
On the Testable Implications of Causal Models with HiddenVariablesJin Tian and Judea PearlCognitive Systems LaboratoryComputer Science DepartmentUniversity of California, Los Angeles, CA 90024fjtian, judea g@cs.ucla.eduAbstractThe validity of a causal model can be testedonly if the model imposes constraints on theprobability distribution that governs the gen-erated data. In the presence of unmeasuredvariables, causal models may impose twotypes of constraints: conditional independen-cies, as read through the d-separation crite-rion, and functional constraints, for which nogeneral criterion is available. This paper of-fers a systematic way of identifying functionalconstraints and, thus, facilitates the task oftesting causal models as well as inferring suchmodels from data.1 IntroductionIt is known that the statistical information encodedin a Bayesian network (also known as a causalmodel) is completely captured by conditional inde-pendence relationships among the variables when allvariables are observable [Pearl et al., 1990]. However,when a Bayesian network invokes unobserved vari-ables, or hidden variables, the network may imposeequality and inequality constraints on the distribu-tion of the observed variables, and those constraintsmay not be expressed as conditional independencies[Spirtes et al., 1993, Pearl, 1995]. Verma and Pearl(1990) gave an example of non-independence equalityconstraints shown in Figure 1(a), in which U is un-observed.1 A simple analysis shows that the quantityPb P (dja; b; c)P (bja) is a function only of the values cand d: Xb P (dja; b; c)P (bja) = f(c; d): (1)1We use dashed arrows for edges connected to hiddenvariables.
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U(a) (b)Figure 1:This constraint holds even though no restrictions aremade on the domains of the variables involved and onthe class of distributions involved. This paper developsa systematic way of �nding such functional constraints.Finding non-independence constraints is useful bothfor empirically validating causal models and for dis-tinguishing causal models with the same set of condi-tional independence relationships among the observedvariables. For example, the two networks in Fig-ure 1(a) and (b) encode the same set of indepen-dence statements (A is independent of C given B), butthey are empirically distinguishable due to the Vermaconstraint (1). Algebraic methods for �nding equal-ity and inequality constraints implied by Bayesiannetworks with hidden variables have been presentedin [Geiger and Meek, 1998, Geiger and Meek, 1999].However, due to computational complexity, thosemethods are limited to small networks with small num-ber of probabilistic parameters. This paper deals withthe constraints imposed by a network structure regard-less the domains of the variables and the class of dis-tributions, among which the conditional independenceconstraints can be read via the d-separation criterion[Pearl, 1988], but there is no general graphical crite-rion available for constraints that are not capturedby conditional independencies. The paper shows howthe distribution of the observed variables factorizesaccording to the network structure, establishes rela-tionships between this factorization and Verma-typefunctional constraints, and presents a procedure thatsystematically �nds the functional constraints.



The paper is organized as follows. Section 2 intro-duces Bayesian network and shows how functional con-straints emerge when there are hidden variables. Sec-tion 3 shows how the observed distribution factorizesaccording to the network structure and introduces theconcept of c-component which plays an important rolein identifying constraints. Section 4 presents a proce-dure for systematically identifying constraints. Sec-tion 5 shows that, for the purpose of �nding con-straints, instead of directly dealing with a model witharbitrary hidden variables, we can work with a sim-pli�ed model in which each hidden variable is a rootnode with two observed children. Section 6 concludesthe paper.2 Bayesian Networks with HiddenVariablesA Bayesian network is a directed acyclic graph (DAG)G that encodes a joint probability distribution over aset V = fV1; : : : ; Vng of random variables with eachnode of the graph G representing a variable in V . Thearrows of G represent probabilistic dependencies be-tween the corresponding variables, and the missingarrows represent conditional independence assertions:Each variable is independent of all its non-descendantsgiven its direct parents in the graph.2 A Bayesiannetwork is quanti�ed by a set of conditional probabil-ity distributions, P (vijpai), one for each node-parentsfamily, where PAi denotes the set of parents of Vi, andvi and pai denote an instantiation of values of Vi andPAi respectively.3 The assumptions encoded in thenetwork amount to asserting that the joint probabilityfunction P (v) = P (v1; : : : ; vn) factorizes according tothe product [Pearl, 1988]:P (v) =Yi P (vijpai): (2)When some variables in a Bayesian network are unob-served, the marginal distribution of observed variablescan no longer factorize according to Eq. (2). LettingV = fV1; : : : ; Vng and U = fU1; : : : ; Un0g stand forthe sets of observed and hidden variables respectively,the observed probability distribution, P (v), becomes2We use family relationships such as \parents," \chil-dren," \ancestors," and \descendants," to describe the ob-vious graphical relationships. For example, we say that Viis a parent of Vj if there is an arrow from node Vi to Vj ,Vi ! Vj .3We use uppercase letters to represent variables or setsof variables, and use corresponding lowercase letters to rep-resent their values (instantiations).

