implication thetretical
results given in this paper: the algorithms remain point-wise consistent. Torenativeness of the
results (i.e., how much of the true structure is discovered) will vary, butdrptrticular examples
given in this paper, results were quite insensitive to variations of the foltpimplementation.
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A.1 Robust Purification

We do avoid a constraint-satisfaction approach for purification. At feastfixed p-value and using
false discovery rates to control for multiplicity of tests, purification by testitrgtbeconstraints often
throws away many more nodes than necessary when the number of \argatgtative small, and
does not eliminate many impurities when the number of variables is too large. gyestwa robust
purification approach as follows.

Suppose we are given a clustering of variables (not necessarily disjosters) and a undirect
graph indicating which variables might be ancestors of each other, anelog the undirect edges
generated in NDPATTERN. We purify this clustering not by testing multiple tetrad constraints,
but through a greedy search that eliminates nodes from a linear meastraodel that entails
tetrad constraints. This is iterated till the current model fits the data accdaalmghi-square test
of significance (Bollen, 1989) and a given acceptance level. Detailsaen in Table 7.

This implementation is used as a subroutine for a more robust implementationiob B
PURECLUSTERSdescribed in the next section. However, it can be considerably slowlt@mative
is using the approximation derived by Kano and Harada (2000) to rapittylate the fitness of
a factor analysis model when a variable is removed. Another alternativgrisealy search over
the initial measurement model, freeing correlations of pairs of measuridbles. Once we found
which variables are directly connected, we eliminate some of them till no pair isrenfetails
of this particular implementation are given by Silva and Scheines (2004 urlex@eriments with
synthetic data, it did not work as well as the iterative removal of variabdssribed in Table 7.
However, we do apply this variation in the last experiment described in &estlmecause it is com-
putationally cheaper. If the model search inBRUSTPURIFY does not fit the data after we eliminate
too many variables (i.e., when we cannot statistically test the model) we just est@mpty model.

A.2 Finding a Robust Initial Clustering

The main problem of applyingIKD PATTERN directly by using statistical tests of tetrad constraints
is the number of false positives: accepting a rule (CS1, CS2, or CS3)eawlkren it does not hold
in the population. One can see that might happen relatively often whendretarge groups of
observed variables that are pure indicators of some latent: for instassane there is a latelng
with 10 pure indicators. Consider applying CS1 to a group of six pure itaiea@fLg. The first
two constraints of CS1 hold in the population, and so assume they arethordeatified by the
statistical test. The last constraioty, x,0v,y, # Ox,v,0x,y;, should not hold in the population, but
will not be rejected by the test with some probability. Since there arg@R1!) = 210 ways of CS1
being wrongly applied due to a statistical mistake wit get many false positives in all certainty.

We can highly minimize this problem by separatmgupsof variables instead of pairs. Con-
sider the test BBJOINTGROUP(X;, X, Xk, Ya, Yb, Yc; 2):

e DISJOINTGROUR(X;, X, X, Ya, Yb, Yc; 2) = true if and only if CS1 returns true for all sets
{X1,%2,%3,Y1,Y2,Y3}, where{Xq, X, X3} is a permutation of X, Xj, X} and{Y1,Y>,Ys} is
a permutation ofYa, Y, Yc}. Also, we test an extra redundant constraint: for every pair
{X1, %} C {X,X;, X} and every paifYy, Y2} C {Ya, Yo, Yc} We also require thaiy,y, Ox,y, =
Ox;1Y,0%,Y; -

Notice it is much harder to obtain a false positive witlsDOINTGROUP than, say, with CS1
applied to a single pair. This test can be implemented in steps: for instancend four foursome
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Algorithm  ROBUSTPURIFY

Inputs: Clusters a set of subsets of some &t
C, an undirect graph oveDd;
>, a sample covariance matrix Gf.

1. Remove all nodes that have appear in more than one €¢tisters

2. For all pairs of nodes that belong to two different set€liastersand are adjacent i, remove the
one from the largest cluster or the one from the smallestalufsthis has less than three elements.

3. LetG be a graph. For each s8te Clusters add all nodes ir5to G and a new latent as the only
common parent of all nodes & Create an arbitrary full DAG among latents.

4. For each variabl¥ in G, fit a graphG'(V) obtained fromG by removingV. UpdateG by choosing
the graphG/ (V) with the smallest chi-square score. If some latent ends tipleds than two children,
remove it. Iterate till a significance level is achieved.

5. Do mergings if that increases the fitness. Iterate 4 antrbtimprovement can be done.

6. Eliminate all clusters with less than three variablesatarnG.

Table 7: A score-based purification.

including X; andY,; we have that all tetrad constraints hold, then we do not con3idandY; in
DISJOINGGROUP.

Based on Ds8JOINTGROUP, we propose here a modification to increase the robustnessiobB
PURECLUSTERS the RoBUSTBUILD PURECLUSTERSalgorithm, as given in Table 8. It starts with
a first step called IRDINITIAL SELECTION (Table 9). The goal of INDINITIAL SELECTION is
to find a pure model using only IBJOINTGROUP instead of CS1, CS2 or CS3. This pure model
is then used as an starting point for learning a more complete model in the regnsiages of
RoBUSTBUILD PURECLUSTERS

In FINDINITIAL SELECTION, if a pair {X,Y} cannot be separated into different clusters, but
also does not participate in any successful applicationisi®INTGROUP, then this pair will be
connected by a GRAY or YELLOW edge: this indicates that these two nalesot be in a pure
submodel with three indicators per latent. Otherwise, these nodes aredtblafy meaning that
theymightbe in such a pure model. This is indicated by a BLUE edge.

