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ABSTRACT 

Re-finding, a common Web task, is difficult when previous-

ly viewed information is modified, moved, or removed.  

For example, if a person finds a good result using the query 

“breast cancer treatments”, she expects to be able to use the 

same query to locate the same result again. While re-finding 

could be supported by caching the original list, caching 

precludes the discovery of new information, such as, in this 

case, new treatment options.  People often use search en-

gines to simultaneously find and re-find information.  The 

Re:Search Engine is designed to support both behaviors in 

dynamic environments like the Web by preserving only the 

memorable aspects of a result list.  A study of result list 

memory shows that people forget a lot.  The Re:Search 

Engine takes advantage of these memory lapses to include 

new results where old results have been forgotten.  

ACM Classification: H5.2 [Information interfaces and 

presentation]: User Interfaces.
 
– Graphical user interfaces; 

H5.4: Hypertext/Hypermedia.
 
– User issues. 
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INTRODUCTION 

A recent Pew Internet and American Life report found that 

search is a top Internet activity, second only to email [15].  

Search engines are often used to re-find previously viewed 

information [25].  While many search engines have begun 

to support re-finding by, for example, caching query histo-

ry, these efforts are just a beginning.  Most search tools 

focus solely on the finding of new information.  Support for 

re-finding is likely to significantly improve people’s ability 

to find in general, and may reduce organizational overhead 

as re-finding replaces filing. 

However, finding and re-finding can be in conflict; finding 

new information means retrieving information that has not 

been seen before, while re-finding requires retrieving in-

formation that has.  For example, improving the search 

results for a query can help a searcher encounter new, more 

relevant results, but can also interfere with that person’s 

ability to re-find previously viewed results that no longer 

appear where expected [14, 25].  Because people regularly 

find and re-find simultaneously [25], search tools need to 

seamlessly support both activities.  Yet currently tools that 

address re-finding at all treat it in isolation. 

The Re:Search Engine is a search system that addresses the 

conflicting goals of providing new information and facili-

tating the re-finding of old information.  It consists of a 

Web browser toolbar plug-in that interfaces with a preexist-

ing search engine, such as Live or Google.  When a person 

issues a query to the Re:Search Engine that is similar to a 

previous search, the engine fetches the current results for 

the query from the preexisting search engine and fetches 

relevant previously viewed results from its cache.  The 

newly available results are then merged with the previously 

viewed results to create a list that supports intuitive re-

finding and contains new information. 

An example is shown in Figure 1.  When the search for 

“breast cancer treatments” is repeated, memorable results 

from the original list are preserved, while others are re-

placed by new, better results.  As this paper will demon-

strate, the merged list appears unchanged.  The list supports 

re-finding as well as if it were the same, but is in fact fresh. 

By replacing forgotten stale content with new content, the 

Re:Search Engine uses the searcher’s limited memory to 

the searcher’s advantage.  Doing this requires understand-

ing of which aspects of a search result list are memorable 

and thus might disorient the user if changed, and which are 

not and thus can change freely.  Following a discussion of 

related work, this paper presents a study that reveals the 

memorable aspects of search result lists.  This study in-

forms the Re:Search Engine’s architecture and function, 

which are then presented in detail.  The paper concludes 

with an evaluation of the engine that finds it supports re-

finding better than existing solutions while not interfering 

with the searcher’s ability to find new information. 

RELATED RESEARCH 

Re-finding behavior has recently attracted considerable 

interest [2, 3, 4, 25].  Repeat searches appear to be very 

common as a way to revisit information [14].  Teevan et al. 

[25] found that 33% of all queries have been issued before 

by the same user.  There have been a number of search 

tools developed to support re-finding [5, 9, 10].  However, 

these tools tend to ignore a common result of many be-
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havioral studies of re-finding: the path taken to find infor-

mation is very important when re-finding [4, 26].  Instead 

existing re-finding tools support a process of returning to 

information that can be very different than the process by 

which the information was originally encountered. 

Because people return to information guided by their pre-

vious interactions, changes that should help can interfere.  

For example, dynamic menus were developed to help 

people access menu items more quickly than traditional 

menus by bubbling commonly accessed items to the top of 

the menu.  Rather than decreasing access time, research 

revealed dynamic menus slow users down as commonly 

sought items no longer appear where expected [11, 22].   

Problems resulting from change have been observed for 

search results as well [14].  In a study of search result sta-

bility, Selberg and Etzioni [19] noted that, “Unstable search 

engine results are counter-intuitive for the average user, 

leading to potential confusion and frustration when trying 

to reproduce the results of previous searches.”  Teevan et 

al. [25] demonstrated the veracity of this statement via 

large scale log analysis.  They found that searchers took 

significantly longer to click on a repeat search result during 

a repeat query when the result list had changed.  Another 

example of the difficulties caused by result list change can 

be found in a study by White, Ruthven, and Jose [29].  In 

this study, the authors tried to help people search by giving 

them lists of relevant sentences that were dynamically re-

ranked based on implicit feedback gathered during the 

search.  However, people did not enjoy the search expe-

rience as much or perform as well with the dynamic system 

as they did when the sentence list was static.   

