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Abstract. We describe a linear-time algorithm that recovers absolute camera orientations and positions,
along with uncertainty estimates, for networks of terrestrial image nodes spanning hundreds of meters
in outdoor urban scenes. The algorithm produces pose estimates globally consistent to roughly 0.1◦ (2
milliradians) and 5 centimeters on average, or about four pixels of epipolar alignment.

We assume that adjacent nodes observe overlapping portions of the scene, and that at least two
distinct vanishing points are observed by each node. The algorithm decouples registration into pure
rotation and translation stages. The rotation stage aligns nodes to commonly observed scene line direc-
tions; the translation stage assigns node positions consistent with locally estimated motion directions,
then registers the resulting network to absolute (Earth) coordinates.

The paper’s principal contributions include: extension of classic registration methods to large scale
and dimensional extent; a consistent probabilistic framework for modeling projective uncertainty; and a
new hybrid of Hough transform and expectation maximization algorithms.

We assess the algorithm’s performance on synthetic and real data, and draw several conclusions.
First, by fusing thousands of observations the algorithm achieves accurate registration even in the face
of significant lighting variations, low-level feature noise, and error in initial pose estimates. Second, the
algorithm’s robustness and accuracy increase with image field of view. Third, the algorithm surmounts
the usual tradeoff between speed and accuracy; it is both faster and more accurate than manual bundle
adjustment.
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1 Introduction

Calibrated imagery is of fundamental interest in
a variety of computer vision and graphics applica-
tions, including sensor fusion, 3D reconstruction
for model capture, and image-based rendering for
realistic visual simulation. In practice, image reg-
istration can require substantial manual effort, for
example specification of matching tie points across
multiple images as constraints for a bundle ad-
justment algorithm. Even for small datasets, this
manual component can absorb tens or hundreds of
hours of human effort, and is difficult or impossible
to partition among several workers.

The algorithm in this paper was developed as
part of a system for automated geometric model
capture in urban environments [Tel97, Tel01]. In
this system, a human operator moves a sensor
[BdT99] to widely-separated vantage points in and
around the scene of interest. At each position,
the sensor acquires a high-resolution image, along
with a rough estimate of the acquiring camera’s 6-
DOF pose, or position and orientation, in absolute
(Earth) coordinates (Fig. 1).

Images are grouped by optical center into wide-
FOV mosaics called “nodes” [CMT98]. Each
node is subsequently treated as a rigid, super-
hemispherical image with a single 6-DOF pose.
The use of wide-FOV imagery provides significant
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Figure 1. Pose-Image Acquisition. (a) Our prototype
sensor, which acquires geo-referenced images. (b) A
typical omni-directional image tiling. (c) Node loca-
tions registered with a ground map.

advantages in practice, both reducing the number
of optimization parameters and eliminating classi-
cal bias [Kan93] and ambiguities [FA98] in camera
motion estimation.

The sensor’s initial pose estimates are accurate
only to a few degrees and a few meters. Since de-
tailed 3-D reconstruction requires accurate epipo-
lar geometry, one critical component of our system
is the refinement of the sensor’s initial pose esti-
mates to bring all nodes into registration. The
dataset size and extent rules out interactive tech-
niques; thus pose recovery must be automated,
and its computational cost must scale well with
the number of images.

Solving the general registration problem re-
quires determining six parameters for each node:
three of rotation and three of position. Our ap-
proach decouples the 6-DOF problem into a pure
rotation (3-DOF) component followed by a pure
translation (3-DOF) component. Our algorithm
cannot assume that common scene structure is
observed by all images; indeed, due to occlusion,
most image pairs observe nothing in common. In-
stead, we use the (rough) initial pose estimates
to associate nodes likely to have observed overlap-
ping scene structure, then use an efficient local-
to-global alignment strategy to register the entire
network.

1.1 Algorithm Overview

The goal of our algorithm is to accurately register
every node to a single, common coordinate system.
Intuitively, the algorithm detects common scene
structure observed by clusters of adjacent (nearby)
nodes, exploiting the tendency of such nodes to
have observed overlapping scene structure. Each
node is aligned to this locally observed structure,

after which a global optimization brings all nodes
into registration.

More formally, the algorithm operates in two
sequential stages. The first, rotational align-
ment, classifies scene lines into parallel sets, and
from these constructs position-invariant vanishing

points. An expectation maximization (EM) algo-
rithm, based on a projective mixture model and
initialized by a Hough transform, estimates the
vanishing points observed by each node. A sub-
sequent EM formulation probabilistically aligns
node vanishing points with scene-relative direc-
tions and recovers global orientation and uncer-
tainty for each node.

The algorithm’s second stage, position recov-
ery, putatively couples point features across ad-
jacent node pairs, then uses a Hough transform
to extract a crude estimate of the inter-node mo-
tion direction or baseline for each pair. A Monte-
Carlo expectation maximization (MCEM) tech-
nique based on a projective uncertainty model re-
fines each baseline estimate. A global optimization
phase assembles the local baseline estimates into a
network-wide constraint set, propagates the con-
straints to produce globally consistent node posi-
tions, and rigidly transforms the resulting network
to be maximally consistent with the initial sensor
pose estimates.

1.2 Requirements and Assumptions

To register a set of images, our algorithm requires
the following inputs:

Figure 2. A Node Network. Points represent nodes;
edges represent adjacency.

• Accurate intrinsic calibration. Images
have been corrected for radial distortion, and
pinhole camera parameters (i.e. focal length,
principal point, skew) are given.
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• Rough extrinsic pose. Approximate posi-
tion and orientation estimates for each node
are supplied by the sensor.

• Node adjacency. A list of the neighbors of
each node is given, associating nodes likely to
have viewed overlapping portions of the scene.
The adjacency network is inferred from the
sensor’s GPS-based position estimates.

• Line and point features. Sub-pixel
gradient-based line features are supplied for
each image by a modified Canny edge detec-
tor [Can86]. Point features are inferred from
intersections of nearby line pairs.

In practice, registration succeeds when the fol-
lowing conditions hold:

• Visible vanishing points. At least two dis-
tinct vanishing points (VPs) are visible in
each wide-FOV node. These provide a lo-
cal, translation-invariant coordinate frame for
each node.

• Overlapping scene geometry. Nodes are
acquired with sufficient density so that adja-
cent nodes observe overlapping scene geome-
try (namely 3-D lines and points). We do not
make a small-baseline assumption; in prac-
tice, the inter-node baselines are relatively
wide (tens of meters).

• Wide-FOV nodes. Our algorithm can be
applied to images with any FOV. Wide-FOV
images, however, are fundamentally more
powerful than conventional images; they pro-
vide maximal observations of surrounding
structure, disambiguate small rotations from
small translations, reduce bias in inference,
and in general enable more reliable conver-
gence and higher accuracy.

1.3 Paper Overview

The remainder of the paper is structured as fol-
lows. Section 2 reviews projective feature repre-
sentations and geometric probability. Section 3
describes orientation recovery. Section 4 describes
metric position recovery. Section 5 reports results
for several synthetic and real datasets. Section 6
reviews previous work on image registration. Sec-
tion 7 summarizes the paper’s contributions, and
Section 8 concludes.

2 Preliminaries

This section reviews representations of coordinate
transformations and uncertain projective features.

2.1 Extrinsic Pose

A rigid transformation, consisting of a 3×1 trans-
lation t and orthonormal 3 × 3 rotation R (or,
equivalently, a unit quaternion q), expresses points
ps in scene coordinates as points pc in camera co-
ordinates. Its inverse specifies the orientation and
position of the camera with respect to the scene
coordinate system. Formally,

pc = R>(ps − t)

ps = Rpc + t

where t is the position of the focal point, and the
columns of R are the principal camera axes, both
expressed in scene coordinates. Thus t and R

summarize the external pose of the camera.

2.2 Projective Features

In the Euclidean image plane, we represent points
as coordinate pairs (u, v), and lines as au+bv+c =
0, or equivalently p · l = 0, where p = (u, v, 1)>

and l = (a, b, c)>.
Although the Euclidean plane is convenient for

feature detection, it cannot stably represent a full
hemisphere of rays. Thus to represent line features
we use the projective plane

� 2, a closed topological
manifold containing all 3-D lines through the focal
point. Excepting the focal point, points along any
3-D line constitute an equivalence class ∼:

p ∼ r ⇔ p = αr,

where α is a real nonzero scalar value. We repre-
sent directions as points on the surface of the unit
sphere � 2. The sphere’s surface is an ideal space
for representation of projective features, just as it
is an ideal space for image projection: it is closed,
compact, and symmetric, and it provides uniform
treatment of rays from all directions (Fig. 3).

2.3 Bingham’s Distribution

Features viewed by a single camera have un-
known depth; these projective features must be
represented with suitable spherical probability dis-
tributions. Exponential distributions are useful
for inference tasks [Ber79], but the most com-
monly used multi-variate Gaussian density is a
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Figure 3. Projective Image Features. (a) A 3-D line
can be represented by a 2-D line in planar projection
or a great circle in spherical projection. Any point
on the line must be orthogonal to the line’s dual. (b)
A 3-D point can be represented as a unit vector on
the sphere, or as a pencil of lines passing through its
projection.

Euclidean probability measure and is therefore
not suitable for projective variables. Condition-
ing a zero-mean Gaussian variable x ∈ R3 on
‖x‖ = 1 results in Bingham’s distribution, a flexi-
ble exponential density defined on the unit sphere
[Bin74, JM79, Wat83].

This distribution can be generalized to arbitrary
dimension n, and is parameterized by a symmet-
ric n × n matrix M = UκU>, analogous to the
information matrix of a Gaussian [Riv84], where
U ∈ � n×n is a real unitary matrix whose columns
ui represent the principal directions of the distri-
bution and κ ∈ � n×n is a diagonal matrix of n
concentration parameters κi. The density is

p(x) =
1

c(κ)
exp(x>Mx)

=
1

c(κ)
exp

(

n
∑

i=1

κi(u
>
i x)2

)

where c(κ) is a normalizing coefficient depending
only on the concentration parameters. We denote
this density by Bn(x; κ, U) or simply Bn(x; M).

The Bingham density is antipodally symmet-
ric, or axial : the probability of any point x is
identical to that of −x. It is closed under ro-
tations: if y = Rx, where R is a rotation ma-
trix and x has Bingham distribution Bn(x; κ, U ),
then y has a Bingham distribution Bn(y; κ, RU ).
It is also closed under Bayesian inference: fu-
sion of Bingham-distributed data in Rn produces
a Bingham-distributed aggregate in Rn. Finally,
the Bingham representation is expressive: the con-
centration parameters can describe a wide variety
of distributions (Fig. 4).
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Figure 4. Bingham’s Distribution on the Sphere. The
shapes of iso-density contours on Bingham’s dis-
tribution depend on the concentration parameters.
For B3, the two shape parameters yield distribu-
tions which are (a) uniform (κ1 = κ2 = 0); (b)
symmetric bipolar (κ1 = κ2 � 0); (c) asymmet-
ric bipolar (κ1 < κ2 � 0); (d) symmetric equato-
rial (κ1 � κ2 = 0); and (e) asymmetric equatorial
(κ1 � κ2 < 0).

The concentration parameters are unique only
up to an additive shift; in other words, the density
is unchanged if a single constant is added to all
parameters. By convention, the parameters (along
with their corresponding modal directions ui) are
ordered from smallest to largest, and shifted by an
additive constant so that

κ1 ≤ κ2 ≤ . . . ≤ κn = 0.