In FINDINITIAL SELECTION We then find cliques of compatible nodes (Step8Each clique
is a candidate for a one-factor model (a latent model with one latent onlg)pWify every clique
found to create pure one-factor models (Step 9). This avoids usingrsitisit are large not because
they are all unique children of the same latent, but because there wasynof waparating its
elements. This adds considerably more computational cost to the wholeprece

After we find pure one-factor model;, we search for a combination of compatible groups.
Step 10 first indicates which pairs of one-factor models cannot be parpore model with three
indicators each: iM; andM; are not pairwise a two-factor model with three pure indicators (as
tested by DsJoINTGROUP), they cannot be both part of a valid solution.

CHOOSECLUSTERINGCLIQUE is a heuristic designed to find a large set of one-factor models
(nodes ofH) that can be grouped into a pure model with three indicators per latent (@t ane

17. Any algorithm can be used to find maximal cliques. Notice that, by thiénamyroperties of our approach, one does
not need to find all maximal cliques.
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Algorithm RoBUSTBUILD PURECLUSTERS
Input: Z, a sample covariance matrix of a set of variatiles

1. (SelectionC,Cp) <« FINDINITIAL SELECTION(Z).

2. For every pair of nonadjacent nodgs;, N2} in C where at least one of them is not$electionand
an edgeN; — Ny exists inCp, add a RED edghl; — N, to C.

3. For every pair of nodes linked by a RED edgeCnapply successively rules CS1, CS2 and CS3.
Remove an edge between every pair corresponding to a rulapphes.

4. LetH be a complete graph where each node corresponds to a makiopoa! i C.
5. FinalClustering« CHOOSECLUSTERINGCLIQUE(H).

6. Return RBUSTPURIFY(FinalClusteringC, ).

Table 8: A modified B/ILD PURECLUSTERSalgorithm.

heuristic since finding a maximum cliquekhis NP-hard). First, we define trsézeof a clustering
Hcandidate(@ set of nodes frorkl) as the number of variables that remain according to the following
elimination criteria: 1. eliminate all variables that appear in more than one otw-faodel inside
Hcandidate 2. for each pair of variable§X;, X2} such thatX; andX; belong to different one-factor
models iNHcandidate if there is an edg&; — Xz in C, then we remove one elemefX;, Xo} from
Hcandidate(i-€., guarantee that no pair of variables from different clusters white wot shown to
have any common latent parent will existilyangigatd. We eliminate the one that belongs to the
largest cluster, unless the smallest cluster has less than three elementd extradragmentation;

3. eliminate clusters that have less than three variables.

The heuristic motivation is that we expected that a model with a large size wéldnkarge num-
ber of variables after purification. Our suggested heuristic to be implemast€d00SECLUS-
TERINGCLIQUE is trying to find a good model using a very simple hill-climbing algorithm that
starts from an arbitrary node 4 and add new clusters to the current candidate according to the
one that will increase its size mostly while still forming a maximal cliquélinWe stop when we
cannot increase the size of the candidate. This is calculated using eemhkbas a starting point,
and the largest candidate is returned hyd©SECLUSTERINGCLIQUE.

A.3 Clustering Refinement

The next steps in @8UsTBUILD PURECLUSTERS are basically the IRDPATTERN algorithm of
Table 1 with a final purification. The main difference is that we do not ctegkmore if pairs
of nodes in the initial clustering given iyelectionshould be separated. The intuition explaining
the usefulness of this implementation is as follows: if there is a group of latemsnip a pure
subgraph of the true graph with a large number of pure indicators fdr lagent, then the initial
step should identify such group. The consecutive steps will refine thisicao without the risk
of splitting the large clusters of variables, which are exactly the ones most tikggoduce false
positive decisions. 88usTBUILD PURECLUSTERShas the power of identifying the latents with
large sets of pure indicators and refining this solution with more flexible rategring also cases
where DSJOINTGROUP(fails.
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Algorithm FINDINITIAL SELECTION
Input: Z, a sample covariance matrix of a set of variatiles

1. Start with a complete graghoverO.
. Remove edges of pairs that are marginally uncorrelatedasrrelated conditioned on a third variable.

Co < C.
. Color every edge of as BLUE.

oA W N

. For all edged\; — Nz in C, if there is no other paifN3, N4} such that all three tetrads constraints hold
in the covariance matrix ofNz, N2, N3, N4}, change the color of the eddi — N, to GRAY.

6. For all pairs of variable$§N;, Ny} linked by a BLUE edge i
If there exists a pair{N3,Ns} that forms a BLUE cliqgue withN; in C, and a pair
{N5,Ns} that forms a BLUE clique withNy in C, all six nodes form a clique ircy and

Di1sJOINTGROUP(N1,N3,Ng, N2, N5, Ng; ) = true, then remove all edges linking elements in
{N1,N3,Na} to {N2, N5, Ns }.

Otherwise, if there is no nodeN; that forms a BLUE clique with {N;,N;} in C,
and no BLUE clique in{Ns,N5,Ns} such that all six nodes form a clique iy and
D1SJOINTGROUP(Nz, N2, N3, Ns, N5, Ng; Z) = true, then change the color of the eddé — N,
to YELLOW.

7. Remove all GRAY and YELLOW edges fro@
8. Listc —FINDMAXIMAL CLIQUES(C).

9. LetH be a graph where each node corresponds to an elemastofand with no edges. LW
denote both a node id and the respective set of noded.istc. LetM; « RoBUSTPURIFY(M;,C,Z);

10. Add an edgeM; — My to H only if there exists{N1, N2, N3} € M; and{N4,Ns,Ns} C M5 such that
Di1SJOINTGROUP(Nz, N2, N3, Na, N5, Ng; Z) = true.