Information management systems that do preserve consis-

tency of interaction despite change permit their users to 

choose to interact with a cached version of their informa-

tion space [8, 16].  For example, Rekimoto [16] developed 

a system that allows people to use their desktop to “time 

travel” to specific information environments that existed in 

the past.  However, operating within a static world denies 

users the opportunity to simultaneously discover new in-

formation.  With such systems, searchers cannot, for exam-

ple, revisit previously found information on breast cancer 

treatments while still learning about newly available treat-

ments.  Support for simultaneous finding and re-finding is 

important because the finding of new information while re-

finding is common.  Teevan et al. [25] found that 27% of 

repeat searches involve clicks on new results as well as 

previously clicked results. 

The Re:Search Engine is a way for searchers to easily inte-

ract with old and new search results at the same time.  Per-

ceived consistency is maintained, so that result lists appear 

unchanged even though it includes new and potentially 

better results.  The way this is done is modeled on the con-

cept of change blindness.  Change blindness is a visual 

phenomenon where obvious changes to a scene occur with-

out the viewer’s notice as a result of limitations on human 

memory capacity and attention [21].  As an example, the 

difference between the two photographs in Figure 2 is ob-

vious when they are viewed side by side – one picture has a 

crosswalk and the other does not.  But when the two pic-

tures are flashed sequentially, separated by a small gap in 

time, most people cannot identify a difference – even when 

they actively look for a change. 

Several researchers in human-computer interaction have 

explored how change blindness might affect users’ ability 

to interact with computer-based information [6, 13, 28].    

Their research, however, has focused on the fact that 

 

Figure 1.  On the left is the result list originally returned by the Re:Search Engine for the query breast cancer treat-
ments.  On the right is the result list returned at a later date.  It contains the results that the searcher remembers 

having seen before where she expects them, while still including the new results. 



 

 

people may miss important changes due to change blind-

ness, and the solutions presented try to draw users’ atten-

tion to changes, rather than trying to take advantage of such 

holes in memory to present useful new information in an 

unnoticeable manner.  In the research presented here, the 

changes to the search results in Figure 1 are intended to 

pass unnoticed like the changes to the picture in Figure 2. 

Although the list returned by the Re:Search Engine may 

appear the same to the user, evaluation of the system de-

monstrates that the inclusion of new and better results can 

nonetheless help satisfy the user’s information need.  Usa-

bility improvements do not need to be noticed to benefit the 

user.  A classic example of this is the Macintosh design for 

cascading submenus, where flexibility in navigating to 

menu items is built into the menu design.  The tolerance for 

errors in navigation goes unnoticed by almost all users, but 

leads to fewer errors overall [27].  Similarly, a study of an 

improvement to cascading submenus showed all users per-

formed better even though only three out of the 18 partici-

pants actually noticed any change [1]. 

Rather than hiding any changes made to a repeat result list, 

the Re:Search Engine could make changes explicit by, for 

example, highlighting old or new results.  However, any 

alternative that presents both new and old information in a 

single list (whether it does so visibly or invisibly) faces the 

merging challenges that this work addresses. 

RESEARCH USED TO BUILD THE RE:SEARCH ENGINE 

The preceding discussion of related research helps to moti-

vate the need for the Re:Search Engine and provides an 

overview of the principles it is built on.  However, to ac-

tually construct a search system that takes advantage of a 

person’s memory of previously viewed search results, it is 

necessary to understand what is memorable about result 

lists.  A study was conducted to elicit this information.  The 

results of the study are highlighted here because of their 

importance to the Re:Search Engine’s design and architec-

ture.  Further details can be found in previous work [23]. 

In the study, 119 participants were asked to interact natural-

ly with a list of results for a self-generated query.    Queries 

were issued to a search engine via a Web form accessed 

from the participant’s own computer, and clicked results 

were logged.  An hour later, participants were emailed a 

survey that asked them to recall the result list without refer-

ring back to it.  The survey asked participants to remember 

the text of their query, the number of results returned, and 

basic information about each result, including its rank, title, 

snippet, URL, whether the URL was clicked, and if so, 

what the corresponding Web page was like. 

Because a result’s recalled rank may not correspond to its 

true rank, the description of each recalled result had to be 

matched to one of the originally viewed results.  Two inde-

pendent coders performed this matching with an 84% inter-

rater reliability.  The 189 results that were described richly 

enough for both coders to make the same match were con-

sidered to have been “memorable”.  These memorable re-

sults were analyzed to provide insight into how to predict 

which results will be remembered, and how to understand 

the relative likelihood that various different types of 

changes that can occur in a result list will be noticed. 

What Makes a Result Memorable 

Participants recalled little about the result list that they 

originally saw.  Although only a few hours elapsed between 

the first search and the follow-up survey, only 15% of all 

results displayed were memorable.  Two main factors 

emerged from the data as affecting how likely a result was 

to be remembered: where in the result list it was ranked and 

whether or not the result was clicked. 

Figure 3 shows the probability that a result was remem-

bered given its rank for clicked results (solid line) and un-

clicked results (dashed line).  The shape of the curves is 

similar to what has been observed in cognitive psychology 

literature [12].  Those results that are presented first are 

more memorable than later results and the results presented 

last are somewhat more memorable than earlier results. 

Results that were clicked were significantly (p<0.01) more 

likely to be recalled.  Forty percent of the time a result was 

clicked it was remembered, compared to only 8% of results 

            

Figure 2.  A large change that can go unnoticed due to change blindness.  Viewed side-by-side, it is obvious a cross-

walk appears in one picture and not the other. But when flashed sequentially, most cannot identify the difference. 



 

 

that were not clicked.  The last result clicked was particu-

larly memorable, with a 12% increase in recall compared to 

other clicked results. 

