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Abstract 
 

After reviewing theoretical reasons for doubting that 
statistical/machine learning methods can accurately 
infer gene regulatory networks from expression 
measures, we test 10 algorithms on simulated data 
from the sea urchin network, and on microarray data 
for yeast compared with recent experimental 
determinations of the regulatory network in the same 
yeast species. We find most algorithms are at chance 
for determining the existence of a regulatory 
connection between gene pairs, and the performance 
of better algorithms degrades as simulations become 
more realistic, in accord with theory. 
 

1. Motivation. The development of microarray techniques 
for simultaneous measurements of concentrations of mRNA 
transcripts from thousands of genes has generated a number 
of proposed and actual applications of machine learning 
methods to infer networks—represented as Boolean or 
Bayes nets—of regulatory relations among genes. These 
proposals face several difficulties: (1) the number of 
measurements of each gene is typically much smaller than 
the number of genes under study, and the number of 
genes—or genes at time points in time series 
representations--effectively defines the number of variables; 
(2) microarray measurements have a small signal to noise 
ratio, (3) measurements are not of mRNA concentrations in 
individual cells, but from aggregates of thousands of cells, 
and, except when the probability distribution for individual 
cell expression levels is Gaussian, conditional independence 
relations that hold for probability distributions in individual 
units are typically not the same as those that hold in the 
probability distribution for cell aggregates (Danks and 
Glymour, 2002; Chu, et al., in press)—experimentally 
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established transcription dependencies in eukaryotic cells 
appear to be highly non-linear (Davidson, et al., 2001); (4) 
the Boolean and Bayes net representations depend on 
acyclic graph representations, and cannot faithfully 
represent both the probability distributions for equilibrium 
distributions of feedback systems and the mechanisms that 
lead to an equilibrium—cyclic graphical representations can 
do both for equilibria from linear systems, and for non-
linear systems under special assumptions, but the only 
available correct algorithm for obtaining such 
representations from equilibrium data has never been tested 
on gene expression data (Richardson, 1996); (5) statistical 
associations among measured expression levels for different 
genes may depend on variations in unrecorded regulator 
genes, or on extra-genetic factors not in the database; (6) 
summing variable values over many cell units reduces their 
variance, resulting in low correlations of transcript 
concentration due to regulatory interaction, which implies 
the need either for very large samples or very large 
expression differences to reliably distinguish zero from non-
zero correlations; (7) discretization of continuous variables 
can alter the original conditional independence relations 
among variables; (8) when there are unrecorded sources of 
covariation, linear regression techniques overfit in the linear 
case, positing false connections even without correlated 
errors (Spirtes, et al., 2001), and feedback can produce 
statistical dependencies among measured variables similar 
to the effects of omitted common causes. 
There are reports of successes at network inference with 

machine learning methods applied to both real-world and 
simulated expression data, but to our knowledge, no 
published simulation studies generate their data from 
experimentally established networks and treat measured 
values as aggregates of many individual cell values. 
 

2. Algorithms. We consider the following algorithms: 
REVEAL  (Liang, et al. 1998), BOOL2 (Akutsu, et al., 
2000), MRBN (Friedman, et al., 1999),  PC (Spirtes, et 
al.2001), CCD (Richardson, 1996), and algorithms 
described in Spirtes and Meek (1995), Arkin et al. (1997), 



 

D'Haeseleer et al (1999), Weaver et al. (1999) and van 
Someren et al. (2000). The version of MRBN we use was 
implemented by Aaron Darling (see 
http://mrbn.dyndns.org/). Other downloadable versions did 
not run, reimplementation was not possible from published 
accounts, and the authors did not respond to requests for 
clarification. PC and CCD were obtained from 
http:/www.phil.cmu.edu/projects/tetrad. The Meek/Spirtes 
algorithm was run for us by Peter Spirtes from an old 
implementation not currently publicly available. We 
implemented the REVEAL and BOOL2 algorithms from 
published descriptions. The remaining algorithms were 
obtained from http://genlab.tudelft.nl/info. 
These algorithms include procedures that discretize 