a mixture of products:P (v) =Xu YfijVi2V gP (vijpavi) YfijUi2UgP (uijpaui);(3)where PAvi and PAui stand for the sets of parentsof Vi and Ui respectively, and the summation rangesover all the U variables. Since all the factors of non-ancestors of V can be summed out from Eq. (3), lettingU 0 be the set of variables in U that are ancestors of V ,Eq. (3) then becomesP (v) =Xu0 YVi2V P (vijpavi) YUi2U 0 P (uijpaui): (4)Therefore, we can remove from the network G all thehidden variables that are not ancestors of any V vari-ables, and we will assume that each U variable is anancestor of some V variable.To illustrate how functional constraints emerge fromthe factorization of Eq. (4), we analyze the example inFigure 1(a). For any set S � V , de�ne the quantityQ[S] to denote the following functionQ[S] =Xu YfijVi2SgP (vijpavi) YfijUi2UgP (uijpaui):(5)In particular, we have Q[V ] = P (v) and,for consistency, we set Q[;] = 1, sincePuQfijUi2Ug P (uijpaui) = 1. For Figure 1(a),Eq. (4) becomesP (a; b; c; d) = P (a)P (cjb)Q[fB;Dg]; (6)where Q[fB;Dg] =Xu P (bja; u)P (djc; u)P (u): (7)From (6), we obtainQ[fB;Dg] = P (a; b; c; d)P (a)P (cjb) = P (dja; b; c)P (bja); (8)and from (7),Q[fDg] =Xu P (djc; u)P (u) (9)=Xb Q[fB;Dg] =Xb P (dja; b; c)P (bja): (10)Eq. (9) implies that Q[fDg] is a function only of cand d, therefore Eq. (10) induces a constraint that thequantity Pb P (dja; b; c)P (bja) is independent of a.Note that the key to obtaining this constraint restswith our ability to express Q[fB;Dg] and Q[fDg] in



terms of observed quantities (see (8) and (10)), namelyquantities not involving U . Applying the same anal-yses to Figure 1(b), we have that Q[fDg] obtain thesame expression as in Eq. (10), but now Q[fDg] =Pu P (djc; a; u)P (u) is also a function of a, and noVerma constraint is induced. In general, for any setS � V , Q[S] in Eq. (5) is a function of values only of asubset of V . Therefore, whenever Q[S] is computablefrom the observational distribution P (v), it may leadto some constraints | conditional independence rela-tions or Verma-type functional constraints. In the restof the paper, we will show how to systematically �ndcomputable Q[S], but �rst, we study what the argu-ments of Q[S] are.For any set C, let GC denote the subgraph of G com-posed only of variables in C, let An(C) denote theunion of C and the set of ancestors of the variablesin C, and let Anu(C) = An(C) \ U denote the setof hidden variables in An(C). In Eq. (5), the factorscorresponding to the hidden variables that are not an-cestors of S in the subgraphGS[U can be summed out,and letting U(S) = Anu(S)GS[U be the set of hiddenvariables that are ancestors of S in the graph GS[U ,Q[S] can be written asQ[S] =Xu(S) YfijVi2SgP (vijpavi) YfijUi2U(S)gP (uijpaui):(11)We see that Q[S] is a function of S, the observed par-ents of S, and the observed parents of U(S). We willcall an observed variable Vi an e�ective parent of anobserved variable Vj if Vi is a parent of Vj or there isa directed path from Vi to Vj in G such that every in-ternal node on the path is a hidden variable. For anyset S � V , letting Pa+(S) denote the union of S andthe set of e�ective parents of the