How Result Ordering Was Remembered 

Subjects’ memories of result ordering were also analyzed to 

understand how changes to ordering might affect their 

ability to interact with a search result list.  Participants reg-

ularly made mistakes when recalling a result’s rank.  The 

recalled rank differed from actual rank 33% of the time.  

Mistakes were less common for early-ranked results.  For 

example, the first result’s rank was correctly recalled 90% 

of the time.  Accuracy dropped as rank dropped.  This can 

be seen graphically in Figure 4, which shows recalled rank 

as a function of actual rank.  This trend suggests moving a 

result from the number one position in a result list is more 

likely to be noticed than moving a lower ranked result. 

Figure 4 also illustrates another trend in the data.  The 

greater weight of the data occurs to the right of the identity 

line.  This means that remembered results were much more 

likely to be recalled as having been ranked higher than they 

actually were.  Those results moved up in the result list 

24% of the time, significantly more often than they moved 

down (10% of the time, p<0.01).  The trend to remember 

results as highly ranked could reflect the fact that remem-

bered results were more likely to be relevant to the partici-

pant’s information need and thus in the participant’s mind 

“should have been” ranked more highly than they were. 

It is interesting to consider the ramifications of the fact that 

people misremember result ranking.  It suggests that it may 

be possible for a result list to look more like the result list a 

person remembers having seen than the actual list they saw.  

In evaluations of the Re:Search Engine, there was a trend 

for the engine’s results to be perceived as static more often 

than unchanged result lists.  While these findings are not 

significant, they could suggest that the Re:Search Engine 

does a good job of placing results where they are expected 

– even when that is not where they originally occurred. 

How the Query Was Remembered 

Analyzing the difference between how participants remem-

bered their query and the query they actually issued gives 

insight into the way people may express re-finding needs.  

A large scale log analysis of the differences between re-

finding queries can be found in work by Teevan et al. [25].  

In the study presented here the original query was misre-

membered 28% of the time.  A majority of the differences 

between the original query and the remembered query fell 

under the following four categories (the percentage of mi-

sremembered queries for each category is in parentheses): 

Capitalization (31%).  A common change between the ini-

tial query and the remembered query was that the words in 

one query would be capitalized differently than they were 

in the other query.  For example, the query “Buddha belly” 

became “Buddha Belly” an hour later. 

Word form (28%).  Another common change observed was 

in word form.  For example, a query term that was original-

ly listed as plural might be remembered as singular, as in 

the case where “sample television scripts” became “sample 

television script”. 

Word ordering (28%).  The order individual terms occurred 

in a query also often changed.  For example, the query 

“porsche 356” was remembered as “356 Porsche”. 

Phrasing (31%).  The helper words used to place the pri-

mary query terms in context often varied.  An example of 

this is that one participant originally queried, “I’m looking 

for a Burberry Scarf” but remembered the query as “Where 

can I find Burberry Scarves?”  Unimportant terms like 

“for” and “where” are commonly referred to as stop words. 

THE RE:SEARCH ENGINE ARCHITECTURE 

The Re:Search Engine was designed to use the results of 

this study to preserve memorable aspects of old result lists 

when people appeared to be re-finding while also incorpo-

rating new results.  The engine consists of a Web browser 

toolbar plug-in that interfaces with a preexisting search 

 

Figure 4.  The result’s location in the result list 
as the participant remembered it, compared with 
its actual location.  Size represents the number 
of people remembering that combination. 

 

Figure 3.  The probability of recalling a result 
given rank.  The probability generally decreases 
as a function of rank.  Clicked results were sig-
nificantly more likely to be recalled (p<0.01). 



 

 

engine (e.g., Live or Google).  When a person issues a 

query to the Re:Search Engine that they have issued before, 

the engine fetches the current results for that query from the 

underlying search engine and merges any new information 

with what the user is likely to remember about the pre-

viously returned search results. 

The architecture of the Re:Search Engine is shown in Fig-

ure 5.  The system consists of four major components: an 

index of past queries that the user has issued, a result cache 

containing previously viewed results, a user interaction 

cache, and a merge component.  The index of past queries 

is implemented as a hash table that maps query terms to 

queries.  Similarly, the result cache maps queries to result 

lists, and the user interaction cache maps query/result pairs 

to interactions.  The merge algorithm is what drives the 

engine, making use of these pieces to create a result list. 

All of the data collected by the Re:Search Engine is stored 

locally on the user’s machine.  This has the disadvantage of 

tying the use of the Re:Search Engine to a particular ma-

chine, but such a design decision ensures that the relatively 

large amount of personal information that the Re:Search 

Engine stores will remain private. 

HOW THE RE:SEARCH ENGINE FUNCTIONS 

This section describes how each of the components of the 

Re:Search Engine work together to produce the search re-

sult list returned to the user.  In order to identify relevant 

previously viewed results, the user’s query is initially 

matched to an index of the past queries that the user has 

issued.  The index returns queries that are similar to the one 

just issued and a match score for each representing how 

similar it is to the current query.  Robust query matching is 

necessary because, as suggested by the earlier study, people 

do not always use exactly the same query when repeating a 

search.  Matched queries are then used to retrieve the pre-

viously viewed results for each query from the result cache.  

This set of potentially memorable results, along with the 

live results for the current query from the underlying search 

engine, are merged together using the query match scores 

to weight how important each different result set is.  The 

new query is added to the index of past queries and the 

merged result list is added to the result cache.  Finally, the 

resulting list of search results is presented to the user, and 

the user’s interactions with the list are logged.  Each com-

ponent is described in greater detail below. 

