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Abstract

In this paperwe describea formulationof extrinsic camer
calibration that decouplesrotation from translation by
exploiting properties inherent in urban scenes.We then
presentan algorithm which usesedge featuresto robustly
and accumately estimaterelative rotationsamongmultiple
cameams givenintrinsic calibration and approximateinitial

pose Thealgorithmis linear bothin the numberof images
and the number of feates.

We estimatethe numberand directions of vanishing
points (VPs) with respectto eadr camen using a hybrid
appmoad that combineghe robustnesof the Houghtrans-
formwith theaccumacy of expectatiormaximizationMatch-
ing and labeling methods identify unique VPs and
correspondthemacrossall camems. Finally, a technique
akin to bundle adjustmentproducesglobally optimal esti-
matesof relative camea rotationsby bringing all VPsinto
optimal alignment. Uncertainty is modeledand used at
every st@e to impove accuacy.

We assesghe algorithm’s performanceon both syn-
thetic and real data, and compae our resultsto thoseof
semi-automateghota@rammetricmethodgor a large setof
real hemisphericalimages, using several consistencyand
error metrics.

1 Introduction

Thefocusof this work is determinatiorof the extrinsic ori-
entationsof a large numberof camerasover an extended
area. This section gives a high-level descriptionof our
method and some retent work on this topic.

1.1 Motivation

The goal of the MIT City Project[15] is fully automated
3-D reconstructionof urban landscapesfrom terrestrial
(ground-level) imageryannotatedvith approximateintrin-

sicandextrinsic camergparametersDatais acquiredn sets
of nodes a nodeis a hemispherically-tiledset of images
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capturedfrom a single positionin space at differentrota-
tions aboutthe cameras optical center Nodesaretypically
separatedby significant (10-meter) baselinesand are
acquiredat differenttimesof dayandunderdifferentcondi-
tions of illumination and weather

Figure 1: Acquired Data
Part of a data set consisting of 210 hemispherical nodes
containing over 4,000 images, each 1.5 million pixels.

An initial mosaicstep[3] registersall planarimages
within agivennodeto form ahemisphericaimage,andalso
estimatedntrinsic calibration parametersExtrinsic (inter-
node)cameraegistrationis currentlysemi-automatedely-
ing on manual point correspondencesSince this task
becomescumbersomeas the number of acquirednodes
grows, we are developing robust, scalabletechniqueghat
determine camera pose without human irgation.

1.2 Method Overview

Herewe consideronly therotationalcomponenbf extrinsic
pose.We decoupleit from the translationalcomponentby
inferring 3-D edgedirections(vanishingpoints),which are
invariantundercameratranslation from 2-D edgeobsena-
tions. Our method operates underesal assumptions:

« Viewedscenegontainsetsof parallel lines.Urbanenvi-
ronmentstypically consistof regular structuressuchas
building facades with repeating wings.

« Intrinsic camer parametes are known Theseparame-
ters are estimated by a separate algorithm [3].



* Extrinsic poseis approximatelyknown This informa-
tion is obtainedby the acquisitionplatform andis used
both to determinecameraadjaceng for wide baselines
and to resole rotational ambiguities.

* Images are omnidirectional. Our methods can be
appliedto singlerectangulaimagesaswell, but hemi-
sphericalimagesincreasethe accurag of vanishing
point (VP) estimationand facilitate determinationof
correspondences among VPs.

ThemethodcompriseseveralstagesFirst, edgefeaturesn
the 2-D imagesareobtainedto sub-pi>el accurag usingan
edge detection and point chaining technique.A hybrid
approachconsistingof robust Hough transform(HT) and
accurateexpectationmaximization(EM) componentsises
theseedgesalongwith intrinsic camerecalibrationparame-
ters,to determinethe numberand 3-D orientationsof VPs
in the sceneVPsarethenmatchedacrosscamerasandthe
correspondenceare usedto estimatethe optimal rotations
(represented as quaternions [5, 7]) thgtster the cameras.
Our method has seral adantages:

« Scalability The algorithmis linear both in the number
of images and the number of edge obstons.

* Global optimality Error propagtion andbiasaremini-
mized by considering allailable data simultaneously

» RolustnessThe methodhandlesarbitrarily wide base-
lines andsignificanterrorin initial rotationestimatesas
long as camerasobsere overlappinggeometry Also,
sinceimageedgegatherthanintensityor colorareused,
the methodis virtually insensitve to varying weather
conditions and illumination.