variables to binary or ternary values (REVEAL, BOOL2, 
MBRN), procedures that treat variables as continuous, 
procedures that use optimization routines (BOOL2), 
regression procedures of various kinds (Weaver, Van 
Someren, Arkin, D’Haeseleer), constraint based searches 
(PC, CCD), Bayesian scoring searches (MBRN) and hybrid 
constraint/Bayesian searches (Spirtes/Meek).  Clearly these 
are not all of the algorithms that have been or could be 
proposed for studying gene regulation. For example, we 
have not applied the FCI algorithm (Spirtes, et al., 2001), 
nor have we included simulated annealing algorithms 
(Hartemink, 2001) or heuristic scoring procedures for Bayes 

nets with time indexed variables. We attempted to include a 
recent algorithm proposed and applied by Pe’er, et al. 
(2002), but the authors declined to provide their 
implementation.  
 

3. Data. Data for this study were of the following kinds: 
Data generated in ten steps from a time series network 
modeling regulation in a fragment of the sea urchin genome; 
data similar to (1) but projected to binary values; data 
similar to (1) but projected to three values; data from 
microarray measurements of variations of expression levels 
over the cell cycle in yeast (Spellman et al., 1998) compared 
with a recent experimental determination of a substantial 
fraction of the regulatory network in the same species (Lee, 
et al., 2002). 
 
 3.1 Maternal Sea Urchin Network from NetBuilder 
Davidson and his collaborators (Davidson, et al., 2002) 
have worked for many years to elucidate the genetic 
network of the sea urchin embryo, resulting in experimental 
data for a network of some forty genes.  Bolouri and his 
colleagues (Brown, 2002) have developed a simulator, 
NetBuilder, that implements realistic transfer functions 
relating gene inpts to their outputs (Appendix A; see 
http://strc.herts.ac.uk/bio/maria/NetBuilder/Tutorial/netbuild
er_tutorial13.htm). One of the most extensive simulations is 

 
Figure 1:  The “maternal and early interactions” portion of the regulatory network of the sea urchin embryo.  See 
Davidson et al, 2001 for details.   

Experiment 1:  Non-Aggregated, each with 20 runs (samples) of the NetBuilder style simulator (S = 20).   
 

 False 
Pos 

Correct 
Pos 

False 
Neg

Correct 
Neg

Total 
Errors

Mean 
Error rate 

PC05 5.2/1.3 9.2 2.8/.6 3.8 8.0/2.2 0.38 
CCD05 4.4/2.7 7.6 4.4/2.3 4.6 8.8/5.5 0.42 
Meek/Spirtes 4.2/2.2 10.4 1.6/.5 4.8 5.8/4.2 0.28 
Reveal       6.0/.1        8.2        3.8/.2         3.0      9.8/.4       0.47 
Bool2       6.1/.6        7.9    4.1/.1         2.9     10.2/.3       0.49 
MRBN        3.2/1        3.2       8.8/2.6         5.8      12/3.7       0.57  
Arkin 1.4/.02        2.7 9.3./02         7.6 10.7/.01       0.51 
Weaver 8.9/.01  11.9   0.1/0.0    0.1  9.0/.01  0.43  
D’Haeseleer 5.4/.09  7.3  4.7/.14  3.6  10.1/.11  0.48  



 

based on the sea urchin model developed by Davidson et  
al. In order to carry out extensive batch runs in which the 
parameters of the simulation could be systematically varied, 
we implemented a Java program with the logical and 
mathematical functionality described in the NetBuilder 
documentation, but with none of the visualization or user-
interface features of NetBuilder.  We tested this program by 
comparing the output with NetBuilder’s results for the 
“maternal and early interactions” portion of the sea urchin 
network See Figure 1 for a diagram of the network; note that 
there are six genes (Wnt8, Krl, SoxB1, Krox, Otx, and Eve). 
The trace of values for our implementation is very close to 
the NetBuilder data2 and, without noise, the two programs 
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permits arithmetic and logical functions, among others, in 
addition to genes) were the same for our batch-mode 
software as in NetBuilder but in some cases they were 

reach the same steady state after very few time steps (two or 
three).  We computed the output value for each gene based 
on its inputs in the manner specified by NetBuilder and then 
multiplied the output by the value of a random Gaussian 
variable with mean 1 and variance 0.01. We did not include 
an additive error. Data were obtained for individual units 
and aggregated, with repeated runs.  This network has 
several feedback loops, including at least 2 genes that auto-
regulate.  
To create a non-aggregated dataset we ran the Java 

implementation of the NetBuilder simulation of the maternal 
and early interactions network some number of times.  For 
each such sample we recorded the simulated expression 

                                                                                  
shifted in time by one step.  In a private communication, 
Maria Schilstra, the developer of NetBuilder, feels that this 
is because of a difference in the order of evaluation of the 
components and is immaterial. 