It is possible to transform the Euclidean sam-
ple covariance into a spherical Bingham parameter
matrix and vice versa [JM79]. Given determin-
istic, unit-length data points X = {x1, . . . , xk},
the maximum likelihood estimates of the underly-
ing Bingham distribution parameters are related
to the sample second moment matrix

S � =
1

k

k
∑

i=1

xix
>
i . (1)

If the matrix is diagonalized into S � = V ΛV −1,
where Λ is a diagonal matrix of the eigenvalues,
then U = V (that is, the principal directions of
the Bingham distribution are exactly the eigenvec-
tors of S � ), and the concentration matrix κ is an
invertible function of Λ.
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3 Orientation Recovery

This section describes the orientation recovery al-
gorithm. Section 3.1 reviews vanishing point ge-
ometry. Section 3.2 presents a novel method that
robustly detects, then accurately estimates, mul-
tiple vanishing points in a single node. Section 3.3
extends a classical, deterministic algorithm for ro-
tationally registering two nodes to account for (in-
put) feature and (output) orientation uncertainty.
Finally, Section 3.4 describes an EM algorithm to
classify vanishing points, estimate scene-relative
line directions, and refine rotations over a node
network.

3.1 Vanishing Point Geometry

Parallel 3-D lines viewed under perspective con-
verge to an apparent point of intersection known
as a vanishing point (VP). Vanishing points have
long been used in vision to extract information
about scene geometry and egomotion.

Consider a 3-D line parallel to some unit direc-
tion v, and its 2-D projection on the image sur-
face (Fig. 5). The two quantities are projectively
equivalent; that is, any projective ray that inter-
sects the image line also intersects the scene line.
The set of all such rays thus forms a plane P that
includes the focal point, the 2-D line, and the orig-
inal 3-D line. Let l represent the projective dual
of the line, that is the direction on the sphere or-
thogonal to all rays through the image line. Since
by construction l is orthogonal to P , it must also
be orthogonal to the 3-D line; that is, l · v = 0.

Vanishing
Point

Image
Plane

Gaussian
Sphere

3-D
Lines

2-D
ProjectionsFocal

Point

Line
Duals

li

v

v

P

Figure 5. Vanishing Point Geometry. Projections of
parallel 3-D lines converge to an apparent vanishing
point in the plane. Projectively, the vanishing point
represents the intersection of a pencil formed by ob-
servations of the lines.

Similarly, any 3-D line parallel to v has a pro-
jective dual representation li for which li · v = 0.

The direction v is thus the normal to a plane con-
taining all such dual rays li (Fig. 5). Because of
the projective equivalence between scene lines and
image lines, 2-D observations alone suffice for this
construction; thus, v can be recovered from a set of
image lines if their associated 3-D lines are known
to be parallel (Section 3.2.3).

Since vanishing points lie at infinity, they are
invariant to local node translations. This im-
plies that rotational error can be corrected inde-
pendently of positional error by aligning locally-
observed VPs, which represent scene-relative 3-D
line directions.

3.2 Detecting VPs in One Node

Our VP detection algorithm takes image lines,
represented by projective random variables xi, as
input. However, the collection of lines X in a
given node is initially unclassified; that is, lines
are not grouped into parallel sets, and outliers
(arising from visual clutter such as foliage, cars,
and people) are mixed with the lines of interest.
The problem of vanishing point estimation thus
has three components (Fig. 6). First, the number
of groups J (that is, the number of prominent 3-D
line directions) must be established. Next, lines xi

must be classified according to their correspond-
ing 3-D direction or discarded as outliers. Finally,
the vanishing point vj for each group must be es-
timated.

These three problems are tightly coupled, in
that given a deterministic classification of all line
features, the estimation problem reduces to a col-
lection of J isolated projective inference tasks, one
for each line group. Similarly, given a set of J 3-D
directions vj , line classification amounts to evalu-
ating a similarity metric between lines and direc-
tions.

The expectation maximization (EM) algorithm
[DLR77] is a powerful tool for parameter estima-
tion from incomplete or unclassified data. This
section presents an EM formulation for simulta-
neous line classification and vanishing point esti-
mation as inference problems on the sphere. For
the moment, it is assumed that the algorithm is
appropriately initialized; that is, the number J of
prominent vanishing points is known, and an ap-
proximate direction is known for each. Section
3.2.4 describes an efficient Hough transform tech-
nique that determines these quantities.
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Figure 6. Vanishing Point Estimation. Stochastic line
features from a single image are obtained from the fu-
sion of gradient pixel distributions. These lines are
used in a Hough transform, which finds prominent
3-D line directions to initialize an expectation max-
imization algorithm. The result is a set of accurate
vanishing points and a line classification.

3.2.1 Mixture Model. Figure 5 shows that
vanishing points are projective quantities con-
strained by the dual points of contributing projec-
tive lines. Thus each of the J observed vanishing
points vj is modeled as a Bingham random vari-
able with unknown parameter matrix M �j , formed
by fusion of appropriate uncertain line features.
The entire dataset X is a collection of unclas-
sified samples from the set of random variables
V = {v0 . . . , vJ}, where v0 represents an un-
known outlier distribution; thus, X is modeled by
a mixture of J + 1 Bingham densities p(xi|j,V),
so that

p(xi|V) =

J
∑

j=0

p(xi|j,V)p(j|V),

where p(j|V) is a prior probability representing the
fraction of observations generated by vj . Each
observation xi represents an uncertain line fea-
ture with known equatorial Bingham distribution
B3(xi; M i). The parameter matrices M i are max-
imum likelihood estimates obtained from image
gradients computed during line detection. Once
the M i are available, the algorithm’s E-step and
M-step can proceed in alternation.

3.2.2 The E-Step. In the E-step of the EM
algorithm, a set of posterior probabilities αij is
computed which effectively “weigh” each observa-
tion xi during the estimation of the parameters
M �j for distribution j in the subsequent M-step.
The weights αij are given by

αij = p(j|xi, Ṽ) =
p(xi|j, Ṽ)p(j|V)

∑J

m=1 p(xi|m, Ṽ)p(m|V)
,

where Ṽ represents the vanishing point distribu-
tions as computed from the previous M-step. As-
suming the prior probabilities p(j|V) and current
parameter estimates M �j are known (either from
the previous step or from initialization), all that
remains is to calculate the mixture component
probabilities p(xi|j,V).

Intuitively, each p(xi|j,V) represents the likeli-
hood of the line xi given that it belongs to vanish-
ing point vj . If the line observation were determin-
istic, this likelihood would be simply B3(xi; M �j ).
However, xi is a stochastic measurement itself rep-
resented by a probability distribution. Bayesian
arguments can therefore be used to determine its
likelihood. Let x0

i represent a particular measure-
ment from the distribution of xi; then

p(xi|j,V , x0
i ) =

1

c(M �j )
exp((x0

i )
>M �j (x0

i )).

To eliminate the dependence on the particular
value of xi, the joint likelihood is integrated over
all possible measurement values:

p(xi|j,V) =

∫

p(xi|j,V , x0
i )p(x0

i )dx0
i

=

∫

1

c(M �j )
exp

[

(x0
i )

>M �j (x0
i )
]

·
1

c(M i)
exp

[

(x0
i )

>M i(x
0
i )
]

dx0
i

=
1

c(M �j )c(M i)

·

∫

exp[(x0
i )

>(M �j + M i)(x
0
i )]dx0

i

=
c(M �j + M i)

c(M �j )c(M i)
.

Thus p(xi|j,V) can be calculated as a ratio of nor-
malizing coefficients from three different Bingham
densities.

3.2.3 The M-Step. Once the weights are
known, the Bingham parameter matrices M �j of
each vanishing point distribution can be estimated
by maximizing the log likelihood function

k
∑

i=1

J
∑

j=1

αij log[p(xi|j,V)p(j|V)] + log p(V) (2)

where p(V) is a prior distribution on the vanishing
points, and k is the total number of line features.
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The exponential form of the Bingham distribution
facilitates calculation of the log likelihood. Every
parameter matrix M �j is computed independently
by fusing all k observations xi, each weighted by
the αij from the E-step. Using Eq. (2) and pooling
the M i yields

M �j =

k
∑

i=1

αijM i + M0

j

where M0

j represents the prior on vj (Section
3.2.4).

3.2.4 EM Initialization Using HT. Prop-
erly formulating and implementing the EM al-
gorithm described above requires the number of
vanishing points J to be known. In addition,
convergence to the correct solution (i.e. avoid-
ance of local optima) requires reasonably accu-
rate initial parameter estimates. Both quantities
can be obtained using a Hough transform [Bar83].
We circumvent the practical difficulties of accu-
racy and parameterization involved in implement-
ing the HT by using it only to initialize the EM
algorithm and to generate a strong prior on the
vanishing point estimates.

The HT parameter space is � 2 (i.e. the space of
all 3-D line directions), and constraints take the
form xi · vj = 0, where here the xi are the po-
lar (dual) directions of the input lines. The whole
of � 2 is discretized using a cubic parameterization
[TPG97], with bin size chosen as a small multi-
ple of the feature noise. Geometrically, each con-
straint represents a projective line (great circle)
with normal xi; intersection of this line with three
faces of the unit cube results in a set of at most
three straight lines, which are easily discretized
using standard clipping and drawing algorithms.

After accumulating the data, the algorithm
identifies peaks in the accumulation space, each
of which represents a likely vanishing point direc-
tion. The number of mixture components J used
in the EM algorithm is taken to be the number
of statistically significant peak directions, and the
initial VP estimates are the vectors from the origin
through each peak.

Peak directions also serve as priors p(vj), each
of which is formulated as a bipolar Bingham den-
sity (κ1 ≤ κ2 � 0) whose modal axis is aligned
with the peak direction. The parameter matrix
M0

j for the prior density can be determined by

Figure 7. Hough Transform for VP Detection. A
Hough transform of real line data. The HT algo-
rithm accumulates all lines in a given node, then
finds peaks in the antipodally-symmetric accumula-
tion space, implemented as three faces of a unit cube.

forming a scatter matrix (Eq. (1)) from accumu-
lation values in a region around the peak.

3.3 Registering Node Pairs

Once vanishing points have been estimated for
each node, the relative rotation bringing any pair
of nodes into registration can be determined by
aligning two or more distinct VPs viewed by both
nodes. Section 3.3.1 reviews the classical, deter-
ministic formulation for two-camera registration
when VP correspondence is known. Section 3.3.2
extends this classical method: it models uncer-
tainty in the resulting rotations as the fusion of
deterministic samples from a Bingham distribu-
tion on � 3, and considers how uncertainty in the
vanishing points affects the distribution of each
node’s resulting orientation. Sections 3.3.3 and
3.3.4 address the correspondence problem for the
two-node case, and ambiguities that arise in prac-
tice.

3.3.1 Deterministic Pair Registration.

Consider two nodes A and B, each of which views
a common set of J vanishing points. Let vA

j

and vB
j denote the directions of a particular line

direction dj as seen by each node, and further
assume that B is free to rotate while A is held
fixed. We wish to estimate a single quaternion q

that, when applied to B and its vanishing points,
best aligns vA

j with vB
j . For q to be unique, two

distinct VPs are needed (i.e., we require that
J ≥ 2).

In the classical derivation of the optimal q



130 Antone and Teller

[Hor87], the objective is to determine

argmin �

J
∑

j=1

‖vA
j − R(q)vB

j ‖
2 (3)

= argmin �



q>

J
∑

j=1

A>
j Ajq





= argmin � q>Aq (4)

i.e. the q that minimizes a quadratic error func-
tion. Each 4 × 4 matrix Aj is constructed as a
linear function of the vanishing points vA

j and vB
j .

The solution to Eq. (4) is the eigenvector corre-
sponding to the minimum eigenvalue of the sym-
metric 4× 4 matrix A.