1.3 Past Work

The problem of 3-D cameraregistration has beenexten-
sively studied.Only a small relevant subsetof the large
body of isting work is mentioned here.

Full structure-from-motionformulations are widely
used.The majority of theserely on point correspondences,
assumingshort baselinesin order to track featuresover
time, and cannotbe applied to wide-baselineproblems.
Most also estimatestructureand motion using only infor-
mation from a pair [10] or triple [6] of imagesat a time,
which can lead to drift and error accumulationas the
sequence progresses.

Vanishingpoints have beenusedto solve variouscali-
bration problems. Although attemptshave been made at
matchingVPs acrossimagesto determinerelatve camera
pose [8], global, multiple-camerarotational registration
using VPs has not preusly been xamined.

Varioustechniqueshave beendevelopedto detectand
estimatevPs. Interactve systemge.g.[14, 1]) rely onman-
ual edgeclassificationhowever, this procesds impractical
when the number of edgesor imagesis large. Features

themseles are often input manually rather than detected,
unnecessarily introducing additional error

Imagespaceapproachege.g.[9, 11]) find VPsin the
image planeby computingall possible2-D edgeintersec-
tions,thenclusteringtheminto groupscorrespondingdo dis-
tinct VPs. Suchmethodsarecomputationallyexpensve and
becomeill-conditionedwhen 3-D edgesare nearly parallel
to the image plane.

Perhapsthe most commonly used techniqueis the
Houghtransform,which is fastandrobust but whoseaccu-
ragy is limited by discretization[2]. Clusteringand least-
squaresapproachesn non-discretizeddual spaces(e.qg.
[12]) are well-conditionedover the entire input spaceand
do not suffer from discretizationartifacts; however, the
clustering processcan be computationally expensve or
inaccurate,even in hybrid discrete/continuousipproaches
[2] which usea hardthresholdto reject“outliers” thatmay
in fact be noisy data.

This work addresseand overcomessomeof the main
difficulties with prior approachesunder a few modest
assumptionsOur methodhandlesan arbitrary numberof
camerasedgefeaturesandvanishingpointsin lineartime.
VP detectionis automaticandfast(dueto the HT), andVP
estimationis robustandaccuratgdueto EM). The method
operateswith minimal error accumulationover arbitrarily
wide baselinesaslong as adjacentcamerassiew overlap-
ping geometryand scenescontain sets of parallel lines.
Uncertaintyis modeledandusedin all stagedor morereli-
able and precise alignment.

2 Background

Before describingour methodand the various algorithms
therein, we presentthe geometricframenork in which it
operates.

2.1 Edge Geometry

Underpinholeprojection,animageedgecanberepresented
in several ways (Figure 2).
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Figure 2: Edg e Representations
A 3-D edge and its 2-D projection can be represented by 1.)
the plane through the edge and the focal point, 2.) by the
normal to this plane, or 3.) by the intersection of the plane
with the Gaussian sphere.



Consider a set of parallel 3-D edges (Figure 3):

« All greatcirclescorrespondindo the edgesintersectat
two antipodalpointson the Gaussiarsphere The direc-
tion of intersection is parallel to the 3-D edges.

 All planenormalscorrespondingo the edgeslie on a
planewhoseintersectionwith the Gaussiarsphereis a
greatcircle. The normalto this planeis parallelto the
3-D edges.
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Figure 3: P arallel Edg e Geometry

In (a), great circles intersect at a common point whose
direction is parallel to their corresponding edges. In (b),
edge plane normals all lie on a great circle.

Thoughformally VPs are 2-D quantities,we usethe terms
“vanishingpoint” and“3-D edgedirection”interchangeably
throughout this paper

2.2 Edge Uncertainty
Image edges are parameterized ayb, ¢) satisfying
ax+by+c =0 (D)

andestimatedo sub-pixel accurag. Theestimationprocess
alsoproducesa 3 x 3 covariancematrix A for eachedge

representing uncertainty in the estimated line parameters.