variables in S, thenwe have that Q[S] is a function of Pa+(S). Assum-ing that Q[S] is a function of some set T , sometimeswe will write Q[S] explicitly as Q[S](t). When Q[S](t)is computable from P (v), its expression obtained maybe a function of values of some set T 0 larger than T(T � T 0), and this will lead to constraints on the dis-tribution P (v) that the expression obtained for Q[S]is independent of the values t0 n t, which could be aVerma-type functional constraint or be a set of condi-tional independence statements.Next we give a lemma that will facilitate the computa-tion of Q[S] and the proof of other propositions. Thelemma provides a condition under which we can com-pute Q[W ] from Q[C], where W is a subset of C, bysimply summing Q[C] over the remaining variables (inC nW ). For any set C, let Anv(C) = An(C) \ V bethe set of observed variables in An(C), and let Dev(C)denote the set of observed variables that are in C or

are descendants of any variable in C. A set A � V iscalled an ancestral set if it contains its own observedancestors (A = Anv(A)), and a set A � V is calleda descendent set if it contains its own observed de-scendants (A = Dev(A)). Letting G(C) = GC[U(C)denote the subgraph of G composed only of variablesin C and U(C) which corresponds to the quantityQ[C](see Eq. (11)), then we have the following lemma.Lemma 1 Let W � C � V , and W 0 = C nW . If Wis an ancestral set in G(C) (W = Anv(W )G(C)), orequivalently, if W 0 is a descendent set in G(C) (W 0 =Dev(W 0)G(C)), thenXw0 Q[C] = Q[W ]: (12)Proof sketch: By Eq. (11)Xw0 Q[C] =Xw0 Xu(C) YVi2C P (vijpavi) YUi2U(C)P (uijpaui):(13)All factors in (13) corresponding to the variables (ob-served or hidden) that are not ancestors of W in G(C)are summed out, and we obtainXw0 Q[C]= XAnu(W )G(C) YVi2W P (vijpavi) YUi2Anu(W )G(C) P (uijpaui):(14)We have Anu(W )G(C) = Anu(W )GW[U = U(W ) dueto that W is an ancestral set. Therefore the left handside of (14) is equal to Q[W ] by Eq. (11). 2In the next section, we show how the distribution P (v)decomposes according to the network structure andhow the decomposition helps the computation of Q[S].3 C-componentsP (v) as a summation of products in (4) may sometimesbe decomposed into a product of summations. Forexample, in Figure 2, P (v) can be written asP (v1;v2; v3; v4) = �Xu1 P (v1ju1)P (v3jv2; u1)P (u1)�� Xu2;u3 P (v2ju2; u3)P (v4jv3; u2)P (u2)P (u3jv1)�= Q[fV1; V3g]Q[fV2; V4g] (15)The importance of this decomposition lies in thatboth terms Q[fV1; V3g] and Q[fV2; V4g] are com-putable from P (v) as shown later. First we study
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U3 Figure 2:graphical conditions under which this kind of de-composition is feasible, extending conditions given in[Tian and Pearl, 2002] to the case of non-root U vari-ables.Assume that P (v) in Eq. (4) can be decomposed intoa product of summations as:P (v) =Yj �Xnj YVi2Sj P (vijpavi) YUi2Nj P (uijpaui)�YVi2S0 P (vijpavi); (16)where the variables in S0 have no hidden parents, Uis partitioned into Nj 's, and V nS0 is partitioned intoSj 's. Ui and Uj must be in the same set Nk if (i)there is an edge between them (Ui ! Uj or Ui  Uj),or (ii) they