11. Hehoice— CHOOSECLUSTERINGCLIQUE(H).

12. LetHqustersbe the corresponding set of clusters, i.e., the set of setbs#rved variables, where each
set inHeysterscorrespond to somi; in Hepoice

13. Selection—RoOBUSTPURIFY (Heusters C, 2).
14. Return(SelectionC,Cy).

Table 9: Selects an initial pure model.

Notice that the order by which tests are applied might influence the outcome algbrithms,
since if we remove an edgé—Y in C at some point, then we are excluding the possibility of using
some tests wheng andY are required. Imposing such restriction reduces the overall computationa
cost and statistical mistakes. To minimize the ordering effect, an option is to eualgbrithm
multiple times and select the output with the highest number of nodes.

Appendix B. Proofs

Before we present the proofs of our results, we need a few moretutefan
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Figure 22: In (a)C is a choke point for set§A, B} x {D,E}, since it lies on all treks connecting
nodes in{A,B} to nodes in{D,E} and lies also on th¢D,E} side of all of such treks.
For instanceC is on the{D,E} side ofA — C — D, whereA is the source of such
a trek. Notice also that this choke point d-separates nodd#.iB} from nodes in
{D,E}. Analogously,D is also a choke point fofA,B} x {D,E} (there is nothing on
the definition of a choke pointx J that forbids it of belonginguUJ). In Figure (b)Cis
a choke point for set§A B} x {D, E} that does not d-separate such elements. In Figure
(c),CPis a node that lies on all treks connectify C} and{B,D} but it is not a choke
point, since it does not lie on tHe&\,C} side of trekA «— M — CP — B and neither lies
on the{B,D} side ofD < N — CP— A. The same node, however, i§A D} x {B,C}
choke point.

e apathin a graphG is a sequence of nodéXs, ..., X,} such thaX; andX; 1 are adjacent in
G, 1<i < n. Paths are assumed to sienpleby definition, i.e., no node appears more than
once. Notice there is an unique set of edges associated with each given®ppath isinto
Xy (or X,) if the arrow of the edgé Xy, Xz} is into Xy ({Xn—1, Xn} into Xp);

e acollider on a path{ Xy, ..., X} is a nodeX;, 1 < i < n, such thatX;_; andX; 1 are parents
of X;

e atrekis a path that does not contain any collider;
e thesourceof a trek is the unique node in a trek to which no arrows are directed;

e thel sideof a trek between noddsandJ with sourceX is the subpath directed froXto .
Itis possible thaX = [;

e achoke point Chhetween two sets of nodésindJ is a node that lies on every trek between
any element of and any element af such thaCP is either (i) on thd side of every such
trek X or (i) on theJ side or every such trek.

With the exception of choke points, all other concepts are well known in thatiites of graph-
ical models (Spirtes et al., 2000; Pearl, 1988, 2000). What is interestiaglioke point is that,
by definition, such a node is in all treks linking elements in two sets of nodeisigBe all treks
connecting a nod¥; and a nodeX; is a necessary condition for a node to d-sepa¥atend X,
although this is not a sufficient condition.

18. That is, for every1,J} € | x J, CPis on thel side of every trek ={I,...,X,...,J}, X being the source of.
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Consider Figure 22, which illustrates several different choke pointsoine cases, the choke
point will d-separate a few nodes. The relevant fact is that even wenhoke point is a latent
variable, this has an implication on the observed marginal distribution, as btathdTetrad Rep-
resentation Theorem

Theorem 21 (The Tetrad Representation Theorem)Let G be a linear latent variable model, and
let 11,12,J1,J2 be four variables in G. Theay, 3,01,3, = 01,3,01,3, if and only if there is a choke point
between(l1,l2} and{J;,J}.

Proof: The original proof was given by Spirtes et al. (2000). Shafer etl&P3) provide an alter-
native and simplied proot]

Shafer et al. (1993) also provide more details on the definitions andesexamples.

Therefore, unlike a partial correlation constraint obtained by conditipoim a given set of
variables, where such a set should be observablag d-separations due to latent variables can be
inferred using tetrad constraintdVe will use the Tetrad Representation Theorem to prove most of
our results. The challenge lies on choosing the right combination of tetrestramts that allows us
to identify latents and d-separations due to latents, since the Tetrad RepteseTheorem is far
from providing such results directly.

In the following proofs, we will frequently use the symbB[O) to represent a linear latent
variable model with a set of observed nod&sA choke point between setsandJ will be denoted
asl x J. We will first introduce a lemma that is going to be useful to prove several odsults.

Lemma 9 Let G(O) be a linear latent variable model, and 1€X;, X2, X3,X4} C O be such that
Ox1 % 0%aXs = OX X3 0%oXs = OX X, OXp X+ If pag # O for all {A, B} C {Xl,XZ,X3,X4}, then an unigue
node P entails all the given tetrad constraints, and P d-separates all etermefX;, Xz, X3, X4}

Proof: Let P be a choke point for pair§Xi,Xo} x {X3,Xa}. Let Q be a choke point for pairs
{X1, X3} x {X2,X4}. We will show thatP = Q by contradiction.

AssumeP # Q. Because there is a trek that linKs and X4 throughP (sincepx,;x, # 0), we
have thalQ should also be on that trek. Suppdsés a trek connecting; to X4 throughP andQ,
and without loss of generality assume this trek follows an order that defiress subtreksTg, from
X1 to P; Ty, from P to Q; andT,, from Q to Xy, as illustrated by Figure 23(a). In principl®, andT;
might be empty, i.e., we are not excluding the possibility dat P or X4 = Q.