 
Experiment 2:  Each experiment consists of 30 aggregated samples each of which is the average of 20 non-aggregated 
samples (S = 20, R = 30).   
 
 False Pos Correct Pos False Neg Correct Neg Total Errors Error Rate
PC05 5.4/1.8 8.9 3.1/2.1 3.6 8.5/2.5 0.40
CCD05 4.9/.54 8.5 3.5/2.5 4.1 8.4/3.2 0.40
Meek 5.7/0.9 9.1 2.9/.8 3.3 8.6/1.2 0.41
Reveal         6.1/0      8.1     3.9/.07        2.9      10/.17     0.48
Bool2 6.3/.06      7.8        4.2/0        2.7      10.5/.1     0.50
MRBN         1.9/1      4.0       8.0/0.4        7.1 9.9/2.1     0.47  
Arkin 1.4/.1      2.7       9.3/.05        7.6 10.7/.26     0.51  
Weaver 9.0/0 11.9 0.1/0 0.0 9.1/0 0.43
D’Haeseleer 5.3/.07 7.0 5.0/.14 3.7 10.3/.34 0.49

 
 
Experiment 3:  Each experiment uses 100 aggregated samples each of which is the average of 20 non-aggregated 
samples (S = 20, R = 100).   
 

 False Pos Correct 
Pos False Neg Correct 

Neg Total Errors Error Rate

PC05 5.7/1.8 9.3 2.7/1.8 3.3 8.4/3.6 0.40
CCD05 5.4/0.7 8.8 3.2 3.6/2.2 8.6/4 0.41
Meek 5.6/0.9 9.1 2.9/1.9 3.4/1.2 8.5/4.5 0.40
Reveal       6.1/0  8.2  3.8/0 2.9 9.9/0 0.47
Bool2        6.2/0         7.8        4.2/0         2.8       10.4/0   0.50
MRBN  2.2/1.3 3.7  8.3/1.1  6.8 10.5/1.4 0.50  
Arkin        1.5/.04 2.7         9.3/.09 7.5        10.8/.2  0.51  
Weaver 9.0/0 12.0 0.0/0 0.0 9.0/0 0.43
D’Haeseleer 5.5/.18 7.3 4.7/.17 3.5 10.2/.16 0.49

 



 

level for each of the six genes (Wnt8, Krl, etc.) at each of up 
to 10 time steps; we call the values recorded for each such 
simulation a non-aggregated sample.  The algorithms 
assume a data matrix consisting of one column per variable 
and one row per sample.  In this case each simulation 
corresponds to a row and each gene-time step corresponds 
to a column (variable). To construct an aggregated dataset 
we compute the mean for each column of a non-aggregated 
dataset and that number becomes the entry in the 
corresponding column of the aggregated dataset; the number 
of rows is determined by the number of non-aggregated 
datasets generated and averaged.  We call the vector of 
values stored in such a row an aggregated sample.  In the 
description of results below, let S = the number of 
simulations used to construct a non-aggregated dataset and 
let R = the number of non-aggregated datasets used to 
construct each aggregated sample in an aggregated dataset.    
In all of our experiments the sample sizes are comparatively 
small—reflecting the reality of microarray studies—and in 
most cases, the distributions are non-Gaussian, and the 
dependencies are non-linear.  We approximated mean-zero 

normality by taking logs of all values in the data matrices 
(for both non-aggregated and aggregated datasets) and then 
subtracting the median of each column from all the values in 
that column. 
By projecting based on the median value of each variable, 

we binarized the same data for tests of the Reveal and Bool2 
algorithms. The MRBN algorithm implementation 
automatically projects real values to one of three values. 
The PC and CCD algorithms require multiple samples, each 
consisting of an entire time series.  The binary algorithms 
require as input a dataset consisting of binary values for 
each of a set of genes at each of a number of time steps.  
Hence the same time series can be used for comparisons. 
Data are available at http://www.phil.cmu.edu/projects/ 
genegroup.  
 