Index of Past Queries 

The index of past queries uses the current query and past 

queries to determine if the user intends to retrieve previous-

ly viewed information during the current search, and, if so, 

which past queries as associated with the current search.  

Once past relevant queries are gathered, the current query is 

added to the past query index for use in future searchers.   

The index of past queries functions in a similar manner to a 

traditional document index used in information retrieval, 

except that the “documents” that are indexed are past query 

strings.  Matching queries using an index deemphasizes the 

commonly misremembered query features described earli-

er.  Query strings are tokenized, stemmed, changed to low-

er case, and stop words are removed.   Each past query (pq) 

is given a score based on how closely it matches the current 

query (cq).  The score (Spq) is computed using a standard 

information retrieval scoring function known as tf.idf [18]: 

            Spq = ∑ pqt log(N/nt) 

                              
t in cq  

 

where N is the number of past queries the user issued, and 

nt is the number of past queries in which term t occurs.  

This scoring function reflects the fact that past queries that 

match on terms the user searches for rarely are more likely 

to mean the same thing than commonly used terms.  The 

match score determines how much weight the results for 

each query carry in the merge process. 

Earlier research has shown that not all queries with similar 

text are repeat queries [25].  For example, if a user is in the 

middle of a search session, it is likely that when a user is-

sues several variants of the same query, that user actively 

wants to see new results with each variant.  The results 

 

 

            

Figure 5.  The architecture of the Re:Search Engine.  The user’s current query is matched to past queries, and the 
results for the past queries are retrieved from a cache.  These results are then merged with the live search engine 
results based on how memorable the results are, and the resulting result list is presented to the user. 



 

 

from query reformulations should not be merged into the 

results from the query issued immediately prior even when 

there is significant overlap in the query.  For this reason, 

past queries that are similar but that occurred recently are 

ignored.  In future sessions, any query from the session of 

overlapping queries may match.  A future improvement 

may be to weight queries towards the end of a session more 

highly, on the assumption that these queries were more 

relevant to the user’s goal. 

While queries that occurred a long time ago may be repeat 

queries, it is also likely that the user has forgotten the re-

sults associated with the query.  To account for progressive 

forgetting, the query’s score is discounted by the log of the 

amount of elapsed time, a function commonly used in cog-

nitive psychology literature to model human forgetfulness 

[17].  When enough time has passed that a user is likely to 

not even remember having issued the query before, the 

query and its associated results could be expunged from the 

system, relieving potential long term storage burdens.  This 

functionality is not currently implemented. 

Although the index of past queries permits flexible query 

matching, the Re:Search Engine’s interface is designed to 

encourage users to communicate re-finding intent by en-

couraging them to exactly duplicate previously issued que-

ries.  Existing query histories can be difficult to use [14].  

The index of past queries is used to support sophisticated 

query completion in the search box.  Past queries that 

match the query being typed in are suggested, weighted by 

the query’s score.  Thus if the searcher who had previously 

searched for “breast cancer treatments” (e.g., Figure 1) be-

gan typing, “cance..,” into the search box, her previous 

query for will be suggested. 

Result Cache 

If the query the user issued is determined to be related to 

one or more previous searches, the results corresponding to 

the previous searches are fetched from a result cache using 

the pervious queries returned by the past query index.  The 

result cache is a straightforward cache that maps an exact 

query string to the search results list presented to the user 

for that query.  Only the most recently viewed set of results 

for a particular query is stored in the cache.  For example, 

when the query “breast cancer treatments” was issued a 

second time in Figure 1, the merged results shown on the 

right replaced the old results in her result cache.  

User Interaction Cache 

Once past results that might be relevant to the user’s cur-

rent query are fetched, they are merged with the live search 

results to produce a result list consisting of old and new 

information to return to the user.  Because the merge algo-

rithm is designed to help users take advantage of what they 

learned about the current query during past searches, it 

needs to estimate how likely the past results the user inte-

racted with are to be memorable.  The user’s browser is 

instrumented to gather implicit information about the user’s 

interactions with previously viewed results.  This informa-

tion is stored in the user interaction cache. 

Currently the user interaction cache only records the results 

that the user clicks on.  But there are many other possible 

implicit cues that could use to understand which results are 

memorable to the user.  Possible cues worth investigating 

include dwell time on the result’s Web page, the number of 

times a particular result is accessed, and more sophisticated 

measures such as mouse tracking or eye tracking.  Addi-

tionally, active information could be gathered.  For exam-

ple, the system could easily be extended to allow users to 

mark results that they believe are worth remembering. 

Merge Algorithm 

This paper has argued that for a result list to be useful for 

re-finding, it must preserve the results the searcher re-

members having seen during earlier searches where the 

searcher expects to see them.  New results can be added 

where old results have been forgotten.  To merge a new 

result list with old result lists, the value of the new informa-

tion presented needs to be balanced with the cognitive cost 

of presenting old information in unexpected ways. 

The quality of a result list is a function of how much high 

quality new information is included in the list, ranked so 

that the new information will be seen, and how closely the 

list matches the user’s memory.  By iterating over all poss-

ible lists, the highest quality list l can be chosen to return. 

                         10 

       argmax      ∑ B(l(r), r) + M(l(r), r) 

      
 possible lists l      r=1  

 

The function B returns the benefit of new information pro-

vided by a result in the list l when shown at position r.  The 

function M returns the memorability of the result is when 

shown at position r.  Each of these two functions is de-

scribed in greater detail below, followed by a discussion of 

how the best possible list can be chosen efficiently. 