There must be at least one tr&, connectingX; andQ, sinceQ is on every trek betweek;
andX; and there is at least one such trek (sipgg, # 0). We have the following cases:

Case 1: T includes P T2 has to be intd, andP # Xy, or otherwise there will be a trek connecting
Xz to X7 through a (possibly empty) trek that does not includ®, contrary to our hypothesis. For
the same reasoiig has to be intd®. This will imply thatT; is a directed path fror® to Q, andT,

is a directed path fror® to X4 (Figure 23(b)).

Because there is at least one trek conneckingndX; (sincepy,x, # 0), and becaus® is on
every such trekQ has to be an ancestor of at least one membéXefX,}. Without loss of gen-
erality, assume) is an ancestor oX;. No directed path fron® to X; can includeP, sinceP is an
ancestor of and the graph is acyclic. Therefore, there is a trek connegtirendX, with Q as the
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X, T,
N
XJ_ P Q X4 Xl To P T, ,‘Q T, X4
Ty T, T, ‘
(a) (b)
P P/i
//\\ X, / \x2
Xl xl
X3 X4 X3 X4
(c) (d)

Figure 23: In (a), a depiction of a traklinking X; andX4 throughP andQ, creating three subtreks
labeled asly, T1 andT,. Directions in such treks are left unspecified. In (b), the exis-
tence of a treKigy linking X, andQ throughP will compel the directions depicted as a
consequence of the given tetrad and correlation constraints (the dattedepresents
any possible continuation dby, that does not coincide witfi). The configuration in
(c) cannot happen ® is a choke point entailing all three tetrads among marginally de-
pendent node$X;, X2, X3, X4}. The configuration in (d) cannot happerPifis a choke
point for {X1, X3} x {Xz,Xa}, since there is a treK; — P — X, such tha® is not on the
{X1,X3} side of it, and another trek, — S— P — X3 such thatP is not on the{X, X4}
side of it.

source that does not includRe contrary to our hypothesis.

Case 2: ', does not include PThis case is similar to Case Ty, has to be int®, andQ # X4, or
otherwise there will be a trek connectiXg to X4 through a (possible empty) trélik that does not
includeP, contrary to our hypothesis. For the same rea3phas to be int®@Q. This will imply that
Ty is a directed path frorm® to P, andTy is a directed path frorR to X;. An argument analogous to
Case 1 will follow.

We will now show by thaP d-separates all nodes {IXz, X2, X3, X4}. From theP = Q result,
we know thatP lies on every trek between any pair of elementgXa, X2, X3, Xa}. First consider
the case where at most one elemen{Xf, Xy, X3, X4} is linked toP through a trek that is int@.
By the Tetrad Representation Theorem, any trek connecting two elemefXs,0b, X3, Xa} goes
throughP. SinceP cannot be a collider on any trek, thBrd-separates these two elements.
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To finish the proof, we only have to show tHatcannot be a collider in a path connecting any
two elements of X1, Xo, X3, X4 }. We will prove that by contradiction. That is, assume without loss
of generality that there is a trek connectiigandP that is intoP, and a trek connecting, and
P that is intoP. We will show this either entails thatx,x, = O or thatP is not a choke point for
{Xl,X3} X {Xz,X4}.

Case 3 there is no trek connecting;Xand P that is out of P neither any trek connectingatd
P that is out of P. This implies there is no trek connecting and Xy, sinceP is on every trek
connecting these two elements according to the Tetrad Representatiorhddut this implies
Px,x, = 0, a contradiction, as illustrated by Figure 23(c).

Case 4(this case will be similar to the example given in Figure 22(agsume without loss of gen-
erality that there is also a trek out of P and inte.X'hen there is a trek connectixg to X, through

P that is not on the Xy, X3} side of pair{ X1, X3} x {X2, X4} to whichP is a choke point. Therefore,
P should be on théX;, X4} of every trek connecting elements pairg Xy, Xz} x {Xz, X4}. Without
loss of generality, assume there is a trek ouP@ind intoXsz (because if there is no such trek for
eitherXsz andX4, we fall in the previous case by symmetry). |Sdbe the source of a trek infdand
Xo, which should exist sinck; is not an ancestor d?. Then there is a trek of sour@connecting
Xz andX; such thaP is not on the{ Xy, X4} side of it as shown in Figure 23(d). Theref®?eannot
be a choke point fof X3, X3} x {X2,X4}. ContradictionJ

Lemma 13Let G(O) be a linear latent variable model. If for some &¥t= {X3, Xz, X3,

X4} C O, Ox,%,0x%:% = Ox;%0x%:X = Ox;x,0x,%, and for all triplets{A,B,C}, {A,B} c O’,C € O,
we havepasc # 0 andpag # 0, then no element A O’ is a descendant of an element@f\{A} in
G.

Proof: Without loss of generality, assume for the sake of contradictionhat an ancestor o%s.
From the given tetrad and correlation constraints and Lemma 9, there ie#®rtbodkt lies on every
trek betweerk; andX; and d-separates these two nodes. Sities on the directed path frodg
to Xp, P is a descendant of;, and therefore an observed node. However, this impligs p = 0,
contrary to our hypothesi§]

Lemma 10Let GO) be a linear latent variable model. Assu®e= {X3,X2,X3,Y1,Y2,Ys} C O.