A linear transformationS composedof shift, scale,
androtationcanbe appliedto theseparameterso obtainthe
edgeplanenormalx . Thecovarianceof x is thengivenby

C = SAST. )

2.3 Position Invariance

The 3-D directionsof VPsinferredfrom a givencameraare
parallelto their correspondin@-D edgesThesedirections
are thus scene-relatie quantities expressedin the local
coordinatdrameof thecameradependingnly onthecam-
erasorientationrelative to the sceneandnot on its position.
Multiple cameras,as long as they obsene overlapping
geometry will infer the sameVPs regardlessof the cam-
eras’ positions.

This suggestshatrotationalposeerrorcanbecorrected
independentlyof translational pose error: if correspon-
dencesbetweenVPs are known for a given camerapair,
thentherotationthatalignsthe VPsis preciselytherelative
rotation between the cameras.

3 Vanishing Point Estimation

In this sectionwe describethe componentof our system
thatidentifiesandestimateprominent3-D directionsin the
scenegivenasetof imageedgesThe problemis composed
of two tightly-coupledsub-problemsclassification(group-
ing obsened edgesinto parallelsets)and estimation(find-
ing the best VP for each set).

Most VP estimationtechniquesutilize someform of
discretizedHoughtransform(HT), which is simply a map-
ping betweerparametespacesEachobseredimageedge
is parameterizedand VPs arefound by locatingpeaksin a
histogramof the parametersThe peaksdentify the number
and directionsof VPs, and give a rough classificationof
edges. HT-basedtechniquesare simple and robust but,
dependingon the parameterizatiorganexhibit singularities
anddiscretizationartifacts.Accuratepeakdetectionis also
a difficult problem.

Other estimation techniquesoperate in continuous
ratherthandiscretespacesand,given goodedgeclassifica-
tion, canaccuratelyestimateVPs. However, asdiscussedn
[2], existing classificationmethodstend to be unstable,
computationally indfcient, or imprecise.

We present hybrid approactto VP detectionandesti-
mationwhich combinegherobustnes®f theHT (for detec-
tion) with theaccurag of leastsquaregfor estimation) An
EM algorithm is formulated to probabilistically model
edgesand their directionaluncertainty obtainingaccurate
edgeclassificationand direction estimatesn the presence
of numerousutliersandsignificantnoise.A final verifica-
tion step rejects spurious directions.

3.1 Formulation

Given a setof 2-D edgesrepresenteds uncertainnormals
on the Gaussiarsphere we wish to identify and precisely
estimatethe prominent3-D edgedirectionsin the original

scene Here we presenta probabilistic mixture model for-

mulationwhich assumeshatthe numberof directionsM is

known (this is not true in practice;Section3.5 describesa
technique for findingv ).

Let eachof the N edgesbe representedby a point x|
ontheunit sphergFigure2), anddenoteeachof the M 3-D
edgedirectionsby d. . We wish to estimatethe dj soasto
maximize a lilelihood function:

N N
max I_I P(x,) = max Z InP(x,) . 3)
n=1 n=1

Sincethe planenormalsof paralleledgedie on a great
circle on the Gaussiansphere the points x,, (in the ideal
case)form coplanarsets,andthe normalsto the planesare
the 3-D edgedirections dj . If we hada classificationthat
groupedthe x,, into suchsets,thenwe could estimatethe
dj independenthyby fitting a 3-D planethrougheachset.



Similarly, if we had good estimatesof the 3-D directions,
we could classify eachpoint as belongingto one of the
directions.

The statisticalmethodof expectationmaximization[4]
performsboth classificationand estimationtasksby alter-
natingbetweerfinding the bestclassificationgiventhe cur-
rent estimateqthe E-step),and finding the bestestimates
given a classification(the M-step). EM is guaranteedo
converge on the optimal solution given a fixed numberof
mixturesM and a reasonable initialization.

3.2 E-Step
Givenanestimateof adirectiond. andits associatedari-
ancec? we cancomputethe probability that a given point
X, belongsto this direction.Herewe usea weightedzero-
mean Gaussian model,
1 GZJD

W, J2mo | 2070 25
where 6 = sin_l(x [d.). This formulat|on weightsthe
pomt accordlngto its angulardellatlon from the planeand

w,, , its uncertaintyin thedirectionof d; . Theweight w,,;
is computedby finding the maximum eigervalue of the
symmetric matrix

Cp = (djdjT)Cn(djdjT) , 5)
the projection of the edgeto/ariance matrixC onto d i

From theseconditional probabilitieswe use Bayesian
arguments to deve the reerse conditionals,

P(xy|d;)P(d))
P(xp)