Benefit of New Information (B) 

The most relevant new results for a query need to be identi-

fied for inclusion in the returned result list.  New results are 

found by running the query on an underlying search engine 

such as Live or Google.  The Re:Search Engine uses a re-

sult’s rank in the underlying engine’s result list as a proxy 

for relevance to calculate the potential benefit of the new 

result.  Scoring information could be used if available.   

The expected benefit that a new result will provide in the 

returned result list is also a function of how likely it is to be 

encountered.  The closer a result is ranked to the top of the 

returned result list, the greater the benefit it provides.  

The benefit of new information (B) is defined to be zero if 

the result is not in the list currently returned by the underly-

ing search engine.  Otherwise, it is: 

       B(i, r) = (11-rn(i)) (10+(11-r)) 
                                      

 

 

where rn(i) is the rank of the new result i in the result list 

returned by the underlying search engine.  Thus results that 

rank highly in the underlying engine’s result list are more 

beneficial when they occur anywhere in the merged list 

than results that are ranked later by the underlying engine. 



 

 

Note that in the current implementation, results that occur 

in the underlying result list but that were seen before con-

tribute a non-zero benefit of new information and a non-

zero memorability score.  This reflects the fact that these 

results are likely to be both relevant to the current informa-

tion need and memorable.  However, an alternative ap-

proach that places a higher value on the inclusion of new 

information – at the risk of including information that is 

currently judged less relevant – would be to filter previous-

ly viewed results from the new result list and only assign a 

benefit of new information score to un-viewed results. 

Memorability (M) 

Value is assigned to how memorable a result is using the 

two main factors identified earlier: where the result was 

ranked and whether it was clicked.  The probability of a 

result being recalled can be modeled as Pr(recall(i)|ro(i), 

c(i)), where ro(i) is the previous rank of the result, and c(i) 

is whether the link was clicked or not.  A smoothed version 

of the results shown in Figure 3 is used in the calculation of 

this probability.  The probability of remembering a result 

that has not been seen before is zero. 

The value of preserving a previously viewed result in the 

final result list is a function not only of how memorable 

that result is but also of how likely it is to appear where the 

user remembers having seen it.  For this reason, memorable 

results ranked near where they were originally ranked re-

ceive higher memorability scores than others.  The value of 

a result being remembered at a particular rank is calculated 

using a smoothed version of the empirical probabilities of a 

particular rank being recalled at a different rank, 

Pr(recall(r)|ro(i)), shown in Figure 4.  Thus memorability 

(M) is computed as follows: 
 

    M(i, r) = Pr(recall(i)|ro(i), c(i)) Pr(recall(r)|ro(i))  
 

 

Because the results clicked last during earlier searches are 

empirically more memorable, those results are given a cor-

responding boost in memorability.  A result’s memorability 

is also weighted by the match score of the query associated 

with it, since queries that do not match the current query 

very well are unlikely to have returned results that the user 

finds memorable during their current search task. 

Choosing the Best Possible List 

During the merge process, all permutations of possible final 

lists that include at least a few old results and a few new 

results are considered, and the result list with the highest 

total benefit of new information memorability is selected.  

There is obviously a trade-off between preserving a lot of 

the information seen during previous queries and present-

ing as much new information as possible.  Requiring that 

both old and new results be included in the final list ensures 

that some context is maintained while not allowing the list 

to stagnate.  While the minimum number of results pre-

served and added could be determined dynamically as a 

function of how likely the query is to be a re-finding query, 

the value is currently set to three for each case. 

Although considering all permutations of possible result 

lists naively is expensive, the merge algorithm can be im-

plemented efficiently by representing the problem as a min-

cost network flow problem [7].  The complexity is, in prac-

tice, O(m), and the implementation runs in 180 millise-

conds (including Java startup time) on a standard machine.  

This performance is achieved by representing the list selec-

tion problem as the network shown in Figure 6. 

Ten units of flow are sent through the graph, each unit 

representing one result in the final result list.  Seven units 

are passed to nodes representing the new results, and seven 

are passed to nodes representing the old results.  This en-

sures that at least three units must pass through the old re-

sults and at least three through the new results.  The nodes 

representing new results are connected to the ten slots 

representing the result list with unit capacity edges that 

have costs inversely proportional to each result’s benefit of 

new information.  The nodes representing old results are 

similarly connected to the ten result lists slots with unit 

capacity edges that have costs inversely proportional to 

each result’s memorability.  All other edges have zero cost.   

The best list is found by finding the maximum flow 

through the graph with the minimum cost.  Because only 

one unit of flow can travel from each result slot to the sink, 

only one unit of flow can travel into each slot.  The candi-

date node from which that unit of flow arrives represents 

the result that should be ranked in that slot’s position. 

 

            

Figure 6.  Graph representation of the merge algorithm.  All edges have unit flow, except edges labeled in green.  All 
edges have zero cost, except edges connecting the nodes representing the new and old results to the slots. 



