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Abstract—This paper describes an algorithm for recovering
the rigid 3-DOF transformation (offset and rotation) between
pairs of sensors mounted rigidly in a common plane on a mobile
robot. The algorithm requires only a set of sensor observations
made as the robot moves along a suitable path. Our method does
not require synchronized sensors; nor does it require complete
metrical reconstruction of the environment or the sensor path.
We show that incremental pose measurements alone are sufficient
to recover sensor calibration through nonlinear least squares
estimation. We use the Fisher Information Matrix to compute a
Cramer-Rao lower bound (CRLB) for the resulting calibration.

Applying the algorithm in practice requires a non-degenerate
motion path, a principled procedure for estimating per-sensor
pose displacements and their covariances, a way to temporally
resample asynchronous sensor data, and a way to assess the
quality of the recovered calibration. We give constructive methods
for each step. We demonstrate and validate the end-to-end
calibration procedure for both simulated and real LIDAR and
inertial data, achieving CRLBs, and corresponding calibrations,
accurate to millimeters and milliradians. Source code is available
from http://rvsn.csail.mit.edu/calibration.

I. INTRODUCTION

Robotic platforms often employ multiple proprioceptive and
exteroceptive sensors. For many applications, the data from
such sensors must be fused spatiotemporally, requiring that
the relative pose of the sensors be estimated. For example,
running a grid-based obstacle avoidance algorithm on a robot
with two planar LIDARs would require the relative pose of
the LIDARs to fuse their scans into one grid. A Simultaneous
Localization and Mapping (SLAM) algorithm might use the
relative pose of a LIDAR and an inertial measurement unit
(IMU) to express their motions in a common reference frame.

This paper describes a method to estimate the 2D calibration
between any pair of coplanar sensors using information easily
gathered in the field. The input consists of per-sensor incre-
mental pose estimates (and corresponding error bounds) as the
robot moves along a suitable path. The output is a 3-DOF (i.e.,
(x, y, θ)) calibration for each sensor pair, along with a lower
bound on the error of the recovered calibration.

A natural question is whether incremental pose observa-
tions alone contain sufficient information to recover relative
sensor calibration. Intuition suggests that such observations
are indeed sufficient (Fig. 1). The pose difference between
two sensors causes them to experience different incremental
motion (Fig. 1b and 1c). The calibration that best transforms
the motion of the first sensor to align with that of the second
sensor will be the desired rigid-body transformation.
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Fig. 1: As the robot moves from p1 to p3, two sensors,
positioned as in (a), will experience different translational ((b)
and (c)) and rotational (not shown) incremental motion. The
calibration relating the sensors is the transformation that best
brings the disparate observed motions into agreement.

Below, we formalize this intuitive argument and develop
a procedure to estimate the calibration. We show that the
calibration is observable (i.e., that there exists sufficient infor-
mation in the input observations to estimate the calibration),
so long as certain degenerate motion paths are avoided. We
show how to compute the Cramer Rao Lower Bound (CRLB)
for the calibration estimate. The CRLB provides a best-case
minimum error (covariance matrix) for the estimate, enabling
the accuracy of the calibration to be assessed. The CRLB
covariance can also be integrated, as a source of uncertainty,
into subsequent processing.

Our method is applicable to any sensor, or sensor combi-
nation, that permits observation of its own relative motion.
The process can also be applied to find the pose of sensors
relative to a robot frame, if the relative motion of the robot
body can be observed (e.g., using inertial and odometry data).
The calibration procedure can be summarized as:

1) Drive the robot along a non-degenerate planar path.
2) Recover per-sensor incremental poses and covariances.
3) Resample asynchronous sensor data.
4) Use least squares to recover relative sensor calibration.
5) Compute the CRLB to compare the actual estimate to

the best-case achievable accuracy.

After formally stating the calibration problem (§ III), we
show that calibration is observable (§ IV). We describe the
estimation process and bias computation in § V and § VI,
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respectively. In practice, one typically must (1) interpolate
incremental poses (§ VII) and their associated covariances
for asynchronous sensor data and (2) reliably estimate the
covariances for relative pose observations for common sensor
such as LIDARs (§ VIII). Using simulated and real data
from commodity LIDAR and inertial sensors, we demonstrate
calibrations accurate to millimeters and milliradians (§ IX).