have a common child (Ui ! Ul  Uj orUi ! Vl  Uj). Repeatedly applying these two rules,we obtain that Ui and Uj are in the same set Nk ifthere exists a path between Ui and Uj in G such that(i) every internal node of the path is in U , or (ii) ev-ery node in V on the path is head-to-head (! Vl  ).It is clear that this relation among Ui's is reexive,symmetric, and transitive, and therefore it de�nes apartition of U . We construct Si as follows: a vari-able Vk 2 V is in Si if it has a hidden parent thatis in Ni. Si's form a partition of V n S0 since Ni'sform a partition of U . Let each variable Vi 2 S0 forma set by itself S0i = fVig. We have that Si's andS0i 's form a partition of V . It is clear that if a hid-den variable Uk is not in Nj , then it does not appearin the factors ofQVi2Sj P (vijpavi)QUi2Nj P (uijpaui),hence the decomposition of P (v) in Eq. (16) follows.We will call each Si or S0i a c-component (abbrevi-ating \confounded component") of V in G or simplyc-component of G. This de�nition of c-componentreduces to that introduced in [Tian and Pearl, 2002]in the special case of all hidden variables being rootnodes.Assuming that V is partitioned into c-componentsS1; : : : ; Sk, Eq. (16) can be rewritten asP (v) = Q[V ] =Yi Q[Si]; (17)

which follows fromQ[Sj ] =Xu YfijVi2SjgP (vijpavi) YfijUi2UgP (uijpaui)=Xnj YVi2Sj P (vijpavi) YUi2Nj P (uijpaui)Xunnj YUi2UnNj P (uijpaui)=Xnj YVi2Sj P (vijpavi) YUi2Nj P (uijpaui); (18)where we have used the following formulaXw YfijUi2WgP (uijpaui) = 1; for any W � U: (19)We will call Q[Si] the c-factor corresponding to the c-component Si. For example, Figure 1(a) is partitionedinto c-components fAg, fCg, and fB;Dg, with corre-sponding c-factors Q[fAg] = P (a), Q[fCg] = P (cjb),and Q[fB;Dg] in (7) respectively, and P (v) can bewritten as a product of c-factors as in Eq. (6). InFigure 2, V is partitioned into c-components fV1; V3gand fV2; V4g, and P (v) can be written as a product ofc-factors Q[fV1; V3g] and Q[fV2; V4g] as in (15).The importance of the c-factors stems fromthat all c-factors are computable from P (v)[Tian and Pearl, 2002]. We generalize this resultto proper subgraphs of G and obtain the followinglemma.Lemma 2 Let H � V , and assume that H is parti-tioned into c-components H1; : : : ; Hl in the subgraphG(H) = GH[U(H). Then we have(i) Q[H ] decomposes asQ[H ] =Yi Q[Hi]: (20)(ii) Every Q[Hi], i = 1; : : : ; l, can be computed fromQ[H ].(iii) Let k be the number of variables in H, and let atopological order of the variables in H be Vh1 < � � � <Vhk in G(H). Let H(i) = fVh1 ; : : : ; Vhig be the setof variables in H ordered before Vhi (including Vhi),i = 1; : : : ; k, and H(0) = ;. Then each Q[Hj ], j =1; : : : ; l, is given byQ[Hj ] = YfijVhi2Hjg Q[H(i)]Q[H(i�1)] ; (21)where each Q[H(i)], i = 0; 1; : : : ; k, is given byQ[H(i)] = Xhnh(i)Q[H ]: (22)