 

 

The cost of change and the benefit of new information can 

be weighted to express the relative value of new and old 

information.  .  For example, if the benefit of new informa-

tion score for each result is much higher than the memora-

bility score of each old result, then only the minimum three 

required results will come from previously viewed result 

list.  The emphasis placed on each class of information 

should be a function of the individual using the Re:Search 

Engine, the elapsed time since the original list was seen, 

and the engine’s certainty that the person wants new infor-

mation versus old information.  In the implementation 

tested, when no results were clicked the merging produced 

a list that began with four old results and ended with six 

new results.  When low ranked results from the original 

result list were clicked, the clicked results were preserved 

in the new merged result list while higher ranked previous-

ly viewed results were dropped.  Several examples of 

merged lists are shown in Table 1. 

For simplicity, users are assumed to remember perfectly 

which result page a result occurred on (e.g., whether the 

result occurred in the top ten, or in results 11-20).  Because 

the results for a query are never expected on a different 

result page than where they were seen, each old result page 

can be treated independently of other result pages during 

the merge.  The highest ranking new information available 

is always is merged in, regardless of what particular page is 

requested.  Although it is very likely that people do not 

really accurately remember which page a result for a query 

occurred on, in practice so few people visit subsequent re-

sult pages [20] that supporting the movement of results 

across result pages may not be worth additional overhead. 

UNDERSTANDING THE RE:SEARCH ENGINE 

Understanding how well the merge algorithms functions is 

essential to understanding how well the Re:Search Engine 

can support the simultaneous finding and re-finding of in-

formation.  It is not obvious that people can use a changed 

result list to re-find, even when the memorable aspects are 

preserved.  Nor is it obvious that new results will be useful 

for the finding of new information when they are hidden in 

the result list.  For this reason, the merge process is ex-

plored in greater depth here.  A longitudinal study of how 

the Re:Search Engine is used and how it affects finding and 

re-finding behavior in the long run stands as future work. 

The merge algorithm was evaluated by comparing how it 

ranked results with three other possible ways to merge old 

results with new.  The Re:Search Engine’s merge will be 

referred to as: 

Intelligent Merge.  Results are merged according to 

the Re:Search Engine’s intelligent merging algorithm 

so that memorable aspects of the original list are main-

tained.  On average, four new results are included. 

The other three other possible merging are: 

1. Dumb Merge.  Six old results are randomly maintained 

and the top four new results included in random places. 

2. Original.  No merging is done.   The new result list is 

exactly the same as the old list. This is what a user of a 

system that caches previous results would see.  

3. New.  The list is comprised of entirely new results.   

To reflect the desired usage scenario where the new infor-

mation to be included is more relevant to the user’s needs, 

the results in the original list were chosen to be less rele-

vant than the new result list, as indicated by search engine 

rank.  The Original list consisted of results 11 through 20, 

and the New list consisted of results 1 through 10. 

Two studies were conducted to compare these different 

merge types.  The first study (Study I) establishes the abili-

ty of the Re:Search Engine to invisibly include new infor-

mation in result lists.  The second study (Study II) demon-

strates that the research engine supports re-finding as well 

as if the result list never changed, while still supporting the 

finding of new information almost as well as if the list con-

tained only new information. 

Study I: New Information Can Be Included Invisibly 

The ability of the Re:Search Engine to invisibly include 

new results in a list was studied by looking at how well 132 

people could recognize a result list as being one they had 

seen before.  As with the study presented earlier in this 

paper used to elicit the memorable aspects of result lists, 

participants were first asked to run a query of their choos-

ing and interact with the results as they normally would.  

Also similar to the previous study, participants were asked 

about that search an hour later.  During the follow-up ses-

sion, however, instead of being asked to recall information 

about the result list, participants were asked to recognize 

whether a result list was the same or different from what 

they originally saw.  The study was between-subjects; each 

subject was asked about only one of the four possible lists. 

Differences were noticed most often for the two cases 

where new information was included in the follow-up list 

without consideration of what the searcher found memora-

ble.  When the follow-up results list was comprised of en-

tirely new results (New), participants reported the list had 

changed 81% of the time.  When four random results were 

held constant (Dumb Merge), the change to the remaining 

six results was noticed 62% of the time.  The difference 

between the two cases was not significant. 

Table 1.  The rank of new results and results 
from the original result list after merging. 

Merged 

Rank 

Results clicked in original result list: 

None 9 1, 2, 6, 8 

1 Old result 1 Old result 1 Old result 1 

2 Old result 2 Old result 2 Old result 2 

3 Old result 3 Old result 3 Old result 3 

4 Old result 4 New result 1 New result 1 

5 New result 1 New result 2 New result 2 

6 New result 2 New result 3 Old result 6 

7 New result 3 Old result 9 Old result 8 

8 New result 4 New result 4 New result 3 

9 New result 5 New result 5 New result 4 

10 New result 6 New result 6 New result 5 

 



 

 

The remaining two cases (Original and Intelligent Merge), 

represent instances where information from the original 

result list that might be memorable to the participant was 

not permitted to change – in the former case to the point of 

not including any additional new information.  Even when 

the result list did not change at all, participants sometimes 

believed a change had occurred (31% of the time).  In fact, 

participants were more likely to believe the result list had 

changed when all results were the same than for the Intelli-

gent Merge case, where differences were noted only 19% 

of the time.  This disparity is not significant, but as men-

tioned earlier could reflect the fact that the intelligently 

merged list may actually look more like the list the partici-

pant remembers than the actual original result list.  While 

there was no significant difference between the two, the 

result lists from both the Intelligent Merge and Original 

cases were significantly more likely to be considered the 

same as the original list than the other two cases (p<0.01). 