II. BACKGROUND

Ideally, it would be easy to determine the transformation re-
lating any pair of sensors. One could use a ruler to measure the
translational offset, and a protractor to measure the orientation
offset. In practice, it is rarely so easy. A sensor’s coordinate
origin typically lies inside the body of the sensor, inaccessible
to direct measurement. Curved and textured sensor housings,
and obstructions due to the robot itself, usually make direct
measurements of sensor offsets difficult or impossible.

Alternatively, one could engineer the calibration problem
away by designing and fabricating precision sensor mounts.
While this approach may be practical for small, closely-spaced
sensors such as stereo rigs, it would be cumbersome and costly
for larger systems. Moreover, the need for machined mounts
would hinder field adjustment of sensor configurations.

In light of these practical considerations, we desire a
software-only algorithm to estimate calibration using only
data easy to collect in the field. One approach would be to
establish a common global reference frame, then estimate the
absolute pose of each sensor at every sample time relative to
that frame; the calibration would then be the transform that
best aligns these poses. For example, in the setting of Fig. 1,
the task would be to find the calibration that aligns the blue
and red sensor paths. In practice, however, recovering accurate
absolute sensor pose is difficult, either because of the effort
required to establish a common frame (e.g., through SLAM),
or the error that accumulates (e.g., from odometry or inertial
drift) when expressing all robot motion in such a frame.

Researchers have, nevertheless, attempted to recover ab-
solute pose through various localization methods. Jones [9]
and Kelly [11] added calibration parameters to the state
of an Extended Kalman Filter and an Unscented Kalman
Filter (UKF), respectively. Gao [8] proposed a Kalman filter
incorporating GPS, IMU, and odometry to estimate pose.
Levinson [12] recovered calibration through alignment of
sensed 3D surfaces. Any calibration method employing global,
metrical reconstruction will necessarily invoke SLAM as a
subroutine, thus introducing all the well-known challenges of
solving SLAM robustly (including data association, covariance
estimation, filter consistency, and loop closure).

When it is possible to augment or prepare the environment,
absolute pose can also be established with known, calibrated
landmarks. For example, Blanco [3] and Ceriani [6] used GPS
and calibrated rigs to establish a global sensor reference frame.

Our algorithm avoids absolute poses and environment prepa-
ration. It requires only per-sensor incremental poses, estimated
using a sensor-specific method: for LIDARs or stereo cameras,
through scan matching [14] or iterative closest point [2]

methods; for IMUs, through integration of acceleration; for
wheel encoders, through accumulation. Although our method
may require data association, it does so over shorter time
periods than full-blown SLAM. As a result, it can be expected
to be more robust and generally applicable than a method
depending on SLAM. Censi [5] also used differential poses
to recover calibration parameters; our method is distinct in
that it accounts for observation noise in a principled way.

III. PROBLEM STATEMENT

Our task is to estimate the static calibration parameter vector
k = [xs, ys, θs] representing the translational and rotational
offsets from one sensor, r, to a second sensor, s. Fig. 2 shows
the graphical model relating the variables of interest, with vri
the latent, true incremental poses of sensor r at time i and
zri and zsi the corresponding observed incremental poses of
the sensors. Since zsi depends only on vri and the rigid body
transform k, the true motion of sensor s need not be estimated.
Further, let zr = [zr1, zr2, · · · , zrN ], zs = [zs1, zs2, · · · , zsN ],
and z = [zr, zs].

 

 

Fig. 2: Graphical model of calibration and incremental poses

Although we are interested only in the cali-
bration parameters k, the true incremental poses
vr = [vr1, vr2, · · · , vrN ] at every sample time are also
unknown variables. So the parameters to estimate are
x = [vr, k] = [vr1, vr2, · · · , vrN , xs, ys, θs]. Applied naı̈vely,
this state vector has the potential to grow rapidly, adding
three terms (two translations and one rotation) for each
observation. (However, as we demonstrate with real data in
§ IX-B, the estimates converge quickly with manageable N ;
our experiments used N = 88 and N = 400.) Finally, we
define the equations relating the expected observations and
true values as:

G (vr, k) =
[
vr1 · · · vrN vs1 · · · vsN

]T
(1)

Each term zri is a direct observation of the latent variable
vri, with vsi a 3 × 1 incremental pose for sensor s. If all
values are expressed as homogeneous matrices (i.e., K is the
homogeneous matrix corresponding to the calibration k), then
Vsi = K−1VriK. Note that G has dimension 6N × 1.