If COﬂStl’aintS{Txlylxzxg,Txlylxgxz, TViX1YoYss TYIXqYaYas _‘TX1X2Y2Y1} all hOld, and that for all triplets
{A,B,C},{A,B} C O/, C € O, we havepag # 0,pasc # 0, then X% and ¥ do not have a common
parentin G.

Proof: We will prove this result by contradiction, by assuming tkaandY; have a common parent
L in G and showing this entailsg, x,y,y,, contrary to the hypothesis.

Initially, we will show by contradiction thalt is a choke point fof X3, Y1} x {X2,X3}. Suppose
L is not a choke point fof Xy, X2} x {Y1,X3} corresponding to one of the tetrad constraints given
by hypothesis. Because of the trEk < L — Y1, then eitherX; or Y; is a choke point. Without
loss of generality, assunm¥ is a choke point in this case. By Lemma 9 and the given constraints,
X1 d-separates any two elements{i¥,, X3, Y1} contrary to the hypothesis thpk,x,x, # 0. By
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Yl Y2 T Xl T, 1
() (b)

Figure 24: Figure (a) illustrates necessary treks among elemefi¥§ 0f2, Y1, Y2, L} according to
the assumptions of Lemma 11 if we further assume ¥jas a choke point for pairs
{X1,%X2} x {1,Y2} (other treks might exist). Figure (b) rearranges (a) by emphasizing
thatY; andY, cannot be d-separated by a single node.

symmetry,Y; cannot be a choke point. Therefoteis a choke point fof X3, Y1} x {X2, X3} and by
Lemma 9, it also lies on every trek for any pairSn= {X1,X2,X3,Y1}.

Analogously,L is on every trek connecting any pair from the Set= {Xy,Y1,Y2,Ys}. It fol-
lows thatL is on every trek connecting any pairs in the prodit, Y1} x {Xz,Y2}, and it is on the
{X1,Y1} side of {X1,Y1} x {X2,Y>}, i.e.,L is a choke point that impliesy, x,y,v,. Contradiction]

Remember that predicak@actor(X,Y,G) is true if and only if there exist two nod®g andZ in
G such thattywxyzandtwxzy are both entailed, all nodes {W, X,Y,Z} are correlated, and there is
no observed in G such thapagc = 0 for {A,B} C {W,X,Y,Z}.

Lemma 11Let G(O) be a linear latent variable model. Assu®e= {Xi, X2, X3,Y1,Y2,Y3}

C 0O, such that FactofX;, X2, G) and FactofYi, Y2, G) hold, ¥ is not an ancestor ofsyand X is
not an ancestor of X If constraints{Tx,v;v,x,, Tx,¥y¥s¥ss TxiXo¥aXss "TxoXo¥oy; + ll hold, and that for
all triplets {A,B,C},{A,B} C O',C € O, we havepag # 0,pasc # 0, then X and Y, do not have a
common parent in G.

Proof: We will prove this result by contradiction. Assum¥g andY; have a common pareht
Because of the tetrad constraints given by hypothesis and the existetteetekX; «— L — Vi,
one node in{Xz,L,Y;} should be a choke point for the pdiX;, Xo} x {Y1,Y>}. We will first show
thatL has to be such a choke point, and therefore lies on every trek conngtarglY,, as well
asXp andY;. We then show thakt lies on every trek connecting andY,, as well asX; and Xo.
Finally, we show that is a choke point fof X1,Y1} x {Xz, Y2}, contrary to our hypothesis.

Step 1: If there is a common parent L tg &d ¥, then L is a{Xy, X2} x {Y1, Y2} choke point.For
the sake of contradiction, assurigeis a choke point in this case. By Lemma 13 and assumption
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Figure 25: In (a), a depiction ofy and Tx, where edges represent trek% (can be seen more
generally as the combination of the solid edge betweeandP concatenated with a
dashed edge betwefrandY; representing the possibility th& andTyx might intersect
multiple times inTpy, but in principle do not need to coincide Tay if P is not a choke
point.) In (b), a possible configurations of edges<_;,P > and < P,Y,; > that do
not collide inP, andP is a choke point (an.1 # Y). In (c), the edge< Y_1,P >
is compelled to be directed away frombecause of the collider with the other two
neighbors of.

Factor(Xz, X2, G), we have thak; is not an ancestor of,, and therefore all treks connectiixg
andXz should be intoX;. Sincepy,y, # 0 by assumption an#; is on all treks connectink, and
Y,, there must be a directed path out@fand intoYz. Sincepx,y, x, # 0 by assumption an¥; is
on all treks connectin, andYz, there must be a trek inf andY,. Becausx,y, # 0, there must
be a trek out oiX; and intoY;. Figure 24(a) illustrates the configuration.

SinceFactor(Yy, Y2, G) is true, by Lemma 9 there must be a node d-separatiremdY, (nei-
therY; norY, can be the choke point iRactor(Y:, Yz, G) because this choke point has to be latent,
according to the partial correlation conditionskactor). However, by Figure 24(b), treks — T3
andT; — T4 cannot both be blocked by a single node. Contradiction. Theréfotannot be a choke
point for { Xy, X2} x {Y1,Y>2} and, by symmetry, neither caf.

Step 2: L is on every trek connectingafd % and on every trek connecting dnd X%. LetL be the
choke point for pairg X1, Xz} x {Y1,Y2}. As a consequence, all treks betwa&gmandX; go through
L. All treks betweerX; andY; go throughL. All treks betweenX, andY, go throughlL. Such treks
exist, since no respective correlation vanishes.