P(xn|dj) = expid—;

(4)

P(d;|x,) = (6)

M

POxy) = 3 P(xq|d)P(d)), (7)

j=1

where P(d ) is the a priori probability of directionj (the
fraction of obser‘ed points classifiedas belongingto d,).
The probabilities P(d. |x ) give eachx,, a likelihood of
belongingto eachd pr0\/|d|ng awelghtlngmechanlsrrior
subsequent fitting steps

3.3 M-Step

Givenasetof weightsfor eachpointandeachdirection,we
estimatethe variablequantitieso?, P(d.), andd; soasto
maximizethe likelihoodfunctionin (3). The estimationof
prior probabilities andariance is straightforard:

N
P(d) =& Z P(d;|xy) - ®)
z 62,P(d|x,)

SinceB,; = x,, [d; for smalldeviationsfrom theplane,
thedirectionsd. canbeestimatedisingtheweightedinear
least-squares #ormulation

ming. ”ann N34 J”z (10)

where W. is a diagonal matrix containing the weights
P(d#xn) , and A. is a matrix whoserows are the points

he solution can be found in closedform, assuming
thattherankof A, is atleast2 (i.e.the x,, arenotall coin-
cident), or via the SVD, by finding the vector associated
with the minimum singularalue oijAj .

3.4 Outlier Reection

Realimagescontainmary edgesthat do not belongto ary

significant parallel sets. We therefore modify the EM

approachaborve to use M + 1 mixtures;the lastis givena
largeinitial variance,approximatinga uniform distribution

over the sphereto accountfor spuriousedges.Any edges
classifiedas belongingto this mixture, i.e. which are best
attributed to a uniform noise process,are outliers and
implicitly given infinitesimal weight.

3.5 Initialization

We usea modifiedHoughtransformto find the numberM
of prominent3-D edge directions and their approximate
directionsd. , both of which arecrucialto EM formulation
andcorvergencelt is importantto notethatin this applica-
tion, the HT is usedonly for initialization of anothertech-
nique;thus, mary of the concernsof pureHT approaches,
suchasprecision,errormodeling,andovercomingdiscreti-
zationartifacts,neednot be consideredn detail. Ourimple-
mentationis kept assimple as possibleto remainreliable,
fast, and accurate.

/,

Image
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Figure 4: Hough T ransform Space
Each edge forms a plane through the focal point F that
intersects three faces of a cube centered at F. Rasterization
of the intersection increments histogram bins in each face.

Our HT parameterizesdgeshy intersectingtheir rep-
resentatie edgeplaneswith the surfaceof a cubecentered
at the focal point [16], ensuringa bounded,symmetric
parametespaceandsimplifying theimplementatiorto 2-D
line clipping and rasterization.To eliminate sign ambigu-
ities, only threecubefaces(front, top, and side) are used.
Thesefacesare discretizedsuch that the maximumangle



subtendedby ary bin is smallerthana specifiedd, . , pro-
ducing a completeand reasonablyuniform discretization
with 8., <26, ,. In practice we us8,, =1°.

It was notedin Section2.1 that the planesof parallel
edgesintersectat a commonpoint in the samedirectionas
the 3-D edges.Peaksin the histogramthus correspondo
vanishing points and are usedto initialize the EM algo-
rithm. Candidatepeaksare found by searchingthe histo-
gram for relatve maxima, i.e. points hi’j in a square
window of sizew satisfying

hi,thi+m,j+n -ws<(mn)sw. (12)

The window sizeis chosenso that its angularcoverageis
approximatelyconstantwith respectto varying histogram
bin size. A normalizedmeasureof peakcunature P, | is
also computed:

W = (2w + 1)2
_ . (12
S_;Zhﬁmhn ( )

The curvature satisfies0 < P <1, and is approximately
independentf window andbin sizes.Peaksareorderedby

a “strength” metric s; ; = p; ;h; ;. the productof histo-

gramcountandcurvature,sothatbothabsoluteandrelative

magnitudes are considered.

The s, ; areassumedo be dravn from a randomdis-
tribution, andevery peakfor which s >u+ay (wherep
andy arethe samplemeanandstandarddeviation, respec-
tively) is treatedasstatisticallysignificantandpassedo the
EM. In practice, a conserative thresholdof a = 1.5

includes all true peaks and rejects matgd peaks.