IV. OBSERVABILITY & THE CRAMER-RAO LOWER BOUND

Before attempting to recover the calibration from the ob-
served incremental pose data, we must first show that there
exists sufficient information in the observed data to determine
the calibration parameters.



Assume we have some estimate x̂ of the true parameters
x0. We wish to know how the estimate varies, so we calculate
the covariance E

[
(x̂− x0) (x̂− x0)

T
]
. Cramer and Rao [15]

showed that this quantity can be no smaller than the inverse
of J , the Fisher Information Matrix (FIM):

E
[
(x̂− x0) (x̂− x0)

T
]
≥ J−1 (2)

Here, as in [1], we abuse notation by writing A ≥ B to mean
that matrix A−B is positive semi-definite.

If the FIM is non-invertible, the variance of one or more
parameters will be unbounded. To illustrate, suppose J were
a scalar; then with J = 2, the variance would exceed 1

2 . If
J were 0 (i.e., rank-deficient), the variance would be infinite,
meaning that nothing would be known about the computed
parameter. Intuitively, if J is rank-deficient, we will not be able
to estimate x. We next show that, in general, J has full rank
when two incremental pose observations are available. We also
characterize the situations in which J is rank-deficient.

A. The FIM and the Jacobian

The FIM captures information from the observations about
the parameters [1]. For an unbiased estimator, the FIM is:

J = E
[
(∇x lnP (z|x)) (∇x lnP (z|x))

T
]

(3)

In § VI, we estimate the bias and, finding it to be small,
use this form of the CRLB as an approximation to the bias-
accommodating version found in [15]. Using this version,
Wang [16] showed that if P (z|x) ∼ N(x,Σz), then

J = JTGΣ−1Z JG (4)

where JG is the Jacobian of the observation equations G. That
is, if the observation noise has a Gaussian distribution, then
the FIM can be calculated as a function of the observation Ja-
cobian and observation covariance. This has two implications:

1) Given the covariance and having computed the Jacobian,
we have the quantities needed to calculate a lower bound
on the noise of our estimate.

2) J has full rank if and only if JG has full column
rank [16]. Thus by analyzing the column rank of JG,
we can determine whether the calibration is observable.

B. The FIM Rank

First, consider the case where there is one incremental
pose observation for each sensor, i.e., z = [zr1, zs1] =
[zr1x, zr1y, zr1θ, zs1x, zs1y, zs1θ]. The parameter vector is then
x = [vr1, k] = [vr1x, vr1y, vr1θ, xs, ys, θs]. The resulting 6×6
Jacobian matrix has the form below; it is clearly rank-deficient
because rows 3 and 6 are the same (the elided values denoted
by · · · are not relevant).

JG1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 1 0 0 0

 (5)

Second, consider the case where there are two incre-
mental pose observations. The observation vector is z =

[zr1, zr2, zs1, zs2]. The parameter vector is then x =
[vr1, vr2, k]. The Jacobian is now 12 × 9 and has the form:

JG2 =

[
I6×6 06×3
· · · M6×3

]
(6)

Due to the 6×6 identity matrix, the first 6 columns are linearly
independent. In order to show that JG2 has full rank (i.e., rank
9), we need only understand – and avoid – the conditions under
which the columns of M become linearly dependent.