Consider the given hypothesig,y, Ov,v, = Ox,v;Ov,y, , corresponding to a choke poifXz, Y2} x
{Y1,Y3}. From the previous paragraph, we know there is a trek linkgnandL. L is a parent off;
by construction. That mearfYs andY; are connected by a trek through

We will show by contradiction thdt is on every trek connecting andY,. Assume there is a
trek Ty connectingY, andY; that does not contaib. Let P be the first point of intersection df
and a treKTyx connectingX;, to Yi, starting fromX,. If Ty exists, such point should exist, sinGe
should contain a choke poifXz, Y2} x {Y1,Ys}, and all treks connecting, andY; (including Tx)
contain the same choke point.
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(@) (b)

Figure 26: In (a),Y» andX; cannot share a parent, and because of the given tetrad constraints,
should d-separatel andYs. Y3 is not a child ofL either, but there will be a trek linking
L andYs. In (b), an (invalid) configuration foX, andXs, where they share an ancestor
betweerM andL.

Let Tpy be the subtrek ofy starting onP and ending one node befoyg. Any choke point
{X2,Y2} x {Y1,Y3} should lie onTpy (Figure 25(a)). Y1 cannot be such a choke point, since all treks
connectingy; andY; are intoY, and by hypothesis all treks connectivigandY; are intoY;. Since
all treks connecting> andYz would need to go throug¥ by definition, then there would be no
such trek, implyingoy,y, = 0, contrary to our hypothesis.)

Assume first thaX, # P andY» # P. Let X_1 be the node beforB in Ty starting fromX,. Let
Y_1 be the node before in Ty starting fromY,. LetY, 1 be the node aftdp in Ty starting fromY,
(notice that it is possible that 1 =Y;). If X_1 andY,1 do not collide orP (i.e., there is no structure
X_1 — P+ Y,,), then there will be a trek connecting to Y; throughTpy afterP. SinceL is not
in Tpy, L should be befor® in Tx. But then there will be a trek connectixg andY; that does not
intersectTpy, which is a contradiction (Figure 25(b)). If the collider does exist, wechthe edge
P <— Y,;. Since no collidelY_; — P « Y, 1 can exist becausg, is a trek, the edge betwedh,
andP is out of P. But that forms a trek connecting andY- (Figure 25(c)), and sinceis in every
trek betweerX; andY, andTy does not contaih, thenTy should contairl. beforeP, which again
creates a trek betweefy andY; that does not intersedby.

If Xo =P, thenTpy has to contaith, because every trek betwe¥pandY; containd.. Therefore,
Xo # P. If Yo = P, then because every trek betweénandY, should contairk., we again have that
L lies in Tx beforeP, which creates a trek betwe&a andY; that does not interse@py. Therefore,
we showed by contradiction thhtlies on every trek betweeyy andY;.

Consider now the given hypothesix, x,0x.,y, = Ox,v,Ox,x,, corresponding to a choke point
{X2,Y2} x {X1,X3}. By symmetry with the previous case, all treks betw¥eandX, go throughL.

Step 3: If L exists, so does a choke pdiii,Yi} x {X2,Y2}. By the previous steps, intermedi-
ates all treks between elements of the gady, Y1} x {Xo,Y>}. Becausd. is a common parent of
{X1,Y1}, itlies on the{ Xy, Y1} side of every trek connecting pairs of element$Xa, Y1} x {Xo, Y2}.

L is a choke point for this pair. This impligs,x,v,y,. Contradiction]

Lemma 12Let G(O) be a linear latent variable model. L&' = {X, X2, X3,Y1,Y2,Y3}

C O. If constraints{Tx,v,v,vs, Tx;Y1Ys¥2» TxoYoXoXs> TX0YoXaXa> TXa YsXoXa» TX1YaXaXa s
—Tx,x,Y,Ys } all hold, and that for all triplets{A,B,C},{A,B} ¢ O’,C € O, we havepag # 0, paec #
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0, then X and Y do not have a common parentin G.

Proof: We will prove this result by contradiction. Suppo$eandY; have a common parehtin G.
Since all three tetrads hold in the covariance matrixXf, Y1, Y2, Y3}, by Lemma 9 the choke point
that entails these constraints d-separates the elemefs 0, Y2, Ys}. The choke point should
be in the trekX; « L — Y1, and since it cannot be an observed node because by hypothesis no
d-separation conditioned on a single node holds among elemeti¥§ 0f;, Y-, Y3}, L has to be a
latent choke point for all pairs of pairs {X1, Y1, Y2,Y3}.

Itis also given thaf Tx,v,x,xs, Tx,YaXsXe» TXoVaYaYss TxYiYsY, | hOlAS. Since itis the case thatx, x,v,vs,
by Lemma 10X; andY, cannot share a parent. L&j;_ be a trek connecting some parétof Y,
andL. Such a trek exists becauggy, # 0.

We will show by contradiction that there is no nodeTyy_\L that is connected t¥; by a trek
that does not go throudh Suppose there is such a node, and call itf the trek connectiny and
Y3 is intoV, and sinceV/ is not a collider inTy_, thenV is either an ancestor &fl or an ancestor
of L. If V is an ancestor df1, then there will be a trek connectifg andYs that is not throught.,
which is a contradiction. I¥/ is an ancestor of but notM, then bothY, andYs are d-connected
to a nodeV is a collider at the intersection of such d-connecting treks. How®Vvés,an ancestor
of L, which meand. cannot d-separat® andYs, a contradiction. Finally, if the trek connecting
andYs is out ofV, thenY, andYs will be connected by a trek that does not inclidevhich again is
not allowed. We therefore showed there is no node with the propertiés ©his configuration is
illustrated by Figure 26(a).