Study II: Even Invisible New Information is Useful 

Although the previous study reveals it is possible to invisi-

bly include new results in a result list, it is not clear from 

the study that invisible results are actually useful for find-

ing new information, nor that a list that appears unchanged 

is useful for re-finding previously viewed information.  To 

test the value of invisible new information, a second more 

controlled study was conducted.  Like the previously de-

scribed studies, the study involved two parts: 1) An initial 

session where participants conducted finding tasks, and 2) 

A follow-up session where participants conducted finding 

and re-finding tasks using the four different list types. 

Unlike the previous between-subject studies, the study de-

sign was within-subject.  Each of the 42 participants in this 

study conducted 12 search tasks during the initial session 

and 12 search tasks during the follow-up session.  Six of 

the follow-up tasks were re-finding tasks, and six were 

new-finding tasks.  For re-finding tasks, participants were 

given either the original list or one of the two merged lists.  

For new-finding tasks, they were given either the new list 

or one of the two merged lists.  For each task, timing and 

interaction information was logged and questionnaire data 

was elicited.  By comparing how well participants per-

formed during the second session with how they performed 

during first, it is possible to understand the value of infor-

mation re-use across sessions.  A more detailed description 

of the study can be found elsewhere [24]. 

Table 2 presents how long it took participants to perform 

new-finding and re-finding tasks, broken down by list type.  

Task completion time can be a proxy for ease, and is one of 

several measures that showed a similar trend.  The results 

reveal that the Re:Search Engine’s intelligent merging of 

new information makes re-finding virtually as easy as if the 

results had not changed at all.  Although the amount of time 

taken to re-find was the lowest when a static result list was 

used, there was no significant difference in re-finding time 

when new results were merged in intelligently.  On the oth-

er hand, re-finding was significantly faster than the Dumb 

Merge for both the Intelligent Merge (p<0.05) and the 

Original list (p<0.01).  

For new-finding tasks, the Intelligent Merge used by the 

Re:Search Engine was weakly significantly faster (p<0.05) 

than the random Dumb Merge.  The Intelligent Merge also 

supported the finding of new information more quickly 

than a list of entirely new information, but the difference 

was not significant.  However, the trend could suggest that 

people posses some ability to re-use knowledge even when 

finding new information – perhaps, for example, partici-

pants were able to skip over memorable old results. 

Given these findings, the Re:Search Engine’s intelligent 

merging seems to be the best compromise to support both 

finding and re-finding.  A static, unchanging result list 

works well for re-finding but does not support the finding 

of new information.  In contrast, a result list with new in-

formation works well to support the finding of new infor-

mation, but does not support re-finding well.  The intelli-

gent merging performs closely to the best of both in both 

cases, while the dumb merging does comparatively worse. 

CONCLUSION AND FUTURE WORK 

This paper presented the Re:Search Engine, a search tool 

designed to support simultaneous information finding and 

re-finding.  Currently re-finding is made difficult because 

when people issue repeat queries they receive new results.  

While results may be more relevant ignoring prior context, 

they are not necessarily more relevant to the re-finding 

task.  Although the ability to find new information may 

appear at odds with the ability to re-find, the Re:Search 

Engine resolves this conflict by including new results 

where changes to the result list will not be noticed.  This 

allow people to find new information as easily as if they 

were given all new information, while still allowing people 

to re-find information as easily as if nothing had changed. 

In its current implementation, the new information to be 

included in Re:Search is assumed to become available as a 

result of natural changes in the results returned by the un-

derlying search engine.  Web search results can change 

over time as new information is indexed or as the search 

algorithms are updated.  As search engines begin to support 

personalization based on their users’ ever-changing con-

text, the rate of change to result lists is likely to increase.  

Additionally, new information could also be proactively 

included in search result lists, at the expense of potential 

Table 2.  The time it took participants to com-
plete the tasks in the second session. 

Task 

Type 

List Type Used in 

Second Session 

Task Time (seconds) 

Mean Median 

N
ew

-

F
in

d
in

g
 Dumb Merge 153.8 115.5 

Intelligent Merge 120.5 85.5 

New 139.3 92 

R
e-

fi
n

d
in

g
 Dumb Merge 70.9 37.5 

Intelligent Merge 45.6 23 

Original  38.7 26 

 



 

 

relevance, to increase the diversity of information the 

searcher is exposed to. 

The current implementation of the Re:Search Engine also 

assumes a significant period of time passes between repeat 

visits to search result lists.  It will be interesting, however, 

to explore how new results can be snuck into lists that are 

actively being used, much as was done during the initial 

paper prototype.  This would allow search engines to im-

prove results using real time implicit relevance feedback 

without disrupting the user’s search.  Research into this 

domain is currently under way. 

Effectively supporting expectation is essential to success-

fully supporting people’s complex finding behavior.  This 

is particularly true as the growing ease of electronic com-

munication and collaboration, the rising availability of time 

dependent information, and the introduction of automated 

agents, suggest information is becoming ever more dynam-

ic.  Even traditionally static information like a directory 

listing on a personal computer has begun to become dy-

namic; Apple, for example, has introduced “smart folders” 

that base their content on queries and change as new infor-

mation becomes available.  As Levy [10] observed, “[P]art 

of the social and technical work in the decades ahead will 

be to figure out how to provide the appropriate measure of 

fixity in the digital domain.” The solution presented here is 

a good first step towards that end. 

ACKNOWLEDGEMENTS 

This research owes much to valuable discussions with Da-

vid Karger, Sue Dumais, Mark Ackerman, and Rob Miller. 