(iv) Assuming that a variable Vhi is in Hj , thenQ[H(i)]=Q[H(i�1)] is a function only of Pa+(H(i) \Hj), and thus is independent of Pa+(H(i)) nPa+(H(i) \Hj).Proof: (i) The decomposition of Q[H ] into Eq. (20)follows directly from the de�nition of c-component (seeEqs. (16){(19)).(ii)&(iii) Eq. (22) follows from Lemma 1 since eachH(i) is an ancestral set. To prove that Q[Hi]'s arecomputable from Q[H ] and are given by (21), we doinduction on k.Base: k = 1. There is one c-component Q[H1] =Q[H ] = Q[H(1)] which satis�es Eq. (21) becauseQ[;] = 1.Hypothesis: When there are k variables in H , allQ[Hi]'s are computable from Q[H ] and are given byEq. (21).Induction step: When there are k + 1 variables inH , assuming that the c-components of G(H) areH1; : : : ; Hm; H 0, and that Vhk+1 2 H 0, we haveQ[H ] = Q[H(k+1)] = Q[H 0]Yi Q[Hi]: (23)Summing both sides of (23) over Vhk+1 leads toXvhk+1 Q[H ] = Q[H(k)] = � Xvhk+1 Q[H 0]�Yi Q[Hi];(24)where we have used Lemma 1. It is clear thatH1; : : : ; Hm are still among c-components of the graphG(H(k)). Then by the induction hypothesis, Q[Hi]; i =1; : : : ;m, is computable from Q[H(k)] =Pvhk+1 Q[H ]and is given by Eq. (21), where each Q[H(i)], i =0; 1; : : : ; k, is given byQ[H(i)] = Xh(k)nh(i)Q[H(k)] = Xhnh(i)Q[H ]: (25)Finally, from Eq. (23), Q[H 0] is computable as well,and is given byQ[H 0] = Q[H(k+1)]QiQ[Hi] = YfijVhi2H0g Q[H(i)]Q[H(i�1)] ; (26)which is clear from Eq. (21) and the decompositionQ[H(k+1)] =Qk+1i=1 Q[H(i) ]Q[H(i�1) ] .(iv) Assuming that there are m variables in Hj , letthe variables in Hj be ordered as Vhj1 < : : : < Vhjm(with the same order as in (iii)), and let H(i)j = H(ji)\

Hj = fVhj1 ; : : : ; Vhji g; i = 1; : : : ;m. Eq. (21) can berewritten as Q[H(m)j ] = mYk=1 Q[H(jk)]Q[H(jk�1)] : (27)Summing both sides of (27) overfVhjm ; Vhjm�1 ; : : : ; Vhji+1 g, by Lemma 1, we ob-tain Q[H(i)j ] = iYk=1 Q[H(jk)]Q[H(jk�1)] ; i = 1; : : : ;m: (28)From (28) and Q[H(i)j ] is a function of Pa+(H(i)j ), weobtain that each Q[H(ji)]=Q[H(ji�1)] is a function ofPa+(H(i)j ), i = 1; : : : ;m. 2The proposition (iv) in Lemma 2 may imply a set ofconstraints to the distribution P (v) whenever Q[H ] iscomputable from P (v).A special case of Lemma 2 is when H = V , and weobtain the following corollary which was presented in[Tian and Pearl, 2002] for the case of all hidden vari-ables being root nodes.Corollary 1 Assuming that V is partitioned into c-components S1; : : : ; Sk, we have(i) P (v) =QiQ[Si].(ii) Each c-factor Q[Si], i = 1; : : : ; k, is computablefrom P (v).(iii) Let a topological order over V be V1 < : : : < Vn,and let V (i) = fV1; : : : ; Vig, i = 1; : : : ; n, and V (0) =;. Then each Q[Sj ], j = 1; : : : ; k, is given byQ[Sj ] = YfijVi2SjgP (vijv(i�1)) (29)(iv) Assuming that a variable Vi is in Sj , then Vi isindependent of V (i) n Pa+(V (i) \ Sj) (other variablesordered before Vi) given Pa+(V (i) \Sj) n fVig, that is,P (vijv(i�1)) = P (vijpa+(V (i) \ Sj) n fvig): (30)We see that when hidden variables were invoked, avariable is independent of its non-descendants givenits e�ective parents, the non-descendant variables inits c-component, and the e�ective parents of the non-descendant variables in its c-component, reminiscenceof the property that each variable is independent ofits non-descendants given its parents when there is nohidden variables.4 Finding ConstraintsWith Lemma 1, 2, and Corollary 1, we can systemat-ically �nd constraints implied by a network structure.First we study a few examples.