This method minimizes the error metric of
Eq. (3) but, aside from the scalar error residual,
produces no notion of uncertainty in the result q;
nor does it treat uncertainty in the VPs them-
selves. The next section shows how to incorporate
uncertainty into the estimation of q.

3.3.2 Stochastic Pair Registration. Recall
from Section 2.3 that rotational uncertainty can be
described as a Bingham distribution on � 3 charac-
terized by a 4× 4 matrix of parameters M � . The
matrix A obtained in Eq. (4), when properly nor-
malized, is analogous to a sample second moment
matrix: it is symmetric and positive semidefinite,
and its eigenvalues sum to unity. A is a sum of
J matrices A>

j Aj that also possess these proper-
ties. Each of these constituent matrices can be
viewed as the squared contribution of a “sample”
qj formed from an individual vanishing point cor-
respondence. Thus, a parameter matrix M � for
the distribution on the resulting quaternion q can
be obtained directly from A using the ML method
mentioned in Section 2.3.

This method can be used only for measurements
of equal weight. Extension to weighted data is
straightforward, involving a normalized, weighted
sum of constituent sample matrices [AT00]. In the
general case, however, where vanishing points are
described as Bingham variables, the distribution
on � 3 induced by each correspondence must be
computed.

Every matrix Aj is a function of the vanishing
point directions in its underlying correspondence.
Thus, the parameters of the Bingham distribution

associated with Aj can also be expressed as a func-
tion of these directions. Given particular sample
values of vanishing point distributions vA

j and vB
j ,

define M(vA
j , vB

j ) as the parameter matrix of the
associated distribution. Then the contribution of
correspondence j can be obtained by Bayesian in-
tegration over all possible sample values of the two
constituent vanishing points:

p(qj) =

∫

�
2

∫

�
2

p(qj |v
A
j , vB

j )p(vA
j )p(vB

j )dvA
j dvB

j

=

∫

�
2

∫

�
2

B4(qj ; M(vA
j , vB

j ))

·B3(v
A
j ; MA)B3(v

B
j ; MB)dvA

j dvB
j .

This quantity can be approximated by a Bingham
distribution on � 3 with parameter matrix M j . (In
general, M j is not exact due to the nonlinear de-
pendence of qj ∈ S3 on vA

j and vB
j ∈ S2.) Once

distributions have been determined for each cor-
respondence qj , the final aggregate distribution is
described simply by

M � =

J
∑

j=1

M j . (5)

3.3.3 Matching VPs Across a Node Pair.

The registration methods above assume that one-
to-one correspondence has been established be-
tween vanishing points detected in a given pair
of nodes. In general, determining correspondence
is difficult without additional information. How-
ever, if the two relevant nodes view sufficient com-
mon scene geometry, then approximate initial pose
is typically sufficient to establish consistent corre-
spondence. This section presents heuristic meth-
ods to determine local (i.e. two-node) correspon-
dence.

If two nodes view overlapping scene geometry,
then the sets of VPs detected in each node are
likely to contain common members. In this case
nodes A and B have in common a set of VPs re-
lated by a single rigid rotation q.

Since at least two correspondences are needed
to find a unique rotation relating the two nodes,
relative angles between pairs of vanishing points in
each node can be used as matching criteria. For
example, if the angle between vA

1 and vA
2 differs

significantly from that between vB
1 and vB

2 , then
this pair couplet cannot possibly match. Thus,
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only those pair couplets are considered whose rel-
ative angles are within a small threshold of each
other. Angular thresholds are related to the
Bingham parameters of the respective vanishing
point distributions; highly concentrated distribu-
tions thus have tighter thresholds than do distri-
butions with more spread. Since vanishing points
are axial, there are two angles to consider (sum-
ming to 180◦); the minimum of the two is used for
comparison (Fig. 8a).

For each pair couplet meeting the relative angle
criterion above, the algorithm computes a score
si as follows. First, the VP pair from node B is
rotated to the VP pair from node A by q using
the deterministic pair registration technique from
Section 3.3.1; the direction of each VP is taken as
the major axis of its associated Bingham distri-
bution. The positive angle of rotation θi required
to align the two pairs is noted, and the remain-
ing vanishing points from B are then rotated by
q and compared with each vanishing point from
A. The total number Ni of vanishing points that
align to counterparts in A within a threshold an-
gle, including the original pair, is tabulated.

Pair
Couplet

VP
Pair

Correct
Angle

Incorrect
Angle

(a) (b)

Figure 8. Pair Couplets. (a) There are two possible
choices when comparing relative angles in axial quan-
tities. By convention, the smaller of the two is chosen.
(b) A matching pair couplet is depicted. Relative an-
gles between the pairs are identical despite the fact
that the nodes are not rotationally aligned.

Each score is then computed as si = Ni/θi. This
emphasizes correspondence sets containing many
matches, while preserving the assumption that the
relative rotations are already known to reasonable
accuracy. The correspondence set with the highest
score is chosen as the “correct” set, for later use
in global rotational alignment (Section 3.4.3).

Let J represent the number of VPs viewed by
each node. Then enumeration of all possible VP
pairs per node is O(J2), and enumeration of all
possible pair couplets is O(J4). Computation of
correspondence sets for each couplet is O(J2), so
the work required overall is O(J6). In practice J
is small—typically less than 6.

3.3.4 Correspondence Ambiguities. Rota-
tion as presented in Section 3.3 requires corre-
spondence between signed directions, but vanish-
ing points are axial (i.e. undirected) quantities.
Thus for each pair couplet meeting the relative an-
gle criterion, two different rotations, differing by
180◦, must be computed along with their scores,
one for each combination of VP sign.

Other ambiguities can arise that are not so eas-
ily resolved, especially in urban scenes consisting
of mutually orthogonal lines. Since relative an-
gles between multiple pairs of vanishing points
can be identical (e.g. 90◦) within a single node,
there may exist several plausible match configu-
rations. If there is significant error in initial ro-
tational pose and if correspondence ambiguities
exist, the matching algorithm can fail, finding a
plausible but incorrect match assignment. In our
system, the sensor’s initial orientation estimates
are usually accurate enough to avoid this problem.

3.4 Registering Node Clusters

The above treatment of rotational registration is
deficient in two respects. First, it determines ex-
plicit or “hard” correspondence among vanishing
points rather than stochastic correspondence; sec-
ond, it considers only two nodes at a time. This
section presents a multi-node extension for rota-
tional registration which addresses the above con-
cerns and produces a globally optimal set of node
orientations along with the associated uncertainty
of each.

Final
OrientationsOptimal

Rotation
Estimation

(M-Step)
Clustering

(E-Step)
VPs

Probabilistic Correspondence

Orientations

Scene Directions

Initial
Pose

Figure 9. Global Orientation Recovery. Vanishing
points are aligned with one another to determine
node orientations. A two-level feedback hierarchy is
used: the high level estimates rotations and scene-
relative line directions in alternation; the low level
(outlined) classifies VPs and estimates line directions.

As is typical in vision problems, pose recovery
consists of two coupled sub-problems: correspon-
dence and registration. In our framework, given a
grouping of vanishing points into sets, where each
set represents observations of a true scene-relative
line direction, estimation of relative rotations be-
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comes simpler. Conversely, given a set of accurate
node orientations, determining correspondence is
simplified. This suggests an iterative bundle-
adjustment scheme that alternately estimates ori-
entations given correspondence, then establishes
correspondence given orientations (Fig. 9).

Rotations and correspondence are initially pro-
duced by exhaustive search (Section 3.4.3). Global
(scene-relative) directions are estimated based on
vanishing point clusters; each node is then ro-
tated until its vanishing points optimally align
with these global directions, and the process re-
peats. There are two levels of feedback in the
process, one at the high level of rotational bun-
dle adjustment and the other in the estimation
of global line directions, which alternates between
determination of probabilistic correspondence and
estimation of directional distributions.

3.4.1 EM for Multi-Node Registration.

This alternation between classification and esti-
mation suggests application of an EM algorithm,
which would circumvent the need for explicit cor-
respondence and provide an adequate probabilis-
tic estimation framework. At its core, the prob-
lem is to determine the probability distributions
of a set of rotations in the form of quaternions,
Q = {q1, . . . , qM}, based solely on the data
V = {V1, . . . ,VM}, where V i is the set of vanish-
ing points vi

j detected in node i. Probabilistically,
this can be written as

argmaxQ[p(Q|V)].

However, the rotations depend on scene-relative
line directions D, as well as correspondence C be-
tween these directions and the vanishing points in
each node. Using Bayes’ rule, the likelihood to be
maximized can thus be rewritten as

p(Q|V) =

∫

D

p(Q|D,V)p(D|V)dD

=

∫

D

∑

C

p(Q|C,D,V)p(C|D,V)p(D|V)dD.

Note that a sum is taken over C rather than an
integral, because the set of correspondence con-
figurations is discrete. The quantity p(D|V) rep-
resents the prior distribution on global line direc-
tions given only the vanishing point data, and is
taken to be uniform, since in the absence of rota-
tional pose, nothing is known about this distribu-

tion. The quantity p(C|D,V) is the prior distribu-
tion on correspondence given only global line di-
rections and vanishing points (not rotations). This
distribution can be approximated from the pair-
wise correspondences established in Section 3.3.3.

The high-level EM algorithm alternates between
two steps. First, it computes the likelihoods
p(C,D|Q,V). Next, it maximizes the expression

∫

D

∑

C

p(C,D|Q,V) log p(Q|C,D,V)dD.

The likelihoods computed in the E-step serve as
weights on the conditional log-likelihood maxi-
mized in the M-step. Conditioned on line direc-
tions and correspondence, the quaternions are in-
dependent of one another because vanishing points
in each node can be rotated in isolation to opti-
mally align with the global line directions. Thus,

log p(Q|C,D,V) = log

M
∏

i=1

p(qi|C,D,V)

=
M
∑

i=1

log p(qi|C,D,V)

and each quaternion can be estimated indepen-
dently. Maximization proceeds as described in
Section 3.3.2, with the Bingham distribution of
orientation qi specified by M

�

i , which represents
a weighted sum of correspondence matrices of the
form in Eq. (5).

3.4.2 EM for Multi-Node Correspon-

dence. The algorithm above solves the M-step
of the bundle adjustment, but the E-step still
remains—the likelihoods p(C,D|Q,V) must be
computed. Intuitively, these likelihoods repre-
sent distributions on correspondence C and scene-
relative line directions D given Q, the current set
of orientation estimates. However, C and D are
coupled; knowledge of the line directions influ-
ences the groupings, and vice versa.

Let ṽi
j represent vanishing point j in node i after

rotation by qi; the set of all such directions serves
as the pool of data to be grouped. Further, let dk

represent a scene-relative 3-D line direction. The
problem then becomes to simultaneously estimate
the dk and classify the ṽi

j .
This formulation is identical to the vanishing

point estimation problem of Section 3.2. The col-
lective dataset Ṽ is drawn from a weighted mixture
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of Bingham distributions of dk; the only difference
is that the underlying samples are now bipolar
rather than equatorial. Applying the lower-level
EM algorithm estimates the line direction distri-
butions dk and produces a probabilistic assign-
ment of individual vanishing points to each dk. Af-
ter convergence, the resulting assignment weights
are fed back into the M-step of Section 3.4.1.

3.4.3 Initialization. As noted above, EM al-
gorithms are effective only when properly initial-
ized. This requires that the number of mixtures
be known (in this case, the number J of 3-D line
directions), and that reasonable initial values be
supplied (in this case, rotations and correspon-
dences). This section outlines the initialization of
the EM technique.