P T W-Dh, |

3.6 Validation

Falsepositvesin HT peakdetectionmay producespurious
EM mixturesandfalseVPs. Thusa validation stepis per-
formed to verify that the directionsestimatedby EM are
statistically significant. To be consideredsignificant,each
directiond j must meet seral criteria:

. dj matches an initial, as yet unmatched HT peak

» Edge count metri@(dj) >Ue—VYe

« Variance metric—log(ojz) > [y =Yy
where (U, Ye) and (u,,y,) arethe respectie meanand
standarddeviation of the edgecountand variancemetrics.
The logarithm of the varianceis usedratherthanthe vari-
anceitself to compensatdor the extremely large variation
in valuesthat occursin practice. Applying thesecriteria
tendsto discardVPsthatlack sufiicient statisticalevidence
(constituent edges and/or coherence).

If thereis no changebetweenthe currentsetof edge
directionsandthe outputof the validationstep,the process
terminates.Otherwise,EM is performedon the validated
edge directions and the process repeats.

4 Matching

Corresponding/Ps must be identified acrossall cameras
before registration is possible;the camerascan then be
rotatedto bring thesecorrespondinglirectionsinto optimal
alignmentWe first determineanadjacenyg structureamong
all camerasthenusethis structureto createa single setof
unique,global (scene-relatie) VPs aswell asa consistent
labeling identifying which cameras weeach VP

4.1 Adjacency

Each cameras k nearestneighbors(we use k<8) are
determinedusing approximatepositionsobtainedfrom the

acquisitionplatform. Firstandsecondrderstatisticson the

inter-cameradistancesbetweenall neighboringpairs are
thencalculatedandary pair separatetby a distancegreater
than one standarddeviation above the mean distanceis

removed. Theresultis anadjaceng graphwhosenodescor-

respondo individual camerasandwhosearcsconnecicam-
eras lilely to hare viewed averlapping geometry

4.2 Matching Adjacent Pairs

In orderto correspondVPs acrossall camerasVPs must
first be matchedbetweenpairs of nodesacrosseacharc of
theadjaceng graph.Sinceat leasttwo correspondencesre
neededo uniquelyalign a pair of camerasanglesbetween
all possibleVP pairsin eachcameraare computed.For a
given pair of camerasA and B, define 8, asthe angle
betweerWPsm andn in A, and ¢, astheanglebetween
VPsp andq in B. Each® is comparedvith each¢ , anda
match is considered found if

2
(Omn—¢ pq) < trnpg
or (n—emn—q)pq)zs trnpg

where t,.,, = 0%+ 02+ 02 +0a. Both casesmust be
considered due to sign ambiguity (Figure 5).

)ﬁ @ ®)
Figure 5: Sign Ambiguity

Two pairs of VPs which appear to have different relative
angles (a) may actually correspond if one VP is negated (b).

(13)

A scoreis computedor eachVP pairmatch.Theoffset
cameras VPs arerotatedto the referencecamera(Section
5.1), and the angle of rotationis noted. Correspondences
betweenthe remaining VPs are then establishedusing a
two-casecriterion similar to (13), wherethe squaredangle
betweenra candidatepair of VPsis comparedvith the sum
of their variancesThe scorewith the mostcorrespondences
is chosento be the “best” score;if scorestie, e.g. dueto



rotational ambiguity (Figure 6), the scorewith minimum
rotation angle is chosen.

Ambiguity canbe further reducedvhenadjacentcam-
erasview vertical edges.Vertical VPs are easily identified
(eitherby prominenceor proximity to anapproximateverti-
cal) and can be assumed to match.

Figure 6: Rotational Ambiguity
VPs 4 and 5 most likely match 1 and 2 if approximate pose
is known, although they could also match 3 and 1.

4.3 Graph Traversal

We form distinctgroupingsof VPs usinga seriesof linear
time constraineddepth-firstsearchegCDFS) on the adja-
ceny graph. We find all matchesto a given VP V by
launchinga CDFSfrom anodeN thatviews V. The CDFS
recursvely traversesarcsin the graph,andfor eacharcper-
formsthe pairwise matchingstepdescribedn Section4.2.
If anunassigned/P in the newly reachechodeis foundto
matchthe setcontainingV, it is assignedo thatset.If no
such match is found, the CDFS sub#nsal terminates.