C. Conditions for FIM Rank-Deficiency

When a and b can be found such that aM1+bM2+M3 = 0,
where Mi is the i-th column of M , JG2 will be rank deficient.
With cs = cos(θs), c1s = cos(vr1θ − θs), x1 = vr1x, etc.,

M = (7)
c1s − cs −s1s − ss ysc1s + (y1 − ys)cs + xss1s − (x1 − xs)ss
s1s + ss c1s − cs −xsc1s − (x1 − xs)cs + yss1s − (y1 − ys)ss

0 0 0
c2s − cs −s2s − ss ysc2s + (y2 − ys)cs + xss2s − (x2 − xs)ss
s2s + ss c2s − cs −xsc2s − (x2 − xs)cs + yss2s − (y2 − ys)ss

0 0 0


Since the columns of M cannot in general be eliminated, the

system is observable. However, it is useful to further consider
which specific kinds of observations will cause M to reduce;
by knowing the characteristics of paths that do not admit
calibration, we can avoid traversing them in practice. There
are several types of path degeneracies:

1) Paths for which each sensor observes constant incremen-
tal poses. In this case, rank(JGN ) = rank(JG1).

2) Paths for which the robot remains at a fixed orientation
with respect to some arbitrary world frame.

3) Paths for which the sensors move on concentric circles.
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Fig. 3: Sensor movements without rotation, as for a translating
holonomic robot (a), can prevent calibration. The calibration
of a non-holonomic robot, e.g., an automobile, cannot be
recovered if the robot is driven in a straight line. Concentric,
circular sensor motion (b) can also prevent calibration.

The first case is relatively uninteresting and can be easily
avoided in practice by varying the robot’s velocity. The second
case arises if the robot travels such that the sensors experience
only translation (Fig. 3a). In the third case, infinitely many
recovered poses for sensor s (e.g., lying along the blue circle



in Fig. 3b) will be consistent with the observed incremental
poses. (To see this, compare the relative offsets between pairs
of blue sensor frames and pairs of dotted blue sensor frames.)
In practice, speed variation alone will not prevent degeneracy;
it is the path geometry itself that must be avoided.

D. Other Methods of Showing Observability

Martinelli [13] and Kelly [11] added the static calibration
parameters to the dynamic state vector of a Kalman filter.
In order to address the question of observability, they used
non-linear observability analysis (instead of the FIM) based
on Lie derivatives. In their formulations, the robot pose
(relative to some arbitrary world frame) is part of the state
vector. However, because most sensors make only relative
observations, the state is not observable, i.e., there exists an
unobservable transform between the robot poses and the world
frame. Martinelli overcame this limitation by removing the
unobservable portions of the robot pose from the state vector;
Kelly overcame it by assuming the sensors can provide world-
relative observations. In our formulation, the parameter vector
includes only relative motions, so we need not make any
simplifications or assumptions to show observability.

V. ESTIMATION

The maximum a posteriori (MAP) estimation is given by:

x̂MAP (z) = argmax
x

P (x|z) = argmax
x

P (z|x)P (x) (8)

That is, we wish to find the calibration (and true incremental
poses) that maximize the probability of the parameters, given
the observed incremental poses. Applying the independence
assumptions implied by the graphical model in Fig. 2 yields:

x̂MAP (z) = (9)

argmax
x=[vr,k]

P (vr1)P (k)

N∏
i=1

P (zri|vri)P (zsi|vri, k)P (vri|vr,i−1)

In many cases, it may be reasonable to assume that nothing is
known about the distribution of the first incremental pose of
the sensor, P (vr1). If acceleration data or a motion model
is available, then the way in which the incremental poses
relate, expressed in P (vri|vr,i−1), can be estimated. Similarly,
if there is a good initial guess about the calibration itself,
then it might be reasonable to assume a Gaussian distribution
centered about the guess, reflected in P (k). If a reasonable
value for one or more of these distributions cannot be justified,
however, then a uniform distribution may be most appropriate.
If P (vr1), P (vri|vr,i−1) and P (k) are distributed uniformly,
they can be removed from the maximization and Equation 9
becomes the maximum likelihood estimator:

x̂ML(z) = argmax
x=[vr,k]

N∏
i=1

P (zri|vri)P (zsi|vri, k) (10)

Our experiments (§ IX) assume that P (vr1), P (k), and
P (vri|vr,i−1) are uniformly distributed. In other settings, a
normal distribution can straightforwardly be incorporated into
the optimization framework shown here.