The initialization stage takes the node adja-
cency graph as input and proceeds as follows.
First, it applies the two-node correspondence tech-
nique of Section 3.3.3 to each adjacent node pair,
extracting unique vanishing point matches. It
then combines multiple matching VPs into single,
global line directions. The algorithm proceeds as
follows:

Clear the list of global line directions (GLDs)
For each node pair in adjacency graph

Apply two-node VP correspondence
For each VP pair matched

If neither VP exists in any GLD
Create new GLD and add to list
Link both constituent VPs to new GLD

Else if one VP exists
Find its GLD
Link other VP to this direction

Else if both VPs exist
If associated with different GLDs

Merge the two GLDs

This algorithm produces a list of vanishing point
clusters, each of which represents observations of a
single scene-relative 3-D line direction. The mix-
ture model components of Section 3.4.2 are ini-
tialized to these VP clusters, and the correspon-
dence weights (i.e., the probabilities associating
VPs with global line directions) are initialized to
binary values according to the grouping above.
Any node with fewer than two VPs is tagged as
unalignable. The algorithm can produce separate
VP clusters representing the same 3-D direction.
The EM algorithm (Section 3.4.1) combats this by

merging all clusters that overlap with at least 95%
probability.

4 Position Recovery

Recovery of structure and motion from image in-
formation encompasses several coupled problems:
camera registration, feature correspondence, and
scene structure. Rotational registration of the
cameras simplifies the epipolar geometry and re-
duces the dimension of the search space, but the
coupling between correspondence and node po-
sitions remains. Our approach is to estimate
both correspondence and position simultaneously
as probability densities, deferring commitment to
deterministic values until global information is as-
sembled and propagated throughout the node net-
work.

4.1 Overview

The position recovery algorithm proceeds as fol-
lows (Fig. 10). First, translation directions (base-
lines) are estimated for every adjacent node pair
in the network (Sections 4.2, 4.3), using a Hough
transform on all possible feature matches. This
approximate direction initializes an EM method
whose E-step samples from a high-dimensional dis-
tribution using a Markov chain Monte-Carlo algo-
rithm. This MCEM algorithm averages over all
possible correspondence sets to determine the best
motion direction (Section 4.4).

The position recovery algorithm next assembles
all pairwise baselines into a global optimization
that estimates the camera positions most con-
sistent with the baselines (Section 4.5). A final
step rigidly transforms the resulting network to
be maximally consistent with the sensor’s (Earth-
relative) position estimates (Section 4.6).

Metric
Registration

Global
Optimization

MCEM

Geometric
Constraints

Hough
Transform

Point Features

Orientations

Approximate
Baselines

Accurate
Baselines

Pose
Configuration

Final
Positions

Plausible Matches

Initial
Positions

Figure 10. Translational Registration.

4.2 Two-Node Baseline Geometry

Given two rotationally registered nodes A and
B, and their respective feature sets X =
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{x1, . . . , xM} and Y = {y1, . . . , yN}, we wish
to determine the motion direction (or baseline) b

from A to B most consistent with the available
data. This section describes the simplified epipo-
lar geometry that arises when the rotation relating
A and B is known, and presents geometric con-
straints that may be used to reject unlikely point
matches. Given a set of explicit matches, baseline
estimation reduces to a projective inference prob-
lem similar to that of vanishing point estimation.

4.2.1 Epipolar Geometry. An epipolar plane
P contains two node centers and a 3-D point ob-
served in both nodes (Fig. 11). Projections of the
3-D point onto each of the images, xi and yj re-
spectively, must therefore also lie in P . For ro-

Baseline

3-D
Point

Epipolar
Plane

Epipolar
Line Dual

Epipolar
Line

xi

yj

b

Baseline
Dual

m

(a) (b)

Node A

Node B

Focus of
Contraction

Figure 11. Pair Translation Geometry for Rotation-
ally Aligned Nodes. (a) A single 3-D point lies in an
epipolar plane containing the baseline and any pro-
jective observations of the point. The epipolar line is
analogous to an image line feature. (b) The epipolar
planes induced by a set of 3-D points forms a pencil
coincident with the baseline. The normals of these
planes thus lie on a great circle orthogonal to the
baseline direction.

tationally registered nodes, the following relation
holds:

(xi × yj) · b = 0. (6)

Intuitively, the cross product of xi with yj is or-
thogonal to P , and thus orthogonal to the baseline
b (since P contains b). Here, observations con-
sist only of the 2-D feature projections, and the
baseline is unknown; however, Eq. (6) provides a
constraint on b. Thus b can be inferred, up to un-
known scale, solely from two or more correspond-
ing feature pairs.

Define mij ≡ xi × yj . For the correct pairs of
i and j—that is, for those (i, j) couplets in which
xi and yj arise from a single 3-D scene point—the
constraint in Eq. (6) becomes

mij · b = 0.

If the mij are interpreted as projective epipolar
lines, then the baseline b is the projective focus

of expansion, and its antipode the focus of con-

traction, the apparent intersections of all epipolar
lines (Fig. 11).

4.2.2 Geometric Match Constraints. Both
correspondence and the baseline are initially un-
known, so the above construction may at first ap-
pear hopelessly underconstrained. There are MN
possible individual feature matches and

F ′

∑

F=0

(

M

F

)(

N

F

)

F !

possible correspondence sets, making the search
space enormous (super-exponential in the number
of features; see Appendix). However, matching
constraints can drastically lower the search space
dimension, both by reducing the number of fea-
tures in each node, and by eliminating most candi-
date correspondences. The constraints presented
here rely on two assumptions: first, that each
point feature arises from the intersection of two
or more 2-D line features; and second, that the
true baseline lies within a bounded region inferred
from rough initial pose.

The 3-D line directions and 2-D line feature
classification obtained from rotational pose recov-
ery both provide strong cues for feature culling
and point correspondence rejection. Presumably,
objects exhibiting parallel lines possess sufficient
structure for determination of translational off-
sets; thus, the algorithm discards point features
not associated with any parallel line set (i.e., those
whose constituent lines have high outlier probabil-
ity). Also, it discards point features inferred from
lines subtending less than a threshold angle (i.e.,
those that could not be reliably localized).

A set of all possible candidate matches is con-
structed from the remaining sets of point features.
Each match is evaluated according to the following
criteria:

• Constituent line directions. The 3-D line
directions forming xi must be identical to
those forming yj (Fig. 12); otherwise the pu-
tative match mij is discarded.

• Baseline uncertainty bound. The an-
gular bound on the baseline direction in-
duces a conservative equatorial band within
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A B
C E

D

Figure 12. Line Constraints. Given two images of
the same building, a point feature A in the first im-
age has several plausible matches. Point B is the true
match, but C and D are also plausible because they
are formed by the intersection of lines whose direc-
tions match those of the lines forming A (note that
D is formed by the intersection of three rather than
two distinct line directions). The directions of the
lines forming E do not match those forming A, so E

is rejected.

which all true epipolar plane normals must lie
(Fig. 13); matches outside this band are dis-
carded. Analogously, matches for which yj

is closer than xi to b are discarded, as they
imply backward motion.

• Depth of 3-D point. An excessive angle be-
tween xi and yj implies either a 3-D point too
close to the node, or an abnormally long base-
line. Such matches are therefore discarded.
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Figure 13. Direction Constraints. (a) Uncertainty in
the baseline direction induces an equatorial band of
uncertainty for epipolar lines. The match between
features � and � is plausible because it implies mo-
tion in the correct direction. (b) The match between

� and � 1 is rejected because its epipolar line does
not lie in the uncertainty band; the match with � 2 is
rejected because it implies backward motion.

4.3 Single Baseline Inference

This section describes methods for inferring the
translation direction between a pair of nodes, first
assuming explicit correspondence is known, then
relaxing this assumption. As noted above, a
given correspondence between features xi and yj

constrains the inter-node baseline b according to
Eq. (6), and a set of such correspondences can be
used to estimate b.

Projective fusion techniques can be used to es-
timate the probability density of b. Recall from
Section 1.2 that every point feature represents the
intersection of two image lines, each of which is an
uncertain equatorially-distributed Bingham vari-
able with known parameters. Bingham uncer-
tainty in the intersection can be determined by
fusing the two lines, so that each point feature’s
Bingham distribution is known. Each correspon-
dence between random variables xi and yj in turn
induces an epipolar line mij , whose equatorial
Bingham distribution can be determined by fu-
sion of xi and yj . The problem that remains is
to determine the distribution of b given a set of
uncertain epipolar line observations mij .

4.3.1 Known Correspondence. If true corre-
spondences between the feature sets X and Y are
known, the baseline distribution parameters M �

can be computed according to the fusion equation

M � = M 0 +
∑

(i,j)∈F

M ij

where M ij represents the uncertainty of the
epipolar line mij , M 0 is the prior distribution
on b, F is the set of F pairings (i, j) represent-
ing true matches, and the sum is taken only over
indices (i, j) ∈ F .

Equivalently, inference can be performed by as-
sociating a binary variable bij with every possible

correspondence, where

bij =

{

1, if xi matches yj

0, otherwise.

The Bingham parameters of b are then

M � = M0 +

M
∑

i=1

N
∑

j=1

bijM ij . (7)

4.3.2 Probabilistic Correspondence. Be-
cause motion directions and point features are un-
certain quantities, and because ambiguous epipo-
lar geometry may arise from certain motions, hard

or explicit correspondence cannot always be deter-
mined. We account for this by using continuous
variables wij ∈ [0, 1], rather than binary variables
bij ∈ {0, 1}, can be applied to the observations
mij , effectively representing the probability that
feature xi matches feature yj .
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Inference of b in this formulation becomes

M � =
M
∑

i=1

N
∑

j=1

wijM ij + M 0,

with more emphasis given to matches with higher
likelihood. (The binary variables bij are the de-
terministic limit of the wij .)

4.3.3 Feature Match Weights. In reality,
each feature observed in one node has at most
one true match in the other node. A true match
exists only if the feature observation corresponds
to a real 3-D point, and if its counterpart in the
other node is visible; otherwise, the feature has no

match—either it is itself spurious, or its match is
unobserved (e.g. occluded or otherwise missed by
detection).

In the case of binary variables, the above con-
dition can be enforced by requiring that at most
one bij for every i, and at most one bij for every
j, is equal to one, and that the rest are equal to
zero. More formally,

N
∑

j=1

bij ≤ 1 ∀i

M
∑

i=1

bij ≤ 1 ∀j. (8)

Inequality constraints are mathematically incon-
venient; thus, the “null” features x0 and y0 are
appended to X and Y , respectively, and the in-
equality constraints of Eq. (8) become equality
constraints via the introduction of binary-valued
slack variables bi0 and b0j [CR00b], which take
value one if xi (or yj , respectively) matches no
other feature, and zero otherwise. Thus,

N
∑

k=0

bik =

M
∑

k=0

bkj = 1
i ∈ [1, M ]
j ∈ [1, N ]

. (9)

To ensure valid weights wij in the probabilistic
case, an analogous condition must be satisfied:

N
∑

k=0

wik =

M
∑

k=0

wkj = 1
i ∈ [1, M ]
j ∈ [1, N ]

. (10)

This condition enforces a symmetric (two-way)
distribution over all correspondences: each feature
in the first node can match a set of possible fea-
tures in the second node, with the weights normal-
ized so that they sum to one, and vice versa.

The set of weights can also be represented by an
(M + 1)× (N + 1) matrix W (or B, in the binary
case), whose rows represent the features X , whose
columns represent the features Y , and whose indi-
vidual entries are the weights themselves (Fig. 14).
The condition in Eq. (10) is then equivalent to
the requirement that the weight matrix be doubly
stochastic, i.e. that both its rows and its columns
sum to one.