The abore CDFS producesall correspondencefor a
singleVP V acrossasingleconnectedcomponentootedat
N. A seriesof thesesearchess performeduntil all VPsare
assigned.This algorithm resultsin a set of distinct VP
groups, eachof which representsa unique scene-relatie
edge direction and containsreferencesto the individual
cameras that ve it.

Any group containinga single reference(i.e. ary VP
seerby only onecamera)s removedfrom considerationas
are cameraghat do not view at leasttwo of the resulting
VPs.Despitethefactthatall cameraglo not view the same
subsetof scenegeometry and that someimagesgive rise
to spuriousVPs, the resulting VP groupingsare globally
consistent.

5 Rotational Registration

Once VPs have been estimatedand a consistentset of
uniqueedgedirectionshasbeenfound over all camerasye
determinean optimal setof cameraorientationrelative to
anarbitraryrotationalorigin). We first discusghe two-cam-
era solution, then generalize kb= 2 cameras.

5.1 Two-Camera Alignment

Determiningthe optimalrotationalregistrationbetweertwo

cameraggiven two or more ray correspondencesasbeen

solvedln closedform [7]. Defined;, (k = 1,2) to bethe
edged|rect|on relative to camerak. We find the unit

quaternlonq thatoptimally aligns d; ik for all j by solving

the least-squares system

mingla®™**q* = mian (A - AM]TqH2 (14)
where
0 —Sjx ~Sjy 7S,
A = Six 0 aj; ajy Sjidjz_d“. (15)
Sy, 0 a, a; = djp+djy
Sjz ~ajy jx O

The optimalleast-squaresolutionto this systemis the unit
eigervectorassociatedvith the minimum eigervalue of the
matrix ATA [5].

5.2 Weighting Correspondences
Theabove formulationgivesequalweightto all edgedirec-
tions. In practice,however, someedgedirections(suchas
the vertical direction in urbanscenes)re more prevalent
than othersand are estimatedwith higher certainty After
the VP detectionstage,each edge direction d; ik has an
assomateailncertalntycrj2 , whichcanbe usedasawelght—
ing factorin the abose minimization. We thusreplacethe
matrix Aj in (15) with
1

i (0-2 + 0—2 ) J" (16)
which improves rotation estimatesby weighting high-cer-
tainty directions more hedy.

5.3 Multiple-Camera Alignment

To register N =2 cameraswe could perform the above
two-cameraregistration for all adjacentpairs; this would
causeerror to propagte and accumulate however, since
pairingsareinter-dependentOnemanifestatiorof this error
isinconsistenyg of self-loopse.9.q; | ,*0d,  3#0d; _ 3-

Here we introducean iterative extensionof the two-
camerasolution that accountsfor all correspondenceand
all uniqueedgedirectionsacrossall camerasThealgorithm
producegglobally optimal estimatesof all cameraorienta-
tions inO(N) time.

We use a two-step approachmuch like that of full
6-DOF bundle adjustmenttechniquesFirst, relative rota-
tions are assumedo be fixed, and all correspondingedge
directionsare averagedto find a bestrepresentatie direc-
tion. Next, the bestdirectionsare assumedixed, andeach
camerais rotatedto align with themusingthe two-camera
techniqueabove. The procedureepeatsuntil thereis no sig-
nificant change in ancameras orientation.

Theresultingcameraorientationsareexpressedelative
to the current “ground-truth” directions, but can all be
adjustedoy a singlerotationto align with ary desiredrefer-
enceframe. This techniqgueminimizes error accumulation
and bias by optimizing all camerassimultaneouslyrather
than in pairs.
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Figure 7: Iterative Rotational Refinement

Three misaligned vanishing points from three cameras are
shown over one algorithm iteration.

5.4 Merging Redundancies

Occlusionand misseddetectionof individual VPs cangive
riseto multiple global VPscorrespondingo the samescene
geometry After eachstep of the multiple-camerarefine-
ment, suchredundantVPs are detectedand meiged when
sufiiciently near each othgre. when

82 <o?+0?, (17)

whereeij is the anglebetweenaveragedvPs i and|, and
02 is the angularariance of an\eraged VP

6 Results

We used synthetic camerasand geometryto assessour
methodin the presencef varioustypesof datacorruption.
We alsotestedthe methodon two real datasetsconsisting

of alarge numberof hemisphericalmagestheir associated

2-D edges, and initial pose estimates.