When the incremental pose observations for sensor r
and s, reflected in P (zri|vri) and P (zsi|vri, k), are nor-
mally distributed, the optimization becomes a non-linear
Least Squares Estimation (LSE). To see this, let Σ =
blkdiag ([Σr1, · · · ,ΣrN ,Σs1, · · · ,ΣsN ]) where P (zri|vri) =
N(zri; vri,Σri) and P (zsi|vri, k) = N(zsi; g(vri, k),Σsi),
and g is the function that applies the calibration to the sensor r
incremental poses to produce the sensor s incremental poses.
The blkdiag function arranges the 3×3 covariance matrices
along the diagonal of the resulting 6N × 6N covariance Σ.
The LSE can then be found by minimizing:

∆ = z −G(vr, k)

c(x, z) = ∆TΣ−1∆

x̂LSE (z) = argmin
x=[vr,k]

(c(x, z))
(11)

The LSE cost function c(x, z) returns a single number that
can be minimized by many solvers (e.g., Matlab’s fminunc
function). In practice, we found that solvers that minimize the
individual errors directly (e.g., Matlab’s lsqnonlin), rather
than their summed squares, converge faster. If Σ−1 = ΨΨT ,
where Ψ is found e.g. via the lower Cholesky factorization,
then

c(x, z) = ∆TΨΨT∆ = (ΨT∆)T (ΨT∆) (12)

The individual errors are now represented in the 6N×1 vector
ΨT∆ and solvers such as lsqnonlin can be used.

VI. EVALUATING BIAS

The nonlinear LSE is not necessarily unbiased. That is,
the estimate x̂ may exhibit an offset from the true value x0.
Using a technique developed by Box [4], the bias can be
approximated and, if significant, subtracted from the estimate.
We (approximately) evaluate the bias, rather than assume that
it is small. In our simulations and experiments, we indeed
found it to be negligible compared to the CRLB.

In order to calculate an expected value for the bias, Box
approximates it with a second-order Taylor series:

E [x̂− x0] =
(−1

2

)
J−1 JTG Σ−1 m

m =
[
trace(H1J

−1) · · · trace(H6NJ
−1)
]T (13)

where J is the FIM, JG is the Jacobian, and Hi is the Hessian
(second derivative) of the i-th observation (i.e., the Hessian of
the i-th row in the G matrix). Note that both the bias and the
CRLB are driven smaller as det(J), where J again represents
the amount of information in the observations, increases.

VII. INTERPOLATION IN PRACTICE

One requirement of our algorithm is that the relative motions
zr and zs be observed at identical times. In practice, however,
sensors are rarely synchronized. We must therefore interpolate
observations and their associated covariance matrices. As
shown in Fig. 4, a sensor has traveled along the blue path with
several relative motions (blue arrows). In order to synchronize
with a second sensor, for example, we wish to calculate
the relative motions (black arrows) and covariances at new



times. Although other researchers have developed techniques
for interpolating between two covariances [7], we could find
no previous work related to interpolating both incremental
poses and their covariances. Our key contribution is that the
interpolation can be formulated as a function; then, using a
sigma point method similar to that used in the UKF, we can
estimate resulting motions and covariances.

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 4: Resampling incremental poses (blue) at new time steps
may make interpolated observations (black) dependent.

Our goal is to take the relative motions, vA, and the
associated covariance ΣA, sampled at corresponding times in
set A, and interpolate (or resample) them to produce the mean
relative motion vB and covariance ΣB at new times in set B.
Note that ΣA will often be band-diagonal; in other words, the
incremental poses observed will be assumed to be independent.
On the other hand, ΣB will most likely not be band-diagonal,
since new, adjacent interpolations in vB will likely depend
upon the same observation in vA (c.f. Fig. 4), and thus be
correlated. Such new dependencies will occur unless B ⊆ A.

When the observations of both sensors are resampled
at common times, Σ in Equation 11 will take the form
Σ = blkdiag ([Σ′r,Σ

′
s]), where Σ′r and Σ′s are the resampled

covariances of r and s, respectively.

A. The 2D interpolation function

We construct a nonlinear interpolation function, f , of the
form: vB = f(A, vA, B), where vA and vB are 3N×1 vectors
of incremental pose observations. Notice that this function
does not, itself, estimate the new covariances; instead, it only
interpolates the motion. There are many possible ways to
design this function. In our case, we simply assume a constant-
velocity model. Our implementation successively accumulates
the relative motions into a common reference frame, resamples
these absolute poses using a naı̈ve weighted average approach,
then calculates the new relative motions.