N

M

N+1

M+1

Outliers

(a) (b)

Matches

Figure 14. Augmented Match Matrix. The match
matrix encodes correspondences between features in
two different nodes. (a) An example of a binary
match matrix. Rows represent features in the first
node, and columns represent features in the second.
There can be at most one non-zero entry per row and
per column. (b) An augmented matrix, with an extra
row and column to account for outliers and missing
features (i.e., matches to a null feature “∅“). This ma-
trix has exactly one non-zero entry in each row but
the top-most, and each column but the left-most.

4.3.4 Obtaining a Prior Distribution. Be-
cause motion direction and correspondence are
tightly coupled, it is difficult to determine them
without prior information. This section shows how
using initial pose estimates and geometric con-
straints from Section 4.2.2 allows an accurate ini-
tial estimate of b to be obtained without corre-
spondence.

Let M represent the set of all plausible corre-
spondences (epipolar lines) between X and Y , and
let the subset M′ ∈ M contain only the F true
matches. If all lines in M are drawn on � 2, those
in M′ (in the absence of noise) will intersect at
the motion direction b, and the remainder, which
represent false matches, will intersect at random
points on the sphere.

The point of maximum incidence on � 2 is then
the most likely baseline direction. This point can
be found by discretizing � 2 and accumulating all
candidate epipolar lines M in a Hough transform
(Fig. 15). Since the approximate motion direction
is known, the transform need only be evaluated
over a small portion of the sphere’s surface around
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Figure 15. Hough Transform for Baseline Estima-
tion. Two examples of Hough transforms for baseline
estimation. Epipolar lines for all plausible matches
are accumulated; the transform peak represents the
baseline direction.

this approximate direction. As in Section 3.2.4,
we choose the bin size as a small multiple of the
feature noise.

The motion direction b0 can be determined as
the peak in the transform with highest magnitude.
False correspondences outnumber true correspon-
dences, however, because there are MN possible
matches and only F (at most min(M, N)) true
matches. The desired peak may therefore be ob-
scured by spurious peaks. For example, a point
feature in one node lying very close to the mo-
tion direction can match many features in the
other node, producing a sharp, false peak when
all matches are equally weighted (Fig. 16).
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Figure 16. False Hough Transform Peaks. (a) False
peaks in the Hough transform can be caused by fea-
tures too close to the motion direction, which have
many matches and thus produce high-incidence re-
gions. (b) An example in which false peaks are evi-
dent. (c) The same example after normalization.

To solve this problem, a set of weights wij must
be assigned to the epipolar lines in M that de-
emphasizes features with many possible matches.
These weights must also satisfy Eq. (10). We
use an iterative normalization procedure [Sin64] to
transform the initial (invalid) match matrix into a
(valid) doubly stochastic matrix. First, the matrix
W is set to zero; entries for matches satisfying the
geometric constraints of Section 4.2.2, as well as
all entries in row M + 1 and column N + 1, are
then assigned an initial value of one. The algo-

rithm alternatively normalizes rows and columns
until convergence as follows:

w′
ij = wij

/

N
∑

j=0

wij ∀i ∈ {1, . . . , M};

w′′
ij = w′

ij

/

M
∑

i=1

w′
ij ∀j ∈ {1, . . . , N}.

The algorithm produces a provably unique,
doubly-stochastic matrix W ′. The new matrix
does not represent the “correct” distribution, be-
cause it is somewhat arbitrarily initialized, but it
provides a useful approximation for the purposes
of the Hough transform described above.

For a planar accumulation space, each linear
constraint of the form in Eq. (6) contributes a sin-
gle straight line to the transform. After weights
have been obtained, the epipolar lines are accumu-
lated, weighted by the appropriate value wij . This
normalization to a valid probability distribution
over correspondences dramatically improves the
coherence of the true motion direction (Fig. 16c).

Although the Hough transform’s discrete nature
inherently limits its accuracy, the resulting mo-
tion direction estimate b0 is used only to initialize
a more accurate technique (described in the next
section). Further, it can be used as a strong prior
distribution (with parameters M0 in the notation
of Section 4.3) in subsequent inference. The ma-
trix M 0 is computed from a bipolar scatter matrix
approximation in the region surrounding the peak.

4.4 Monte Carlo EM

In general, true feature correspondence is un-
known; feature point measurements and uncer-
tainty are the only information available for base-
line inference. This section outlines a method
for determining accurate motion estimates with-
out explicit correspondence. Using maximum like-
lihood notation,

b∗ = argmax � [p(b|M)]. (11)

The conditional probability p(b|M) can be ex-
panded using Bayes’ rule:

p(b|M) =
∑

�

p(b|B,M)p(B|M) (12)

where B is a valid binary-valued correspondence
matrix, and p(B|M) is the prior distribution on
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the correspondence set. This prior distribution
incorporates the geometric match constraints of
Section 4.2.2. As in Section 3.4.1, the likelihood
is expressed as a summation rather than an inte-
gration, because the collection of all possible cor-
respondence sets is discrete.

4.4.1 Baseline Estimation Without Cor-

respondence. The expression in Eq. (11) suggests
that the optimal estimate of the motion direction
b can be found without using explicit correspon-

dence, by maximizing p(b|M) alone [DSTT00].
Correspondence sets can be treated as nuisance
parameters in a Bayesian formulation, as in
Eq. (12), in which the likelihood is evaluated over
all possible matrices B. The EM algorithm is well-
suited to this classification/optimization problem.
Convergence to the optimal solution is virtually
guaranteed because of the initial estimate pro-
vided by the Hough transform.

The log likelihood to be maximized is

L =
∑

�

p(B|b,M) log p(b|B,M). (13)

Substituting Eq. (7) into Eq. (13) gives

L ∝ b>M0b

+
∑

�

p(B|b,M)
M
∑

i=1

N
∑

j=1

bijb
>M ijb. (14)

Define wij as the marginal posterior probability of
match bij , regardless of the other matches; that is,

wij ≡ p(bij = 1|b,M) =
∑

�

δ(i, j)p(B|b,M).

Then Eq. (14) becomes

L ∝ b>M 0b +

M
∑

i=1

N
∑

j=1

wijb
>M ijb. (15)

Given the weights wij , the technique described
in Section 4.3.2 maximizes L. However, determin-
ing the wij is not so straightforward. Individual
matches are not mutually independent, because
information about one match provides information
about others. For example, given that bij = 1, it
must be true that

bik = 0 ∀k 6= j.

Independence therefore does not hold, because

p(bik = 1|bij = 1, b,M) = 0 6= p(bik = 1|b,M),

and the joint likelihood p(B|b,M) cannot be fac-
tored. Precise evaluation of Eq. (15) apparently
requires evaluation of Eq. (14), a difficult task due
to the large number of correspondence sets. How-
ever, the following sections show how to evaluate
the wij efficiently by Monte Carlo sampling.

4.4.2 Sampling the Posterior Distribu-

tion. Markov chain Monte Carlo (MCMC) algo-
rithms are useful for evaluating sums of the form
in Eq. (14). In this context, each valid binary
match matrix Bk represents a distinct state; ran-
dom transitions between states occur until steady

state is reached. If the transition likelihoods are
appropriately chosen, then the steady-state prob-
abilities represent the distribution on B.

Our approach combines Metropolis sampling
[MRR+53], which ensures appropriate transition
probabilities, with simulated annealing [KGV83],
which avoids relative likelihood maxima by vis-
iting a larger portion of the sample space. The
approach can be summarized as follows:

Start with initial temperature T = T0 > 1
Loop until T ≤ 1 (E-step):

Set k = 0
Start with valid state

� 0

Compute initial parameter matrix � 0

Compute initial likelihood coefficient c( � 0)
Set � = 0

Loop until k sufficiently high (steady state):

Randomly perturb state to ˜
� k

Evaluate the likelihood ratio β
If β ≥ 1 Then keep new state

Else keep new state with probability β1/T

If new state kept Then

Set
� k+1 = ˜

� k

Compute � k+1 and c( � k+1)

Else set
� k+1 =

� k

Set � = � +
� k+1

Set k = k + 1
Set � = � /k
Estimate new � given � (M-step)
Set T = αT (for 0 < α < 1)

The likelihood function used to compute β (i.e.,
the ratio of the new likelihood to the old) is

p(Bk|b,M) = c(Mk) exp
[

b>Mkb
]

(16)
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where b is taken as the modal direction of the cur-
rent baseline distribution estimate. Expansion of
Eq. (16) gives

p(Bk|b,M) = c(Mk) exp



b>
M
∑

i=1

N
∑

j=1

bk
ijM ijb



 .

Efficient calculation of the ratio β is described in
Section 4.4.4.

In a particular E-step loop, A is an (M + 1) ×
(N +1) matrix that accumulates the visits to each
state. W is a valid matrix of marginal prob-
abilities (weights) wij obtained by averaging all
state visits. The initial temperature T0 is set
to a relatively low value; high initial tempera-
tures would explore larger regions of the parame-
ter space, which is unnecessary because the Hough
transform provides a reasonably accurate initial
estimate b0. The value of T0 is chosen propor-
tionally to the uncertainty of b0, and is typically
between 1.5 and 2.0 in practice.

The MCMC algorithm requires a valid starting
state, and random state perturbations that satisfy
detailed balance (meaning that every valid state
is reachable from every other valid state). Thus
perturbations must be defined which can visit the
entire state space. These perturbations are de-
scribed next.

4.4.3 Match Perturbations. When Bk is a
square permutation matrix (i.e. all features are
visible in all images), simple swap perturbations
suffice to reach all states [DSTT00], so that Bk+1

is identical to Bk except for a single row or column
swap (Fig. 17). However, when the number of 3-D
features is unknown, or when outliers and occlu-
sion are present, detailed balance is no longer sat-
isfied by simple match swapping, since states with
more or fewer matches than the current state are
never reached.

We generalize this technique, in the two-camera
case, to handle an unknown number of visible 3-D
features, and also to handle outliers and occlusion.
First, we augment the state matrix B and prob-
ability matrix W with an extra row and column
(Section 4.3.3) to represent an appropriate state
space (i.e. to account for unmatched features).
Second, we introduce novel, complementary split

and merge perturbations that allow all states to be

(a) (b)

Figure 17. Row and Column Swaps. (a) Two rows
of the match matrix, including outliers, are inter-
changed. (b) Two columns are interchanged.

visited (Fig. 18). The split perturbation converts
a valid match into two outliers. The merge per-
turbation joins two outliers into one valid match.

(a) (b)

Figure 18. Split and Merge Perturbations. (a) A valid
correspondence is split into two outliers, reducing the
number of valid matches by one. (b) Two outliers are
merged into a valid correspondence, increasing the
number of valid matches by one.

4.4.4 Efficient Sampling. The sampling algo-
rithm outlined above may seem computationally
expensive, especially for the large state matrices
typical of real images with many features. How-
ever, three optimizations can be applied to signifi-
cantly improve the algorithm’s performance. Most
entries of any given state matrix are zero; in fact,
out of (M + 1)(N + 1) possible entries, a maxi-
mum of M + N are non-zero (this corresponds to
the case where all features are outliers). Thus the
first optimization is to use sparse matrix represen-
tations for B and for state perturbations. Because
of the geometric match constraints from Section
4.2.2, many configurations B are invalid. Thus,
the second optimization is to consider only those
state perturbations involving valid matches.