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2(a) G (b) G(fV1; V3; V4g) (c) G(fV3; V4g)Figure 3:4.1 ExamplesConsider Figure 2, which has two c-componentsfV1; V3g and fV2; V4g. The only admissible order isV1 < V2 < V3 < V4. Applying Corollary 1, we obtainthat the two c-factors are given byQ[fV1; V3g](v1; v2; v3) = P (v3jv2; v1)P (v1); (31)andQ[fV2; V4g](v1; v2; v3; v4) = P (v4jv3; v2; v1)P (v2jv1):(32)They do not imply any constraints on the distribution.Summing both sides of (32) over V2, by Lemma 1, weobtainQ[fV4g](v3; v4) =Xv2 P (v4jv3; v2; v1)P (v2jv1); (33)which implies a constraint on the distribution P (v)that the right hand side is independent of v1. Com-puting Q[fV1g], Q[fV2g], and Q[fV3g] does not giveany constraints.Consider Figure 3(a), which has two c-componentsfV2g and S = fV1; V3; V4g. The only admissible or-der is V1 < V2 < V3 < V4. Applying Corollary 1, weobtain Q[fV2g](v1; v2) = P (v2jv1); (34)Q[S](v) = P (v4jv3; v2; v1)P (v3jv2; v1)P (v1): (35)In the subgraph G(S) = GS[U (Figure 3(b)), V1 isnot an ancestor of H = fV3; V4g, and from Lemma 1,summing both sides of (35) over V1, we obtainQ[H ](v2; v3; v4) =Xv1 P (v4jv3; v2; v1)P (v3jv2; v1)P (v1):(36)The subgraph G(H) = GH[U (Figure 3(c)) has twoc-components fV3g and fV4g. By Lemma 2, we haveQ[H ] = Q[fV3g]Q[fV4g], andQ[fV3g](v2; v3) =Xv4 Q[H ] =Xv1 P (v3jv2; v1)P (v1);(37)

Q[fV4g](v3; v4) = Q[H ]Pv4 Q[H ]= Pv1 P (v4jv3; v2; v1)P (v3jv2; v1)P (v1)Pv1 P (v3jv2; v1)P (v1) : (38)Eq. (38) implies a constraint on P (v) that the righthand side is independent of v2.From the preceding examples, we see that we may �ndconstraints by alternatively applying Lemma 1 and 2.Next, we present a procedure that systematically look-ing for constraints.4.2 Identifying constraints systematicallyLet a topological order over V be V1 < : : : < Vn, andlet V (i) = fV1; : : : ; Vig, i = 1; : : : ; n. For i from 1to n, at each step, we will consider constraints thatinvolve Vi and the variables ordered before Vi. At stepi, we do the following:(A1) Consider the subgraph G(V (i)). If G(V (i)) hasmore than one c-component, assuming that Vi isin the c-component Si of G(V (i)), then by Corol-lary 1, Q[Si] is computable from P (v) and maygive a conditional independence constraint thatVi is independent of its predecessors given its ef-fective parents, other variables in Si, and thee�ective parents of other variables in Si, thatis, Vi is independent of V (i) n Pa+(Si) givenPa+(Si) n fVig.(A2) Consider Q[Si] in the subgraph G(Si). For eachdescendent set D � Si (D contains its own ob-served descendants) in G(Si) that does not con-tain Vi,4 by Lemma 1 we haveXd Q[Si] = Q[Si nD]: (39)The left hand side of (39) is a function ofPa+(Si) nD, while the right hand side is a func-tion of Pa+(Si nD) � Pa+(Si) nD. Therefore, ifsome e�ective parents of D are not e�ective par-ents of Si n D, then (39) implies a constraint onthe distribution P (v) that the quantity PdQ[Si]is independent of Pa+(Si) nD n Pa+(Si nD).Let D0 = Si n D. Next we consider Q[D0] inthe subgraph G(D0). If G(D0) has more thanone c-component, assuming that Vi is in the c-component Ei of G(D0), by Lemma 2, Q[Ei] iscomputable from Q[D0], and Q[D0]=Pvi Q[D0] is4We need to consider every descendent set D that doesnot contain Vi, because it is possible that for two descen-dent sets D1 � D2, the constraints from summing D2 arenot implied by that from D1, and vice versa.