B. Means and covariances

The next task is to determine how the mean and covariance
are affected when propagated through the nonlinear function
f . Fortunately, such a problem has already been addressed
successfully by the Unscented Transform (UT). We do not use
a UKF, but we employ the UT to estimate how the mean and
covariance propagate through a nonlinear function. Whereas
the UKF must propagate the state forward in time and predict
measurements, we estimate the mean and covariance of our
relative measurements after interpolation.

To avoid sampling non-local effects due to a possibly large
state space, we use the Scaled UT (SUT) [10]. Like the UT,
the SUT estimates the mean and covariance by applying f to
2n+1 “sigma points” (where n is the dimension of the space).
These deterministic sigma points χi are centered about the
mean of, and discretely approximate, the original distribution:

χi =

 vA i = 0
vA + 〈σ〉i 1 ≤ i ≤ n
vA − 〈σ〉i−n n+ 1 ≤ i ≤ 2n

(14)

where σ =
√
nα2ΣA is calculated with the Cholesky factor-

ization and we set α = 10−2 so as to mitigate extreme effects
away from the mean [10]. The 〈·〉i operator extracts the i-th
column from its argument.

The sigma points are passed through the function, Υi =
f (A,χi, B), and the new mean and covariance are calculated:

vB =
∑2n
i=0Wm,iΥi

ΣB =
∑2n
i=0Wc,i (Υi − vB) (Υi − vB)

T (15)

As in [10], we use the sigma point weights with β = 2:

Wm,0 = 1− 1
α2 Wm,i = 1

2nα2

Wc,0 = Wm,0 +
(
β + 1− α2

)
Wc,i = Wm,i

(16)

Using this method, we can interpolate the mean and co-
variance of our incremental pose estimates at new times. It is
important to remember, however, that the resulting covariances
are only approximations. The interpolation process is nonlinear
and, as a result, the transformed distribution (approximated by
Υi) is not necessarily Gaussian, yet is forced to be so.

VIII. PRACTICAL COVARIANCE MEASUREMENTS

In order to estimate the calibration, our technique requires
the covariances of the incremental poses; the inverse covari-
ances serve as observation weights during LSE optimization
(Equation 11). Observations with low uncertainty should have
heavier weight than those with higher uncertainty. Thus we
must accurately characterize sensor noise in order to recover
valid calibration parameters.

In some situations, it may be possible to confidently calcu-
late the covariance matrix for each observation. For example,
many GPS systems report uncertainty based on time skews
and other well-understood physical quantities. On the other
hand, estimating the accuracy of the output of a scan-matching
algorithm can be difficult. Even with good sensor models,
the variance may depend on the environment. For example,
an empty room with many right angles may support more
accurate localization than a room with lots of clutter.

Ideally, we would like to drive the robot repeatedly along
exactly the same path, collect observations at the exact same
elapsed times during each run, and compute the variance of
the incremental pose observations. However, it is impractical
to repeat exactly the same path and timing in an unprepared
environment. Instead, we outline a technique that does not
require specialized equipment and can be easily employed in
the field. The idea is to drive the robot along any path, but



pause periodically. During each pause, we collect many obser-
vations from each sensor. By randomly drawing an observation
made during each pause, we can effectively generate multiple
experiments along a single path.

As an example, consider two planar LIDARs attached to a
mobile robot. Fig. 5 shows sample pose estimates from the
two sensors. Notice that the density of estimates increases
at intervals, where we paused the robot; we refer to the
observations within each pause as a “cluster.”

Off-line, we approximated the covariance of the incremental
poses between clusters. For each pair of adjacent clusters,
we selected a random LIDAR scan from each cluster, and
used scan-matching to find the relative motion between the
two scans. By repeating this drawing and scan matching, we
assembled a set of relative motions, the covariance of which
approximates the true incremental pose covariance.

Paused
Clusters

Fig. 5: Observations drawn from each paused interval can be
compared to estimate incremental pose covariances off-line.

This technique is appropriate only when inter-cluster incre-
mental poses can be recovered solely from observations drawn
from clusters. So, for example, scan-matching from LIDAR
data or egomotion estimation from machine vision could
provide suitable relative motion measurements, but inertial or
odometry data alone would not suffice.