REFERENCES 
1. Ahlström, D. (2005). Modeling and improving selection in 

cascading pull-down menus using Fitts' law, the steering law 
and force fields. In Proceedings of CHI ’05, 61-70.  

2. Aula, A., Jhaveri, N., and Käki, M. (2005).  Information 

search and re-access strategies of experienced Web users. In 
Proceedings of WWW ’05, 583-592. 

3. Bruce, H., Jones, W. and Dumais, S. (2004).  Keeping and re-

finding information on the Web: What do people do and what 
do they need?  In Proceedings of ASIST ’04. 

4. Capra, R. and Pérez-Quiñones, M.A. (2005).  Using Web 

search engines to find and refind information. IEEE Comput-

er, 38 (10), 36-42. 

5. Dumais, S. T., Cutrell, E., Cadiz, J. J., Jancke, G., Sarin, R. 

and Robbins, D. C. (2003).  Stuff I’ve Seen: A system for per-

sonal information retrieval and re-use.  In Proceedings of 
SIGIR ’03, 72-79. 

6. Durlach, P. J. (2004).  Change blindness and its implications 

for complex monitoring and control systems design and opera-

tor training.  Human-Computer Interaction, 19(4): 423-451. 

7. Goldberg, A.V. (1997). An efficient implementation of a scal-

ing minimum-cost flow algorithm.  Journal of Algorithms, 
22(1): 1-29. 

8. Hayashi, K., Nomura, T., Hazama, T., Takeoka, M., Hashimo-

to, S., and Gudmundson, S. (1998).  Temporally-threaded 

workspace: A model for providing activity-based perspectives 

on document spaces.  In Proceeding of HyperText ’98. 

9. Komlodi, A., Soergel, D., and Marhionini, G. (2006).  Search 

histories for user support in user interfaces.  JASIST, 57(6): 
803-807. 

10. Levy, D. (1994). Fixed or fluid? Document stability and new 
media. In Proceedings of European Conference on Hypertext. 

11. Mitchell, J. and Shneiderman, B. (1989). Dynamic versus 

static menus: An exploratory comparison. ACM SIGCHI Bul-

letin, 20(4): 33-37.  

12. Murdock, B. B. (1962).  The Serial Position Effect of free 

recall.  Journal of Experimental Psychology, 64, 482-488. 

13. Nowell, L., Hetzler, E., and Tanasse, T. (2001).  Change 

blindness in information visualization: A case study.  In Pro-

ceedings of INFOVIS ’01, 15-22. 

14. Obendorf, H., Weinreich, H., Herder, E., and Mayer, M. 

(2007).  Web page revisitation revisited: Implications of a 

long-term click-stream study of browser usage.  In Proceed-

ings of CHI ’07, 597-606. 

15. Rainie, L. and Shermak, J. (2005).  Pew Internet and Ameri-

can Life Project:  Data memo on search engine use.  Retrieved 

January, 2006 from 

http://www.pewinternet.org/pdfs/PIP_SearchData_1105.pdf. 

16. Rekimoto, J. (1999).  Time-machine computing: A time-

centric approach for the information environment.  In Pro-

ceedings of UIST ’99, 45-54. 

17. Rubin, R. C. and Wenzel, A. E. (1996). 100 years of forget-

ting: A quantitative description of Retention.  Psychological 

Review, 103, 734-760. 

18. Salton, G. (1998).  Automatic text indexing using complex 

identifiers.  In Proceedings of the ACM conference on Docu-

ment processing systems, 135-144. 

19. Selberg, E. and Etzioni, O. (2000).  On the instability of Web 

search engines.  In Proceedings of RIAO ‘00. 

20. Silverstein, C., Marais, H., Henzinger, M., and Moricz, M. 

(1999).  Analysis of a very large Web search engine query log.  

ACM SIGIR Forum, 33(1): 6-12.  

21. Simons, D. J. and Rensink, R. A. (2005).  Change blindness: 

Past, present, and future.  Trends in Cognitive Sciences, 

9(1):16-20. 

22. Somberg, B. L. (1986).  A comparison of rule-based and posi-

tionally constant arrangements of computer menu items. In 

Proceedings of CHI/GI ’86, 255-260.  

23. Teevan, J. (2006).  How people recall search result lists. In 

Proceedings of CHI ’06. 

24. Teevan, J. (2007).  Supporting finding and re-finding through 

personalization.  Doctoral thesis, Massachusetts Institute of 

Technology. 

25. Teevan, J., Adar, E., Jones, R., and Potts, M. (2005).  History 

repeats itself: Repeat queries in Yahoo’s query logs.  In Pro-

ceedings of SIGIR ’06, 703-704. 

26. Teevan, J., Alvarado, C., Ackerman, M. S., and Karger, D. R. 

(2004).  The perfect search engine is not enough: A study of 

orienteering behavior in directed search. In Proceedings of 

CHI ’04, 415-422. 

27. Tognazzini (1999). A quiz designed to give you Fitts. 

http://asktog.com/columns/022DesignedToGiveFitts.html  

28. Varakin, D. A., Levin, D. T., and Fidler, R. (2004).  Unseen 

and unaware: Implications of recent research on failures of 

visual awareness for human-computer interface design.  Hu-

man-Computer Interaction, 19(4): 389-422. 

29. White, R., Ruthven, I., and Jose, J.M. (2002). Finding relevant 

documents using top ranking sentences: An evaluation of two 

alternative schemes. In Proceedings of SIGIR ’02, 57-64.   

 