3.2 Yeast Data Spellman, et al. (1998) report data on four 
experiments in which mRNA expression levels were 
measured in the course of the cell cycle with cells 
synchronized in different ways. Friedman, et al., applied the 
MRBN algorithm to this data to obtain conjectured 

Experiment 4:  Non-aggregated. Sample size is 100 and transfer functions for the genes were replaced by linear 
functions.   
 

 False 
Pos 

Correct 
Pos False Neg Correct Neg Total errors Error rate

PC05 1.2/1.1 6.9 5.1/1.4 7.8 6.3/2.7 0.30
CCD05 1.4/0.7 7.3 4.7/0.7 7.6 6.1/2.3 0.29
Meek 1.8/1.5 7.5 4.5/.95 7.2 6.3/3.1 0.30
Reveal   5.2/0 6.8 5.2/0  3.8 10.4/0  0.50
Bool2  5.3/0 7.6 4.4/0 2.7 9.7/0  0.46
MRBN       1.9/.5 3.4         8.6/1.4        7.1 10.5/1.2       0.50
Arkin       1.2/0  3.2         8.8/.03 7.8  10.0/.07       0.48
Weaver 4.5/.17 3.8 8.2/.1 4.5 12.7/.02 0.60
D’Haeseleer 8.0/.03 11.3 0.7/.02 1.0 8.7/.03 0.41

 
 
Experiment 5: Similar to experiment 5 but an aggregated dataset is used (S = 20, R = 100). 
 
 False Pos Correct Pos False Neg Correct Neg Total errors Error rate
PC05 1.2/.84 7.4 4.6/.84 7.8 5.8/3.7 0.28
CCD05 1.7/0.9 7.5 4.5/1.6 7.3 6.2/3 0.30
Meek 2.0/0.9 7.5 4.5/0.7 7.0 6.5/1.6 0.31
Reveal 5.3/0       6.9       5.1/0       3.7      10.4/0  0.50
Bool2  5.3/0 7.6 4.0/0  3.7  9.7/0    0.46
MRBN        2.1/0.77        3.0        9.0/1.6        6.9      11.1/1.9 0.53
Arkin        1.2/.07 3.2         8.8/.03 7.8         10.0/.07 0.48
Weaver 5.6/.03 4.7 7.3/.02 3.4 12.9/.01 0.61
D’Haeseleer 7.8/.03 11.2 0.8/.03 1.2 8.6/.08 0.41



 

regulatory relations among the genes. Comparison 
experimental data are from Lee, et al. (2002), who applied 
immunoprecipitation techniques to experimentally estimate 
genes directly regulated by each of more than 100 known 
yeast regulators.   
 
4. Results 
 
4.1 Simulated Data In all cases, directions of edges are 
ignored and results are reported only for adjacencies.  An 
adjacency is judged present between two genes in an 
experiment if and only if it is present between those genes 
for any two times. Many other counting procedures are 
possible within each experiment (e.g., majority rule; 
restriction to sequential time steps) that would reduce false 
positives and increase false negatives. There are 12 edges in 
the true graph for the maternal and early interactions portion 
of the sea urchin embryo network.  There are 21 pairs of the 
six genes since a gene can auto-regulate. PC, CCD and 
Spirtes/Meek take a significance level as input--we give 
results for .05; results for other significance levels up to 0.3 
are similar, with lower significance levels slightly better in 
most experiments. Someren and D’Haeseleer results were 
essentially identical and we show only the latter. Each of the 
numerical results shown below is the average over 10 
replications of the experiment. Variances over 10 
replications are given on the right hand side of the 
backslash. Note that random assignment of edges for pairs 
of genes would result in 10.5 expected errors and an error 
rate of 0.5. Simply saying “yes” to each possible adjacency 
would result in an error rate of 0.43.  
 