Since all three tetrads hold among elementgXf, X2, X3, Y2}, then by Lemma 9, there is a
single choke poinP that entails such tetrads and d-separates elements of this set. TRinsea
trek connecting/, to X; throughL, then there are three possible locationsRaon G:

Case 1. P=M. We have all treks betweex; and X, go throughM but not throughL, and
some trek fromX; to Y3 goes through. but not throughM. No choke point can exist for pairs
{X1,X3} x{X2,Y3}, which by the Tetrad Representation Theorem means that the tatrgdx,x, =
Ox,%,0v;x; cannot hold, contrary to our hypothesis.

Case 2: P lies between M and L igI. This configuration is illustrated by Figure 26(b). As before,
no choke point exists for paifs<y, X3} x {Xo, Y3}, contrary to our hypothesis.

Case 3: P=L. Because all three tetrads hold §iX;, X2, X3,Ys} andL d-separates all pairs in
{X1, X2, X3}, one can verify that d-separates all pairs §X1, X2, X3, Y3}. This willimply a{Xs, Y3} x
{X2,Y2} choke point, contrary to our hypothesis.

Theorem 14The output oFINDPATTERN is a measurement pattern with respect to the tetrad and
vanishing partial correlation constraints &f

Proof: Two nodes will not share a common latent parent in a measurement pattech ahdy if

they are not linked by an edge in grapltonstructed by algorithmiKD PATTERN and that happens
if and only if some partial correlation vanishes or if any of rules CS1, QSR3I8B applies. But
then by Lemmas 10, 11, 12 and the equivalence of vanishing partialat@yns and conditional
independence in linearly faithful distributions (Spirtes et al., 2000) the dejnoved. The claim
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about undirected edges follows from Lemma IB.

Theorem 15Given a covariance matriX assumed to be generated from a linear latent variable
model GO) with latent variablesL, let Gy be the output oBuiLD PURECLUSTERSX) with
observed variable®qyt C O and latent variabled o;. Then Gy is a measurement pattern, and
there is an injective mapping ML oy: — L with the following properties:

1. Let Loyt € Lout. LetX be the children of byt in Goyt. Then MLoyt) d-separates any element
X € X from Ogy\X in G;

2. M(Low) d-separates X from every latent in G for whichrd.) exists;

3. LetO’ C Oqyt be such that each pair i@’ is correlated. At most one elementwith latent
parent Loyt in Goyt IS Not a descendant of Mqy) in G, or has a hidden common cause with
it;

Proof: We will start by showing that for each clust@l; in Gg, there exists an unique latelptin

G that d-separates all elementsGlf. This shows the existance of an unique function from latents
in Ggt to latents inG. We then proceed to prove the three claims given in the theorem, and finish
by proving that the given function is injective.

Let Cl; be a cluster in a non-empGy,y:.. Cli has three elemeni$,Y andZ, and there is at least
someW in G such that all three tetrad constraints hold in the covariance matgyoX,Y,Z},
where no pair of elements iX,Y,Z} is marginally d-separated or d-separated by an observable
variable. By Lemma 9, it follows that there is an unique latgnd-separating, Y andZ. If C;
has more than three elements, it follows that since no node otheltt@n d-separate all three
elements in{X,Y,Z}, and any choke point fofW’, X,Y,Z}, W’ € ClI;, will d-separate all elements
in {W’,X,Y,Z}, then there is an unique latebt d-separating all elements @I;. An analogous
argument concerns the d-separation of any eleme@t; @nd observed nodes in other clusters.

Now we will show that eaclh; d-separates eacki in Cl; from all other mapped latents. As a
byproduct, we will also show the validity of the third claim of the theorem. Candiy,Z}, two
other elements &|; besides(, and{A, B,C}, three elements @I;. SinceL; andL; each d-separate
all pairs in{X,Y} x {A,B}, and no pair in{X,Y} x {A,B} has both of its elements connected to
Li (L;) through a trek that is intb; (L;) (sincelL, orL;, d-separates then), then bathandL; are
choke points fo{ X,Y} x {A,B}. According to Lemma 2.5 given by Shafer et al. (1993), any trek
connecting an element frofX,Y } to an element i{A, B} passes through both choke points in the
same order. Without loss of generality, assume the order id firstenL ;.

If there is no trek connectink to L that is intoL;, thenL; d-separateX andL;. The same
holds forL; andA with respect td.;. If there is a treKT connectingX andL; that is intoL;, and
since all three tetrad constraints hold in the covariance matr{XoY¥,Z, A} by construction, then
there is no trek connecting andL; that is intoL; (Lemma 9). Since there are treks connectling
andLj, they should be all out df; and intoL;. This means that; d-separateX andL;. But this
also creates a trek connectiXgandL; that is intoL ;. Since all three tetrad constraints hold in the
covariance matrix of X,A,B,C} by construction, then there is no trek connecthgndL; that is
into L (by the d-separation implied by Lemma 9). This means that-separateé from L;. This
also means that the existance of such a Tredut of X and intoL; forbids the existance of any trek
connecting a variable correlated Xothat is intoL; (since all treks connectinlg; and somed.; are
out ofL;), which proves the third claim of the theorem.
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We will conclude by showing that given two clusté andCl; with respective latentk; and
L;, where each cluster is of size at least three, if they are not mergedl tbeh;. That is, the
mapping from latents ey to latents inG, as defined at the beginning of the proof, is injective.