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3 5(a) G (b) G(fV1; V3; V5g)Figure 4:a function only of Pa+(Ei), which imposes a con-straint on P (v) if Pa+(D0) n Pa+(Ei) 6= ;.Finally we study Q[Ei] by repeating the process(A2) with Si now replaced by Ei.The preceding analysis gives us a recursive procedurefor systematically �nding constraints. To illustratethis process, we consider the example in Figure 4(a).The only admissible order over V is V1 < : : : < V5.The constraints involving V1 to V4 are the same as inFigure 2, and here we look for constraints involvingV5. V5 is in the c-component S = fV1; V3; V5g. ByCorollary 1, Q[S] is given byQ[S](v) = P (v5jv4; v3; v2; v1)P (v3jv2; v1)P (v1); (40)which implies no constraints. In the subgraph G(S)(Figure 4(b)), the descendent sets not containing V5are fV1g, fV3g, and fV1; V3g.(a) Summing both sides of (40) over v1, we obtainQ[fV3; V5g](v2; v3; v4; v5)=Xv1 P (v5jv4; v3; v2; v1)P (v3jv2; v1)P (v1); (41)which implies no constraints. The subgraphG(fV3; V5g) is partitioned into two c-components fV3gand fV5g, and by Lemma 2, we haveQ[fV5g](v4; v5) = Q[fV3; V5g]Pv5 Q[fV3; V5g]= Pv1 P (v5jv4; v3; v2; v1)P (v3jv2; v1)P (v1)Pv1 P (v3jv2; v1)P (v1) ; (42)which implies a constraint that the right hand side isindependent of v2 and v3.(b) Summing both sides of (40) over v3, we obtainQ[fV1; V5g](v1; v4; v5)=Xv3 P (v5jv4; v3; v2; v1)P (v3jv2; v1)P (v1); (43)which implies a constraint that the right hand sideis independent of v2. G(fV1; V5g) can not be furtherpartitioned into c-components.

(c) Summing both sides of (40) over v1 and v3, weobtainQ[fV5g](v4; v5)= Xv1;v3 P (v5jv4; v3; v2; v1)P (v3jv2; v1)P (v1); (44)which implies a constraint that the right hand side isindependent of v2. This constraint is implied by thatobtained from Eq. (42).5 Projection to Semi-MarkovianModelsIf, in a Bayesian network with hidden variables, eachhidden variable is a root node with exactly two ob-served children, then the corresponding model is calleda semi-Markovian model. The examples we have stud-ied in Figure 1, 3, and 4 are semi-Markovian modelswhile Figure 2 is not. Semi-Markovian models are easyto work with, and we will show that a Bayesian net-work with arbitrary hidden variables can be convertedto a semi-Markovian model with exactly the same setof constraints (that can be found through the proce-dure in Section 4.2) on the observed distribution P (v).5.1 Semi-Markovian modelsIn a semi-Markovian model, the observed distributionP (v) in (3) becomesP (v) =Xu YfijVi2SgP (vijpavi)Yi P (ui): (45)And the quantity Q[S] in (5) becomesQ[S] =Xu YfijVi2SgP (vijpavi)Yi P (ui): (46)It is convenient to represent a Semi-Markovian modelwith a graph G that does not show the elements ofU explicitly but, instead, represents divergent edgesVi L99 Uk 9 9 K Vj with a bidirected edge between Viand Vj . For example, Figure 3(a) will be representedby Figure 5. It is easy to partition such a graph intoc-components. Let a path composed entirely of bidi-rected edges be called a bidirected path. Two observedvariables are in the same c-component if and onlyif they are connected by a bidirected path. LettingPa(S) denote the union of S and the set of parents ofS, then it is clear that Q[S] is a function of Pa(S). InLemma 1 and 2, G(C) (G(H)) will be replaced by GC(GH ), and Pa+(�) replaced by Pa(�).5.2 ProjectionA Bayesian network with arbitrary hidden variablescan be converted to a semi-Markovian model by con-