The final optimization involves computation of
the likelihood ratios β. Each perturbation rep-
resents only an incremental change in the state
involving at most four entries in B. The expo-
nential form of the likelihood function in Eq. (16)
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facilitates computation of ratios:

β =
p(B̃

k
|b,M)

p(Bk|b,M)
=

c(M̃
k
) exp

[

b>M̃
k
b
]

c(Mk) exp
[

b>Mkb
]

=
c(M̃

k
)

c(Mk)
exp

[

b>(M̃
k
− Mk)b

]

. (17)

When swapping two rows, say row m which con-
tains a one in column n with row p which con-
tains a one in column q, most terms in the sum
of Eq. (16) remain unchanged; only bmn, bmq, bpn,
and bpq differ. The new matrix is

M̃
k

= Mk − Mmn + Mmq + Mpn − Mpq ,

which involves only four new terms that can be
computed from the current parameter matrix.

Split and merge perturbations have equally sim-
ple incremental computations, since they also in-
volve only a few entries of Bk. If a valid corre-
spondence bmn is split into outliers bm0 and b0n,
the new parameter matrix is

M̃
k

= Mk − Mmn.

If two outliers bm0 and b0n are merged into a valid
correspondence bmn, the new parameter matrix is

M̃
k

= Mk + Mmn.

Thus, in each case the difference (M̃
k
− Mk) in

Eq. (17) can be computed incrementally.

4.5 Multi-Node Position Optimization

At this point, the algorithm has approximate node
positions from the sensor, and has recovered pro-
jective pairwise baselines (i.e., motion directions
up to an unknown scale factor). This section il-
lustrates how the baseline directions can be used
to recover a globally self-consistent pose config-
uration. We employ an iterative algorithm that
updates each node’s position pi using baseline con-
straints imposed by the node’s neighbors. At each
iteration, the list of all nodes is traversed in ran-
dom order. For a given node i, a set of constraints
is assembled by constructing rays originating at
the current positions pj of its neighbor nodes and
emanating in the direction of the baselines bji

p1

p2

p3

b12
b23

b13

b31
b32

b21

(a) (b)

Figure 19. Assembling Translation Directions. (a)
After motion directions are estimated between all rel-
evant node pairs, node positions remain unknown.
(b) A pose configuration consistent with all motion
directions can be determined.

p’1

p2

p3

p4

b21
b31

b41

Figure 20. Single Node Baseline Constraints. A
node’s position is constrained by adjacent positions
and baselines.

(Fig. 20). For perfect baselines, the new po-
sition p′

i for node i is computed to minimize its
sum-of-squared distance to the rays as

p′
i =

(

∑

j
Cji

)−1 (∑

j
Cjipj

)

, (18)

where Cji = I − bjib
>
ji. Uncertainty in baseline

directions can be incorporated by replacing bjib
>
ji

in Eq. (18) with the second-moment matrix of the
baseline’s Bingham density. Uncertainty in p′

i, in
the form of a 3 × 3 Euclidean covariance matrix,
is given by the inverse matrix in Eq. (18).

4.6 Metric Registration

The pose estimates produced by the method of
Section 4.5 are globally self-consistent. How-
ever, they reside in an arbitrary coordinate system
that does not necessarily correspond to the metric
space of the scene. Thus we must deduce the rigid
transformation (consisting of a translation, rota-
tion, and scale) that expresses the node pose in
this metric space, while preserving the local rela-
tionships among nodes. The sensor produces pose
estimates in absolute (Earth-relative) coordinates
[BdT99]. These estimates provide a ground-truth
reference frame to which the node network is to be
registered. We assume that the sensor is unbiased,
so that the Euclidean transformation that best fits
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recovered node positions to initial node positions
produces an optimal pose assignment.

4.6.1 Absolute Orientation. This section re-
views a deterministic 3-D to 3-D registration algo-
rithm [Hor87] that finds the translation, rotation,
and scale that best align N recovered node po-
sitions (source points) xi with N corresponding
initial positions (target points) yi (Fig. 21).

(a) (b) (c) (d)

x0y0

xiyi

Figure 21. Metric Registration Process. A two-
dimensional depiction of metric registration. (a) The
source configuration is shifted so that the two cen-
troids coincide. (b) Rays from the centroid to each
node are rotationally aligned. (c) The optimal scale
is computed and applied. (d) The final configuration.

First, each point set is translated so that its cen-
troid is coincident with the origin. The resulting
point sets are

x̃i = xi − x0, ỹi = yi − y0

where

x0 =
1

N

N
∑

i=1

xi, y0 =
1

N

N
∑

i=1

yi.

This allows rotation and scale to be applied rel-
ative to the same origin, namely the centroid x0

and y0 of the two 3-D point sets.
The source points are then rotated by a matrix

R to optimally align the rays through the points
x̃i and ỹi originating at x0 and y0. The rotation
R is computed using the deterministic two-node
rotation method of Section 3.3.1. Next, the opti-
mal scale factor s is computed as

s =

√

√

√

√

∑N

i=1 ỹi · ỹi
∑N

i=1 x̃i · x̃i

.

Finally, the points are shifted from the origin to
the target centroid y0. The overall transformation
acting on the source points is thus given by

g(xi) = sR(xi − x0) + y0

= sRxi + t

where t = y0−sRx0. The next section shows how
to transform pose uncertainty accordingly.

4.6.2 Transforming Uncertainty. Let x be
the 3-D position of a given camera before met-
ric registration, with uncertainty described by a
Gaussian random variable with mean x and 3× 3
covariance matrix Λ � , and let y = sRx+ t be the
camera’s position after registration. Since y is a
linear transformation of x, the new covariance is

Λ � = s2RΛ � R>.

Camera orientation is not affected by pure
translation or scale; thus, orientational uncer-
tainty is altered only by the rotation R. We rep-
resent each camera’s orientation by a unit quater-
nion q, which is a Bingham random variable
B4(q; κ, U ). Intuitively, the concentration param-
eters κ should remain unchanged by the rotation;
however, the orthogonal columns of U , each of
which is itself a quaternion, must be transformed
by R. A quaternion acts on another quaternion
as a matrix multiplication; thus, the new orienta-
tion quaternion q̃ is given by q̃ = Qq, where Q is
a 4 × 4 matrix representing R. The same matrix
transforms the columns of U , resulting in a new
random variable B4(q̃; κ, QU ).

5 Experiments

We implemented the registration algorithm in
roughly 12,000 lines of C++ code. This section
assesses the algorithm’s end-to-end performance
on both synthetic and real data using several ob-
jective metrics. Ground truth for the real data
was not available due to its scope. Also, there are
a number of other low-level error sources in the
data, for example small internal mis-calibrations
and noisy feature detection. To assess the reg-
istration algorithm, therefore, we used a variety
of generic and application-specific self-consistency
measures.

5.1 Synthetic Datasets

We generated sets of points and parallel lines in
3-D, then projected them onto unit spheres (i.e.,
synthetic nodes) with controllable noise levels and
outlier percentages. We then evaluated the pose
refinement methods of Sections 3 and 4 using these
synthetic datasets.

5.1.1 VP Detection and Accuracy. We
studied the robustness and accuracy of vanish-
ing point detection (Section 3.2) by applying the
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Figure 22. VP Detection. The percentage of true VPs detected as a function of point projection error (x axis), number
of true line directions (J = 3, 6, 10), and percentage of outlier features (zero, 20, 50, and 80%).

Hough transform EM initialization step (with
roughly 1◦ cells and a 5◦ peak detection window)
to 50 datasets, each with a mixture of 500 points
and outliers. We determined the percentage of
true peaks detected, as well as the angular devi-
ation of the peaks from the true 3-D line direc-
tions, as a function of measurement noise, outlier
percentage, and the number of true line directions
(Fig. 22). Successfully detected VPs were consis-
tently within about 1◦ of the true directions. A
small number of false peaks were identified (about
2%), but only when feature noise exceeded several
degrees.

We studied the subsequent EM algorithm’s
performance for the same parameter variations
(Fig. 23). VP error grew linearly with observation
noise, as expected, and remained nearly constant
as the outlier percentage grew to 60%.

Overall the VP estimation method is robust, but
its performance can degrade as the number of con-
tributing vanishing points increases, because fea-
tures tend to crowd the closed projective space,

causing vanishing point clusters to interfere with
each other. However, real nodes typically observe
fewer than six prominent line directions, so this
interference effect is rare in practice.

5.1.2 Two-Node Orientation Recovery. We
compared the two-node stochastic registration
method (Section 3.3) to classical deterministic reg-
istration using a set of four noisy 3-D line direc-
tions and outliers. Our method more reliably and
accurately aligned the nodes (Fig. 24).

5.1.3 Multi-Node Orientation Recovery.

We studied the end-to-end orientation recovery
method (Section 3.4) by projecting noisy VP ge-
ometry onto randomly situated nodes with noisy
initial orientations (Fig. 25). The algorithm re-
covered accurate orientations for arbitrary initial
orientation error (up to 180◦). Accuracy increased
slightly as either the number of observed van-
ishing points, or the number of observing nodes,
increased—as expected, since estimates generally
improve with more data.
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Figure 23. EM Vanishing Point Error. Average error in VPs estimated by the EM algorithm, as a function of line
feature noise with 50% outliers (left) and outlier percentage with 1◦ feature noise (right).
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Figure 24. Comparison of Two-Node Rotation Methods. The stochastic two-node rotational registration technique is
compared with the classical deterministic technique with four vanishing points. The plots show relative pose error as
a function of vanishing point noise with 0, 1, and 3 outlier directions.
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Figure 25. Multi-Node Orientation Performance. Average orientation error (left) as a function of vanishing point noise
for 10 nodes viewing varying numbers of 3-D line directions. Orientation error (right) as a function of the number of
nodes in the configuration with varying degrees of noise in 4 vanishing points.

5.1.4 Two-Node Baseline Recovery. We as-
sessed the pairwise baseline estimation method
(Sections 4.3, 4.4) while varying feature noise, out-

lier percentage (Fig. 26), input orientation error,
and the number of features (Fig. 27). These exper-
iments used initial baselines perturbed by random
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Figure 26. Baseline Estimation Error I. Baseline error varies roughly linearly with feature noise (left), and is roughly
insensitive to the number of outliers (right).
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Figure 27. Baseline Estimation Error II. Baseline error increases rapidly with the error in supplied node orientations
(left), but eventually plateaus at the baseline bound (Section 4.2.2). Error decreases with increasing number of sample
points (right).

angles with variance σ2, and an uncertainty bound
of 3σ (Section 4.2.2). The algorithm reliably de-
termines the baseline direction, even for a nine-
to-one outlier to data ratio, due to the inherent
robustness of the HT initialization step. The tech-
nique fared less well for noisy orientations. These
violate the assumption of rotationally registered
nodes (Section 4.2), thus preventing strong HT
peaks.

We assessed MCEM baseline estimation (Sec-
tion 4.4.2) by visualizing the evolution of the
match probability matrix (Fig. 28). The method
does not perfectly capture feature correspondence
in the presence of noise. However, perfect cor-
respondence is not needed; the operative perfor-
mance measure is baseline accuracy, not 3-D struc-
ture.

Finally, we compared the baseline estimates ob-
tained from MCEM to those produced by a de-
terministic Iterated Closest Point (ICP) method
(Fig. 29). The ICP algorithm is identical to the
MCEM algorithm, except that instead of estimat-
ing probabilistic match weights at each E-step,
ICP determines the set of “best” one-to-one (i.e.,
binary) matches given the current baseline di-
rection. As feature noise and outliers increase,
MCEM is consistently more accurate than ICP.