4.2 Testing the Algorithms with Actual Microarray 
Data. The Spellman et al. (1998) studies of Saccharomyces 
cerevisiae report four experiments involving different 
numbers of time measures, at different time delays, for cell 
populations with very different metabolic rates.  See 
http://staffa.wi.mit.edu/cgi-bin/young_public/navframe.cgi 
?s=17&f=downloaddata. Lee et al. (2002) used 
immunoprecipitation techniques to identify genes directly 

regulated by more than 100 regulators; their study includes 
11 genes implicated in the cell cycle. Friedman, et al. 
analyzed the Spellman data but their results are not 
searchable and so we cannot make direct comparisons with 
their results. Because the four experiments used samples in 
different metabolic conditions, it is not sensible to use the 
Spellman data as repeated samples of the same time series, 
and we therefore simply concatenated the data so they 
appeared to be from one experiment; this introduces 3 false 
breaks in time series.  Our analysis was restricted to the 11 
cell cycle genes that appear in the diagram published by Lee 
et al. We applied the PC and CCD algorithms to the data as 
though it were equilibrium data, using the 11 genes as 
variables, implicitly violating i.i.d. sampling assumptions of 
these algorithms. There are 66 possible regulatory 
relationships, ignoring direction of regulation, including 
autoregulation.   
 
5. Discussion. No confirmation of an algorithm for 
obtaining regulatory structure from expression data can be 
rationally justified by results with simulated data unless the 
data generating model is non-linear, with feedback, and the 
variable values are aggregated over simulated individual 
cells. Selective comparisons with independently wet-
laboratory results do not suffice either. Among the tests 
reported here, experiments 2 and 3 provide the most realistic 
simulations, and the best tests, of the algorithms considered. 
Even so, in several respects the inference problems posed by 
our simulated experiments 2 and 3 are easier than with real 
data: the correct time sampling frequency is known; all 
replications are with the same simulated metabolism and the 
same time sampling; there are no missing values; the 
variables are aggregated over only 20 units (the larger the 
number of units of aggregation, the smaller the correlation 
among the aggregated variables).  
  The implementations of Reveal and Bool2 limited them to 
three regulators per gene.  For those yeast genes actually 
with three or fewer regulators in the Lee, et al., model, the 
results for these algorithms were almost always at chance, 
indicating the restriction to three regulators was inessential 

Experiment 6. Results of testing the algorithms on the S. Cerevisiae data 
 

 False 
Pos 

Correct 
Pos False Neg Correct    

Neg 
Total 
errors Error rate 

PC05 5 3 26 32 31 0.47 
CCD05 5 3 26 32 31 0.47 
Reveal        16        13        16        21      32      0.48 
Bool2        2        1        28 35         30      0.45 
MRBN            18              6         23           19       41      0.62  
Arkin       3              2          27           34         30      0.45  
Weaver 12 18 11 25 23 0.35 
D’Haeseleer 2 1 28 35 30 0.45 



 