Assumel; = Lj. We will show that these clusters will be merged by the algorithm, proving the
counterpositive argument. L¥tandY be elements ofl; andW, Z elements oCl;. Itimmediately
follows thatL; is a choke point for all pairs ifW, X,Y,Z}, sincel; d-separates any pair of elements
of {W,X,Y,Z}, which means all three tetrads will hold in the covariance matrix of any sufset
size four fromCl; UCI;. These two clusters will then be merged byiBo PURECLUSTERS [

Theorem 16 Given a covariance matriX assumed to be generated from a linear latent variable
model GO) with latent variabled_, let Gyt be the output oBuILD PURECLUSTERSX) with ob-
served variable®,,: C O and latent variabled oyt Let M(Loyt) C L be the set of latents in G
obtained by the mapping function(M LetZo,, be the population covariance matrix Gy, i.e.,

the corresponding marginal &. Let the DAG G be G,.: augmented by connecting the elements
of L oyt such that the structural model oiﬁﬁ? is an I-map of the distribution of KL yt). Then there
exists a linear latent variable model using {2 as the graphical structure such that the implied
covariance matrix 0Dqyt equalszo,, .

Proof: If alinear model is an I-map DAG of the true distribution of its variables, therettsea well-
known natural instantiation of the parameters of this model that will reptéisenrue covariance
matrix (Spirtes et al., 2000). We will assume such parametrization for theiwgtabonodel, and
denote ag| (@) the parameterized latent covariance matrix. Instead of showingaidtis an
I-map of the respective set of latents and observed variables andtheisgme argument, we will
show a valid instantion of its parameters directly.

Assume without loss of generality that all variables have zero mean. Tookserved nodX
with latent ancestolryx in G such thai\/l‘l(Lx) is a parent oX in Gy, the linear model represen-
tation is:

X = AxLx + &x

For this equation, we have two associated parametgrand ogx, whereogX is the variance
of ex. We instantiate them by the linear regression values, Aye+ GXLX/GEX, and OEX is the
respective residual variance. The $ak}U {02, } of all Ax andaoZ,, along with the parameters
used inZ (©), is our full set of parameter®.

Our definition of linear latent variable model requigge, = 0, 0,1, = 0 andog,, = 0, for all
X #Y. This corresponds to a covariance mai®) of the observed variables with entries defined

as:
E[X%(©) = 0% () = Akof, +0F,

E[XY](©) = 0xv(©) = AxAT0L,1Ly

To prove the theorem, we have to show thg},, = 2(©) by showing that correlations between
different residuals, and residuals and latent variables, are actuedly ze

The relationog,, = 0 follows directly from the fact thakx is defined by the regression coef-
ficient of X on Lx. Notice that ifX andLx do not have a common ancestdy, is the direct effect
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of Lx in X with respect tdGoy. As we know, by Theorem 15, at most one variable in any set of
correlated variables will not fulfill this condition.

We have to show also thatxy = oxy(©) for any pairX,Y in Gou. Residualsx andey are
uncorrelated due to the fact thdtandY are independent given their latent ancestor&in, and
thereforeog, ., = 0. To verify thatog,, = O is less straightforward, but one can appeal to the
graphical formulation of the problem. In a linear model, the residuab a function only of the
variables that are not independentogivenLy. None of this variables can be nodes3g, since
Lx d-separateX from all such variables. Therefore, giveR none of the variables that defiag
can be dependent dry, implying og,, = 0. O

Theorem 17 Problema ?° is NP-complete.

Proof: Direct reduction from the 3-SAT problem: I8be a 3-CNF formula from which we want to
decide if there is an assignment for its variables that makes the expressioD&fineG as a latent
variable graph with a latent node for each claus€; in M, with an arbitrary fully connected struc-
tural model. For each latent i@, add five pure children. Choose three arbitrary children of each
latentL;, naming them{Cl,C?,C?}. Add a bi-directed edg€’ — Cj' for each paicCP,C/i # j, if

and only that they represent literals over the same variable but of oppakits. As in the maxi-
mum clique problem, one can verify that there is a pure submodehdgth at least three indicators
per latent if and only ifSis satisfiable[]

The next corollary suggests that even an invalid measurement pattédnbeoused in BILD -
PURECLUSTERSiInstead of the output of IKDPATTERN. However, an arbitrary (invalid) measure-
ment pattern is unlikely to be informative at all after being purified. In casstAND PATTERN
can be highly informative.

Corollary 18 The output oBuiLD PURECLUSTERS retains its guarantees even when rules CS1,
CS2 and CS3 are applied an arbitrary number of time&iimD PATTERN for any arbitrary subset
of nodes and an arbitrary number of maximal cliques is found.

Proof: Independently of the choice made on Step 2 ofil® PURECLUSTERS and which nodes
are not separated into different cliques iINBPATTERN, the exhaustive verification of tetrad con-
straints by BJILD PURECLUSTERSprovides all the necessary conditions for the proof of Theorem
15.0

Corollary 20 Given a covariance matriX assumed to be generated from a linear latent variable
model G, and G the output oBuiLD PURECLUSTERSgivenZ, the output oPC-MIMBUILD or
FCI-MIMBUILD given(Z,Goyt) returns the correct Markov equivalence class of the latents in G
corresponding to latents in £ according to the mapping implicit iBuiLD PURECLUSTERS

Proof: By Theorem 15, each observed variable is d-separated from all\@hables inGyy; given

its latent parent. By Theorem 16, one can parametésizeas a linear model such that the ob-
served covariance matrix as a function of the parametefiggdequals its corresponding marginal
of . By Theorem 19, the rank test using the measurement mod&l} pfs therefore a consistent
independence test of latent variables. The rest follows immediately frowotig@stency property
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of PC and FCI given a valid oracle for conditional independengies.
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