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Figure 5:structing its projection [Verma, 1993].De�nition 1 (Projection) The projection of aDAG G over V [ U on the set V , denoted byPJ(G; V ), is a DAG over V with bidirected edgesconstructed as follows:1. Add each variable in V as a node of PJ(G; V ).2. For each pair of variables X;Y 2 V , if thereis an edge between them in G, add the edge toPJ(G; V ).3. For each pair of variables X;Y 2 V , if there existsa directed path from X to Y in G such that everyinternal node on the path is in U , add edge X !Y to PJ(G; V ) (if it does not exist yet).4. For each pair of variables X;Y 2 V , if there existsa divergent path between X and Y in G such thatevery internal node on the path is in U (X L99Ui 9 9 KY ), add a bidirected edge X L99 9 9 KY toPJ(G; V ).It is shown in [Verma, 1993] that G and PJ(G; V )have the same set of conditional independence rela-tions among V . Next we show that the procedurepresented in Section 4.2 will �nd the same sets of con-straints on P (v) in G and PJ(G; V ). To this pur-pose, we need to show that for any set H � V , Gand PJ(G; V ) have the same arguments for Q[H ], thesame topological relations over H , and the same setsof c-components.Lemma 3 For any set H � V , Q[H ] has the samearguments in G and PJ(G; V ), that is, Pa+(H) in Gis equal to Pa(H) in PJ(G; V ).Lemma 4 For any set H � V , and any two variablesVi; Vj 2 H, Vi is an ancestor of Vj in G(H) if and onlyif Vi is an ancestor of Vj in PJ(G; V )H (the subgraphof PJ(G; V ) composed only of variables in H).Lemma 5 For any set H � V , G(H) is partitionedinto the same set of c-components as PJ(G; V )H .

By Lemma 3{5, we conclude that the procedure pre-sented in Section 4.2 will �nd the same sets of con-straints on P (v) in G and PJ(G; V ). Since it is eas-ier to work in a semi-Markovian model, we can alwaysconvert a Bayesian network with arbitrary hidden vari-ables to a semi-Markovian model before searching forconstraints on the distribution P (v).6 ConclusionThis paper develops a systematic procedure of identi-fying functional constraints induced by Bayesian net-works with hidden variables. The procedure can beused for devising tests for validating causal models,and for inferring the structures of such models fromobserved data. At this stage of research we cannot as-certain whether all functional constraints can be iden-ti�ed by our procedure; however, we could not rule outthis possibility.References[Geiger and Meek, 1998] Dan Geiger and ChristopherMeek. Graphical models and exponential families.In Proceedings UAI, 1998.[Geiger and Meek, 1999] Dan Geiger and ChristopherMeek. Quanti�er elimination for statistical prob-lems. In Proceedings UAI, 1999.[Pearl et al., 1990] J. Pearl, D. Geiger, and T. Verma.The logic of inuence diagrams. In Inuence Di-agrams, Belief Nets and Decision Analysis, pages67{87. 1990.[Pearl, 1988] J. Pearl. Probabilistic Reasoning in In-telligence Systems. Morgan Kaufmann, San Mateo,CA, 1988.[Pearl, 1995] J. Pearl. On the testability of causalmodels with latent and instrumental variables. InProceedings UAI, 1995.[Spirtes et al., 1993] P. Spirtes, C. Glymour, andR. Scheines. Causation, Prediction, and Search.Springer-Verlag, New York, 1993.[Tian and Pearl, 2002] J. Tian and J. Pearl. A generalidenti�cation condition for causal e�ects. TechnicalReport R-290A, UCLA. To appear in Proceedingsof AAAI, 2002.[Verma and Pearl, 1990] T. Verma and J. Pearl.Equivalence and synthesis of causal models. In Pro-ceedings UAI, 1990.[Verma, 1993] T. S. Verma. Graphical aspects ofcausal models. Technical Report R-191, UCLA,1993.