6.1 Synthetic Data

Synthetic3-D edgesin four directions(one vertical, two
horizontal,onerandom)weregeneratec&ndprojectedonto
synthetic cameras. Erroras introduced in seral forms:

» Zero-mean Gaussian angular noise in edge projections

* Uniformly-distributed outlier edges
» Random edge remal (fixed at 30%)

» Zero-mean Gaussian rotational camera perturbation

Figure8-ashaws performancef VP detectionandrotation
estimationwith varying amountsof edgeprojectionerror
andoutlier noise.Error valuesfor controlledquantitiesrep-
resentthe standarddeviation of the noisedistribution; the
numberof outlier edgess expressedsa percentagef the
numberof true sceneedges Figure 8-b shaws that end-to-
end rotational error using our technique(as opposedto a
purely pairwise approach) is roughly constant.

6.2 Real Data

Two setsof hemispherically-tiled pose-annotatedimages
from the City Projectdatabaseavere usedas the basisfor

testingon real data.All testswererun on a 250MHz SGI
Octane and required no more than 6MB of memory.

TechSquare | EastCampus

total nodes 45 90
images/node 46 20
avg features/node 4,517 2,225
avg VPs/node 2.95 2.72
avg time/node 31.41s 9.75s
unalignable nodes 1 2
avg matches/pair 2.55 2.32
avg VP angle error 0.067° 0.047°

Table 1: Data Statistics

Matches/pair indicates the number of VP matches per arc of
the adjacency graph. Angle error refers to the deviation of
inter-VP angles from known values. Times exclude file I/O.

Although ground-truthposeis unknavn, the camera
orientationsobtainedfrom the TechSquaredata set were
comparedwith the resultsof a semi-automatedegistration
method[3] in which point correspondencescrosdifferent
images were manually specified and the nodes bundle-
adjustedRelative rotationsdifferedby no morethan0.25°.

Corvergenceof VP bundlesin multiple-cameraegis-
trationis shavn in Figure8-c. Variancesat corvergencefor
several representatie global VPs are plottedin Figure 8-d
as a function of the number of cameras observing them.

We also studied the effects of camerafield-of-view
(FOV) on VP estimationperformancgFigure 8-e,f). The
VP variancewasgenerallyfoundto decreasasthe number
of imagesincreasedalthoughin somecaseghe additional
feature obsenrations introduced by larger FOV images
negated this dect.

7 Conclusions

We have describeca methodfor globalrotationalregis-
tration of an arbitrary numberof camerasover wide base-
lines.In doing so, we have addressedeveral shortcomings
of existing approachesincluding computationalcomple-
ity, robustnessandlimitationson baselineandillumination.
VP estimationproved to be virtually insensitve to outliers
due to a mixture model that implicitly gives them low
weight. Unalignablecamerasvere automaticallyidentified
and discarded We found that global registrationtypically
convergedin just a few iterations,even with initial camera
rotation errorsceeding30° .

Our methodhas several limitations. First, angle com-
parisonin the matchingprocesss O(N4) in the numberof
VPs. However, this numberis typically small even for
extendedurbanscenesandif averticaldirectionis identifi-
ablein all imagesthe orderbecomegjuadratic.Secondthe
numericalaccurag of least-squareformulationsdepends
on the quality andquantityof availabledata.3-D directions
estimatedfrom a small numberof uncertainimage edges
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Figure 8: P erformance on Synthetic (a, b) and Real (c-f) Data
(a) Effects of edge projection error on VP estimates. (b) Comparison of our multi-camera method (solid lines) to a pair-wise method
(dashed lines), both with perturbed cameras (0 = T/ 6). (c) Registration algorithm convergence. (d) Variances of several global VPs
at convergence, as a function of the number of cameras viewing the VPs. (e) HT sharpness as the FOV (number of images from a sin-
gle node) increases. (f) Variation of HT peak curvature in several nodes as the FOV increases.

arethus somevhat unreliable,but the size and redundang
of our datasettypically compensatéor this effect. Finally,
our methodcan be appliedonly to scenesspanninga few
kilometers;“vertical” sceneedgesseparatedy more than
this distancedeviate in orientationby morethana millira-
dian due to the cuature of the Earth.

Thetechniquedescribechereproducesotonly camera
orientationsand VPs, but alsothe 3-D directionsof associ-
atedimageedgesThis informationis beingusedto develop
algorithms for automatic translationagistration.
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