5.1.5 Global Registration. We assessed the
accuracy of the global registration stage (Section
4.5), using a set of noisy initial baselines. We re-
covered an end-to-end pose assignment, then com-
pared the recovered and “ground truth” node po-
sitions (Fig. 30). As expected, position recov-
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(a)

(b)

Figure 28. Evolution of MCEM Match Probability Matrix. Evolution of the match matrix as the MCEM algorithm
proceeds. (a) Successive iterations for point feature noise of 0.05◦; correspondence is perfectly recovered. (b) Iterations
for point feature noise of 0.5◦; a few features are misclassified.

ery error grew linearly with baseline perturbations
smaller than 10◦ (or roughly five-meter position
errors for thirty-meter baselines). The accuracy
of the recovered positions did not increase signifi-
cantly as the number of nodes increased, since the
method uses only a constant number of constraints
(one per adjacency) to update each node position.

5.2 Real Datasets

We assessed the end-to-end performance of the
registration method for several real datasets. In
lieu of ground truth, which would be difficult or
impossible to obtain at this scale, we formulated
and evaluated a variety of consistency metrics. We
report the following quantities for each dataset:

• Data Size and Extent. We report the di-
mensions of the acquisition area in meters, the
average inter-node baseline (i.e., the average
distance between a node and its neighbors),
and the number of narrow-FOV (raw) im-
ages, line and point features, omni-directional
nodes, and adjacent node pairs.

• Detected VPs. We report the number of
VPs detected in each node and narrow-FOV
image, and the total number of distinct global
line directions detected. (We define a VP as

detected in a narrow-FOV image if at least
10% of the VP’s constituent 2-D line features
were contributed by that image.)

• Orthogonality Measure. When two VPs
arise from scene lines thought to be orthog-
onal, we report the discrepancy between the
angle they form and 90◦ (“VP Ortho Error”).

• Computation Time. We report average
and total running times for each stage of the
algorithm, excluding file I/O, on a 250 MHz
SGI Octane with 1.5 gigabytes of memory.

• Angular and Positional offsets. We re-
port the average and maximum difference be-
tween each node’s initial pose (from the in-
put) and its output pose (assigned by our al-
gorithm) as “Rot Offset” and “Trans Offset.”
These quantities characterize both the qual-
ity of the system’s initial pose estimates, and
the robustness of the registration methods to
initial pose error.

• Consistency Measures. We report average
and maximum probability density parameters
of vanishing points, node orientations, and
node positions (“VP Bound,” “Rot Bound,”
and “Trans Bound” respectively) by evaluat-
ing the size of the volume enclosing 95% of
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Figure 29. Baseline Recovery with MCEM and ICP
Methods. Baseline recovery error for the (stochas-
tic) MCEM and (deterministic) ICP methods, as a
function of feature noise (top) and outlier percentage
(bottom). MCEM outperforms ICP in both cases.

the underlying probability distribution.

• Feature consistency. We assessed end-to-
end feature consistency by converting each
MCEM match probability matrix to a binary
match matrix. Each match probability ex-
ceeding an 80% threshold was interpreted as
an unambiguous match, and its constituent
point features were examined using two er-
ror measures. We tabulate the average and
maximum 3-D distance (in centimeters) be-
tween rays extruded from each node through
the point feature (“3-D Ray Error”), and the
average and maximum 2-D distance (in pix-
els) between each point feature and its epipo-
lar line in the other node (“2-D Epi Error”).

5.2.1 Tech Square. This dataset consists of 81
nodes spanning an area of roughly 285 by 375 me-
ters. The average inter-node baseline was 30.9 me-
ters. The rotation stage registered 75 (or roughly
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Figure 30. Global Position Recovery. Error in global
position recovery as a function of baseline error (top)
and number of nodes (bottom).

92%) of the nodes, discarding 6 with fewer than
two VPs. The translation stage registered all re-
maining nodes successfully.

Figure 31. Tech Square Node Configuration. The av-
erage baseline was 30.9 meters.

Our algorithm corrected initial pose errors of
over 17◦ and nearly 7 meters. It recovered global
pose consistent on average to within 0.072◦, 5.6
cm, and 1.22 pixels. The maximum pose error
for any node was 0.098◦ of orientation, 11.0 cm
of position, and 5.71 pixels. Total CPU time was
just under three hours.
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Table 1. Tech Square Dataset and Run Times.

Data Per Per
Type Image Node Total

Images — 48 3899
Line

Features 218 10,516 851,819
Point

Features 227 10,958 887,598
Nodes — — 81

Node Ad-
jacencies — — 189

VPs 0.69 3.6 9

Registration Time Per Total
Stage Node Run Time

VP Hough 0.2 sec 15s
VP EM 6.7 sec 7m 54s

Rotation EM 0.6 sec 46s
Baseline Hough 18.9 sec 25m 31s
Baseline MCEM 95.9 sec 2h 23m

Global Opt 0.7 sec 53s

Total 2.2 min 2h 58m 19s

We compared the orientations computed by the
algorithm to those produced by a manual, 6-DOF
bundle-adjustment [CMT98]. Interactive inspec-
tion of VPs in the manually registered dataset re-
veal that it does not represent ideal ground truth.
Because the number of nodes and adjacencies was
so large, the human operator naturally specified as
few constraints as possible for convergence of the
underlying optimization. This produced unstable
constraint sets, and rather poor global pose. Fig-
ure 32 compares epipolar geometry for manual and
automated pose recovery.

Figure 33 compares epipolar geometry for a win-
dow corner from a repeating series of windows ob-
scured by foliage. The manual solution has poor
epipolar geometry in this region, since the human

Table 2. Tech Square Consistency Measures.

Measure Avg. Max.

Rot Offset 1.53◦ 17.18◦

VP Bound 0.18◦ 0.80◦

Rot Bound 0.072◦ 0.098◦

VP Ortho Error 0.056◦ 0.09◦

Trans Offset 0.70 m 6.70 m
Trans Bound 5.6 cm 11.0 cm

Avg. Max. Std. Dev.

3-D Ray
Distance 9.6 cm 12.4 cm 3.3 cm
2-D Epi
Distance 1.22 pix 5.71 pix 2.33 pix

Manual Automatic

Figure 32. Tech Square Epipolar Geometry I. A point
feature in one image and its corresponding epipolar
line in another image, as computed using node pose
recovered from manual correspondence (bottom mid-
dle) vs. our algorithm (bottom right). Note the error
in the manual solution, in this case due to insufficient
manually-specified match constraints.

user did not enter match constraints here. It is
plainly impossible to match these window corners
given only this pair of images, due to the image’s
limited FOV; even given omni-directional image
pairs, human operators find it difficult or impossi-
ble to match such features due to the severe visual
clutter. In contrast, our algorithm recovers accu-
rate epipolar geometry.

Manual Automatic

Figure 33. Tech Square Epipolar Geometry II. A
feature whose match is difficult for a human operator
to identify. Epipolar geometry is shown for manual
(bottom middle) and automated (bottom right) pose
solutions. Note the error in the manual solution.

5.2.2 Green Building. We tested the end-to-
end registration method using thirty nodes with
particularly noisy initial pose, spanning an area of
roughly 80 by 115 meters (Fig. 34). The algo-
rithm proved robust, registering all nodes success-
fully and correcting initial pose errors of nearly
seven degrees, six meters, and hundreds of pixels
(Fig. 35). The resulting pose estimates were con-
sistent on average to 0.067◦ of orientation, 4.5 cm
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Figure 34. Green Building Node Configuration. The
average baseline was 15.6 meters.

of position, and 2.21 pixels. The maximum pose
error for any node was 0.12◦ of orientation, 8.1 cm
of position, and 4.17 pixels. Total CPU time was
just over one hour.

Table 3. Green Building Dataset and Run Times.

Data Per Per
Type Image Node Total

Images — 23 695
Line

Features 237 5,498 164,945
Point

Features 257 5,967 179,030
Nodes — — 30

Node Ad-
jacencies — — 80

VPs 0.35 3.3 5

Registration Time Per Total
Stage Node Run Time

VP Hough 0.1 sec 3s
VP EM 2.9 sec 1m 28s

Rotation EM 0.6 sec 18s
Baseline Hough 16.5 sec 8m 16s
Baseline MCEM 112.7 sec 56m 20s

Global Opt 0.7 sec 21s

Total 2.2 min 1h 6m 46s

Table 4. Green Building Consistency Measures.

Measure Avg. Max.

Rot Offset 2.95◦ 6.83◦

VP Bound 0.092◦ 0.52◦

Rot Bound 0.067◦ 0.12◦

VP Ortho Error 0.047◦ 0.11◦

Trans Offset 2.86 m 5.97 m
Trans Bound 4.5 cm 8.1 cm

Avg. Max. Std. Dev.

3-D Ray
Distance 10.2 cm 18.5 cm 5.3 cm
2-D Epi
Distance 2.21 pix 4.17 pix 1.43 pix

Initial Refined

Figure 35. Green Building Epipolar Geometry I. Ini-
tial and refined epipolar geometry; the algorithm cor-
rects significant initial pose error.

Many nodes had particularly noisy initial height
estimates (Fig. 36). We studied the algorithm’s
ability to recover consistent node heights.

Figure 36. Green Building Pose Refinement. (a) A
horizontal view of the node topology before pose re-
finement. All nodes were acquired at roughly the
same height above level ground, but noisy GPS
caused poor initial height estimates for the nodes.
(b) Refinement corrects most of the height variation.

Finally, we studied the accuracy of epipolar ge-
ometry for distant points (Fig. 37).

Figure 37. Green Building Epipolar Geometry
II. The refined epipolar geometry (shown here) is con-
sistent to within a few pixels, even for distant 3-D
points. The initial pose was so poor that the epipo-
lar lines of the features at left lie entirely outside the
image at right.

5.2.3 Ames Court. This dataset consists of
100 nodes spanning roughly 315 by 380 meters
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(Fig. 38). Of these, the rotation stage registered
95 successfully. The translation stage registered
all remaining nodes. Initial pose was corrected
by 5.59◦ and 6.18 meters, achieving average con-
sistency of 0.095◦, 5.7 cm, and 3.88 pixels. The
maximum pose inconsistency was 0.21◦, 8.8 cm,
and 5.02 pixels. Total CPU time was just over
four hours.

Figure 38. Ames Court Node Configuration. The av-
erage baseline was 23.5 meters.

5.2.4 Benefit of Wide Field of View. Re-
searchers have pointed out the desirability of wide-
FOV imagery in a variety of contexts [Kan93,
FA98, GN98]. Qualitatively, our system exploits
wide FOV to collect more vanishing point obser-
vations for the rotation stage, and more 3-D point

Table 5. Ames Court Dataset and Run Times.

Per Per
Image Node Total

Images — 20 2,000
Line

Features 228 4,562 456,246
Point

Features 257 4, 132 413,254
Nodes — — 100

Node Ad-
jacencies — — 232

VPs 0.43 3.2 8

Registration Time Per Total
Stage Node Run Time

VP Hough 0.1 sec 10 s
VP EM 2.5 sec 4 m 22 s

Rotation EM 0.3 sec 33 s
Baseline Hough 18.1 sec 30 m 10 s
Baseline MCEM 122.4 sec 3 h 24 m

Global Opt 0.6 sec 1 m 4 s

Total 2.4 min 4 h 0 m 19 s

Table 6. Ames Court Consistency Measures.

Measure Avg. Max.

Rot Offset 2.83◦ 5.59◦

VP Bound 0.23◦ 0.74◦

Rot Bound 0.095◦ 0.21◦

VP Ortho Error 0.043◦ 0.09◦

Trans Offset 3.53 m 6.18 m
Trans Bound 5.7 cm 8.8 cm

Avg. Max. Std. Dev.

3-D Ray
Distance 14.9 cm 20.2 cm 5.6 cm
2-D Epi
Distance 3.88 pix 5.02 pix 2.10 pix

Figure 39. AmesCourt Epipolar Geometry. Point fea-
tures and corresponding epipolar lines for a typical
node pair in the AmesCourt set.

features for the translation stage, increasing the
likelihood that common structure will be identi-
fied across nearby images.