to their performance. One run of Bool2 was attempted for 
the yeast data, which allowed up to four regulators; the 
program ran for about 8 hours (over 200 times as long as the 
three regulator case) and returned the null model (no 
estimated regulatory relationships). On the simulation data, 
the REVEAL and BOOL2, Weaver and D’Haeseleer 
algorithms proved useless; the remaining algorithms proved 
to be of some slight utility. 
  Considering both positive and negative errors, as deployed 
here the REVEAL, BOOL2, MRBN and Arkin algorithms 
performed essentially at chance in all experiments: they are 
equivalent to flipping a coin to decide adjacencies. For non-
linear simulated data, Weaver’s algorithm is equivalent to 
saying “yes” to every adjacency; for linear data one would 
do better to use an inverted Weaver algorithm: say “yes” 
when it says “no.” The D’Haeseleer algorithm is better than 
chance only for linear data, where it approximates saying 
“yes” in almost all cases. The PC and CCD are a little better 
than chance in all experiments and considerably better than 
chance with linear data. The Meek/Spirtes hybrid algorithm 
nearly dominates for total error rates on simulated data, and 
shows the theoretically expected increase in false positives 
with aggregated non-linear data. None of the algorithms 
improved with sample size increases up to 100. If we 
consider only the ratio of correctly predicted positives to 
predicted positives, and the most realistic simulations 
(Experiments 2 and 3), the PC, CCD, Meek/Spirtes, MRBN 
and Arkin algorithms all do slightly better than merely 
saying “yes” in all cases—varying in experiment 4 from .62 
to .64 as against the constant “yes” ratio of .57 . The MRBN 
and Arkin algorithms purchase the slight improvement at 
the cost of missing most of the true positives. 
  Regrettably, these results tend to confirm the theoretical 
arguments against the reliability of machine learning 
algorithms for estimating gene regulation networks from 
microarray measurements of expression levels. The 
Meek/Spirtes algorithm, which does notably better than 
chance or constant “yes” responses on non-linear, non-
aggregated data in experiment 1, falls to the constant “yes” 
error rate when the variables are aggregated. The linear 
regression procedures overfit with data from a linear 
feedback system.  It is conceivable that other counting 
principles would decrease false positives for PC, CCD and 
Spirtes/Meek and perhaps other algorithms in experiments 2 
and 3, rendering them more useful, but we have not 
explored the possibilities. It would be preferable to have 
each algorithm run by its authors on common, well-
specified, realistic simulation data from structures kept 
secret from those executing the algorithms and with explicit, 
pre-specified principle or principles for counting errors, but 
such cooperative tests seem unlikely while relevant authors 
make neither their algorithms nor implementations publicly 
available. 
  Experimental techniques that take advantage of 
immunoprecipitation, tagging of binding sites and 
regulatory proteins, binding site sequence homologies, and 
evolutionary preservation of regulatory mechanisms, are 

proving more fruitful. We may hope that machine learning 
techniques that are biased by such extra information may 
prove useful. The Meek/Spirtes algorithm, for example, can 
be easily and flexibly biased by prior information about the 
likely presence or absence of particular regulatory 
connections. 
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7.  Appendix A:  Transfer Functions in the NetBuilder 
Model of the Sea Urchin Embryo. The six genes 
considered here are:  Wnt8, Krl, SoxB1, Krox, Otx and Eve.  
All of these are ‘All And’ genes except Krox and Otx which 
are ‘All Or’ genes.  For all genes their inputs are 
transformed as x/(x+1) for a positive link (represented by an 
arrowhead in Figure 1) or as 1 – x/(x+1) for a negated link 
(represented by a segment perpendicular to the link).  Note 
that the transformed inputs lie between 0 and 1.  An And 
function multiplies the inputs and an Or function is the 
continuous generalization of a Boolean “or” so that yor = x1 
+ x2*(1 – x1).  When there are more than two inputs the 
form of the Or function is yor =  x1 + x2*(1 – x1) + x3(1 – (x1 
+ x2(1 – x1))) + … etc.  All components of a NetBuilder 
model may also have a factor F and a power P associated 
with them.  Then y = F*xP where x is the input and y is the 

output.  For the genes in Figure 1, P is 1.0 in every case and 
F is 1.0 except for genes Eve, Otx and Krox which have F = 
100.0. Other components of the network are: χ is an And 
function with P = 1.0 and F = 1.0.  Its inputs are Mat cB and 
pre-χ. post-χ is an Or function which has inputs 
χ and χ−switch (an exogenous input with constant value 
1.0)  It is not labeled in Figure 1. Mat cB, LiCl, TCF and 
Mat Otx are exogenous inputs with constant values 1.0, 0.0 
and 1.0 and 1.0 respectively. nBmod is function whose 
effect is to multiply its input by 10.0.  It is not labeled in 
Figure 1. GSK-3 is an And function whose inputs are Wnt8 
and LiCl. pre-χ is an And function whose inputs are GSK-
3mod and SoxB1mod. GSK-3mod is a single-valued 
function that multiplies its input (GSK-3) by 10.0.  It is not 
labeled in Figure 1. SoxB1mod is a single-valued function 
that multiplies its input (SoxB1) by 10.0.  It is not labeled in 
Figure 1. Frizzled is not in the model. 
 
 