We gathered quantitative evidence that increas-
ing the FOV enables more reliable pose estimation.
We isolated the effect of increasing FOV on two
components of pose recovery. First, we applied
the vanishing point Hough transform to a single
node, varying the node’s field of view (Fig. 40) to
assess the sharpness of the HT peak arising from
a particular VP. Second, we applied the baseline
Hough transform to a single node pair, varying
both nodes’ FOV (Fig. 41) to assess the sharpness
of the HT peak arising from epipolar accumula-
tion. In both cases, as the FOV widened, the re-
spective Hough transform peak became more evi-
dent (i.e., more reliably detectable). Narrow-FOV
images (e.g., the tiles in Fig. 1b) did not provide
sufficient feature overlap for convergence in any of
our datasets.

5.2.5 Low-Level Error Sources. The algo-
rithm described in this paper forms one of a series
of automated processing stages in a large-scale,
outdoor model capture system. Other stages in-
troduce and propagate error. We estimate the
low-level system noise as follows. Our raw image
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~1% ~10%

~25% ~50%

Figure 40. VP HT Peak Coherence. Dependence
of Hough transform accumulation values on field of
view, for a single vanishing point in a single node.
Transform values are plotted (z axis) over one face of
the discretization cube (x and y axes) as node FOV
varies from roughly 1% to 50% of the sphere.

~1% ~10%

~25% ~50%

Figure 41. Baseline HT Peak Coherence. Depen-
dence of Hough transform accumulation values on
field of view, for a single baseline shared by two nodes.
Transform values are plotted over the initial angular
uncertainty region, as node FOV varies from roughly
1% to 50% of the sphere.

sensor has a resolution of roughly 1 milliradian
(0.05◦) per pixel. The pinhole calibration, radial
distortion correction, mosaic generation, and fea-
ture localization stages [TAB+01] are each accu-
rate to roughly half a pixel. Thus we estimate
that the cumulative image-space localization error
is between two and three pixels – roughly the end-
to-end accuracy of our algorithm. No data fusion
algorithm can overcome this “noise floor” without
more comprehensive error modeling.

6 Related Work

There is a great deal of literature on extrinsic cal-
ibration [Hor86, HZ00, FLP01]. This section re-
views methods that decouple geometry, address
large scale or unknown correspondence, or model
geometric uncertainty.

6.1 Decoupled Geometry

A number of authors have proposed geometric fac-
toring to reduce the number of DOFs that must
be estimated, or serialize their estimation.

Many interactive systems allow the user to
identify vanishing points for camera calibration
[TK92, BB95, DTM96, SHS98, CRB99]. Other
systems detect and track VPs automatically for
egomotion estimation [STI90, LM96].

Projective reconstruction techniques avoid in-
trinsic camera calibration [MZ92, LF97], recover-
ing structure and pose only up to an arbitrary pro-
jective transformation. Other SFM methods have
been proposed, for example using SVD [PK94] or
random search [ARS00].

6.2 Scale and Extent

This section reviews methods that address large
input sizes (many images or features) or large di-
mensional extent (long image baselines or camera
excursions).

A variety of structure from motion techniques
recover scene geometry and camera egomotion
from multiple images [SK94, AP95, LMD95,
PZ98]. Methods that use local constraints alone
(e.g., [FZ98]) are prone to bias and error accumu-
lation. None of these methods have been demon-
strated for noisy observations, significant occlu-
sion and clutter, varying illumination, and wide
baselines.

Many researchers have used the Hough trans-
form (e.g., [Bar83, Col93, LMLK94, Shu99]) for
efficient processing of large feature sets. However,
HT accuracy is inherently limited by discretiza-
tion, and no principled characterization of uncer-
tainty has been demonstrated in this setting. The
HT has been used to initialize continuous-space
VP estimation [Col93]. This method uses deter-
ministic clustering and outlier rejection, biasing
the resulting VP estimates.

6.3 Unknown Correspondence

Determining correspondence is a central problem
in computer vision. A variety of interactive tools
rely on a human operator to match features across
images [BB95, DTM96, SHS98]. These tools do
not scale effectively, and are vulnerable to operator
error and numerical instability.

Low-level feature trackers [SKS95] and texture
trackers [HS81, ZMI00] recover correspondence
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under short-baseline motion (i.e., constant bright-
ness and little or no occlusion).

Several robust statistical techniques randomly
generate match sets or aligning transformations,
selecting the most consistent [FB81, CC91, FZ98,
Ste98, TZ00, ARS00]. The speed and accuracy of
these methods degrade significantly with increas-
ing occlusion or clutter (as the likelihood of choos-
ing the correct match set, or distinguishing the
correct transformation, decreases).

Several EM techniques use probabilistic corre-
spondence to solve coupled structure and motion
problems in the presence of matching ambiguity.
Some assume that all features are visible in all
images [DSTT00], while others treat only image
pairs [RCD99, CR00a]. Another method avoids
correspondence by maximizing texture correlation
[FL94].

6.4 Geometric Uncertainty

Sophisticated noise-handling methods exist for
least-squares [GL80] and computer vision prob-
lems [Ste85, AF84, MM00]. These formulations
assume additive Gaussian noise, which is not al-
ways appropriate. For example, when recover-
ing the fundamental matrix [CZZF97, Zha98], the
physical meaning of its covariance (i.e., its units)
is unclear.

Some investigators have used projective proba-
bility distributions for inference from noisy fea-
tures [CW90, Kan94]. Others have used a hy-
brid of projective and Euclidean distributions to
model uncertain 6-DOF pose [NS94]. Other meth-
ods propose errors-in-variables models for spheri-
cal regression [Cha89, Pre89], but consider only
extreme cases in which data points have tightly
concentrated symmetric bipolar distributions.

7 Summary and Discussion

This section analyzes the running time (Section
7.1) and limitations (Section 7.2) of the end-to-
end registration algorithm, and summarizes the
paper’s contributions (Section 7.3).

7.1 Asymptotic Time and Space

The number of adjacencies in the node graph is
linear in the number of nodes n, since every node
has at most a constant number of neighbors. VP
estimation expends O(`) time per node, where ` is
the number of line features in the node (assuming

J is constant). The global rotation stage aligns
each node independently to common scene struc-
ture, expending O(n) time overall.

The pairwise baseline estimation stage requires
O(f2) time per adjacency, where f is the maxi-
mum number of point features in the two nodes
involved; in practice we bound f by a constant.
Thus this stage requires O(n) time as well. Each
of the O(1) iterations of global translation com-
putes n new node positions, expending O(1) time
per node, or O(n) time overall. The final metric
alignment stage runs in O(n) time.

Thus, the end-to-end (6-DOF) registration al-
gorithm requires O(n) time.

7.2 Limitations

Our algorithm has several limitations. It requires
line and point features. It assumes that adja-
cent nodes are likely to have observed overlapping
scene structure; this assumption may fail, for ex-
ample when two nodes lie on opposite sides of a
thin building or wall, or when poor initial posi-
tion estimates produce “adjacent” nodes that are
in fact far apart (and thus view little in common).
The Earth’s curvature limits rotational registra-
tion to node networks spanning less than about ten
kilometers; larger areas have a local vertical that
varies by more than 0.1◦, our current implemen-
tation’s error floor. The O(J6) running time of
brute-force VP correspondence (Section 3.3.3) can
be prohibitive for large numbers of VPs. Finally,
positional registration relies on pairwise baseline
estimates, so can be unstable for degenerate or in-
correct adjacency networks.

7.3 Contributions

Previous methods for exterior image calibration
scale poorly, either because they rely on a hu-
man operator, or because they expend computa-
tional resources that grow too rapidly with input
size. Our contribution stems from the observation
that a suitably crafted algorithm can use scale to
advantage, exploiting redundant input to reliably
overcome noise, ambiguity and clutter.

This motivated our development of a linear-
time algorithm combining a number of existing
techniques from computer vision and estimation
theory: decoupling pose estimation into two 3-
DOF problems (to reduce the dimensionality of
the parameter space); probabilistic inference on
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the sphere (for accurate estimation from noisy
projective data); the Hough transform (for effi-
cient, robust initialization); EM algorithms (for
probabilistic classification); and MCMC methods
(for sampling from high-dimensional probability
spaces).

In addition, we introduce a number of novel
techniques. First, we exploit a priori absolute po-
sition estimates, and an image adjacency graph,
to limit inter-camera registration to those images
likely to have observed common scene structure.
This removes the need for a human operator, or
expensive pairwise-search process, to identify over-
lapping images or features.

Second, we use wide-FOV (omni-directional)
images to maximize the information obtained from
each vantage point. We demonstrate quantita-
tive evidence that the robustness and accuracy of
pose estimation improve as the camera’s FOV in-
creases.

Third, we extend classical, deterministic cam-
era alignment, VP detection, and point correspon-
dence methods to a stochastic projective frame-
work, handling unknown numbers of features, oc-
clusion, and outliers. This improves accuracy by
fusing many noisy observations into a few ensem-
ble quantities (VPs and baselines).

Fourth, we combine the robustness of the Hough
transform with the accuracy of EM into a hybrid
technique that overcomes the limitations of each
method alone.

Finally, we assess the algorithm’s asymptotic re-
source usage and end-to-end performance using a
variety of objective measures, enabling meaningful
comparison to other methods.

8 Conclusion

This paper presented a scalable, end-to-end al-
gorithm that registers thousands of images using
hundreds of thousands of noisy features. Most pre-
vious registration methods have assumed small in-
puts, short baselines, constant illumination, and
unoccluded, uncluttered scenes. Our method re-
laxes all of these assumptions simultaneously, yet
expends only linear time in the size of the input.

We demonstrated the algorithm on image
datasets acquired outdoors, over wide baselines
and hundreds of meters, under uncontrolled and
varying lighting conditions, and in the presence
of significant occlusion and visual clutter. It pro-

duces absolute pose estimates consistent to within
a tenth of a degree, five centimeters, and four
pixels, representing a new end-to-end capability
for automated, absolute registration of terrestrial,
omni-directional image networks in urban scenes.

Appendix: Correspondence Sets

This section illustrates the enormity of the sam-
ple space in Section 4.4.1 by counting the number
of possible correspondence sets. Assume for the
moment that the number of valid matches F is
known. A particular correspondence set is repre-
sented by an M × N binary matrix B containing
at most one non-zero entry per row and per col-
umn. A non-zero entry in position (i, j) represents
a correspondence between features xi and yj .

Initially, B contains all zeros. Imagine placing
F correspondences in the matrix one at a time
while preserving the condition in Eq. (9). The
first correspondence can be placed in MN possible
ways (i.e. anywhere in the matrix). The second,
however, has only (M − 1)(N − 1) possibilities,
because it cannot be placed in the same row or
column as the first; the third has (M − 2)(N − 2)
possibilities, and so on. The number of possible
match sets SF is therefore

SF F ! = (M)(N)(M − 1)(N − 1) · · ·

· (M − F + 1)(N − F + 1)

= (M)(M − 1) · · · (M − F + 1)

· (N)(N − 1) · · · (N − F + 1)

=

(

M

F

)(

N

F

)

(F !)2.

Here SF is multiplied by F ! to account for per-
mutations of the chosen matches; the placement
order is unimportant.

Since F can itself vary, the total number of pos-
sible match sets S arises from a sum over F :

S =

F ′

∑

F=0

SF =

F ′

∑

F=0

(

M

F

)(

N

F

)

F !,

where F ′ = min(M, N). For a node pair observing
only 20 features (so that M = N = 20), S is
approximately 1021.
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