IX. RESULTS

A. Simulation

In order to assess the quality of our calibration estimate
and validate the CRLB, we simulated a robot traveling such
that sensor r moved along the path shown in Fig. 6. The
path had 400 incremental pose observations, and the path
for sensor s was offset by various calibrations during the
simulations. The 3 × 3 covariance for each observation was
fixed, but varied across observations with a magnitude of 1%-
6% of the incremental pose vector (this percentage range was
chosen arbitrarily and is not necessarily representative of any
particular sensor).

Thirty different calibrations were simulated, with k drawn
randomly and uniformly from [±3 m,±3 m,±180◦]. In or-
der to validate the CRLB, we executed 200 Monte Carlo
simulations, sampling each incremental pose vector from its
Gaussian distribution. Fig. 7 shows the results of one such trial
with k = [−0.41 m, 1.17 m,−162◦]. The mean and standard
deviations from the simulations match well with the true value
and the CRLB, respectively.
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Fig. 6: A simulated travel path for sensor r (blue), with
calibration k = [−0.3 m,−0.4 m, 30◦] applied to sensor s
(red). Two example sensor frames are shown at p1 and p2.
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Fig. 7: Histograms (gray) of calibration estimates from 200
simulations of the path in Fig. 6 match well with truth
(triangles) and the CRLB (diamonds). Vertical lines indicate
mean (solid) and one standard deviation (dashed).

As the number of simulations increases, we expect that
the variance of the calibration will be the lowest attainable
variance (i.e., the CRLB). With only 200 simulations, we hope
that the standard deviation of our calibration estimates will
lie near the CRLB. Indeed, Fig. 8 shows that the standard
deviation of xs versus the calculated CRLB for xs generally
agree. Analogous plots for ys and θs (not shown) demonstrate
similar agreement.

The scale of the standard deviations (i.e., the scale of the
y-axis in Fig. 8 and the x-axes in Fig. 7) are arbitrary since we
arbitrarily chose the covariance matrices for the observations.
Fig. 9 shows the relationship between the variance of the
observations and the CRLB. As expected, as observation noise
increases, the CRLB also increases. This indicates that as less
information is present in the data, less can be deduced about
the calibration. Note that this particular numerical relationship
holds only for the path shown in Fig. 6. Other paths will pro-
duce different CRLBs (e.g., a degenerate path would produce
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Fig. 8: For 30 different simulated calibration runs, the parame-
ter standard deviation (green) and CRLB (yellow) match well.

0

0.1

0.2

0

0.2

0.4
0.01

0.02

0.03

0.04

σx (m)σθ (rad)

C
R

LB
 σ

x (
m

)

Fig. 9: The CRLB decreases with observation noise.

an “infinite” CRLB).

B. Real data
We attached a 30 cm × 120 cm machined plate to a small,

differentially-steered mobile robot. The plate included a grid
of holes, allowing two Hokoyu UTM-30LX LIDARs to be
mounted with various “ground truth” calibrations.
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Fig. 10: Paths of r and s when k = [−0.2 m,−0.5 m,−120◦].

We drove the robot manually along a non-degenerate path
(Fig. 10), paused every few centimeters, calculated the mean
and covariances of 88 incremental pose observations (§ VIII),
and estimated the calibration. To validate the CRLB for real
data (a step which would not be necessary in general), we
sampled the paused clusters to create multiple samplings along
the same physical robot path, then estimated incremental poses
by scan-matching line features between successive scans. No
historical data was maintained (e.g., SLAM was not used).

Fig. 11 shows the distribution of errors from the k =
[−0.2 m,−0.5 m,−120◦] calibration; Table I shows results
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Fig. 11: Estimates from 200 trials using real path of Fig. 10.

from real data for four different sensor calibrations. The
average error was at most 1.19 mm (and often much less
than 1 mm) and less than approximately 1 milliradian. The
standard deviation of the estimates was within 0.2 mm and
0.4 milliradians of the CRLB. Thus, both the calibration
estimates and the CRLB agree well with the experimental data.

TABLE I: Calibrations recovered from real data

True Calibration Estimation Errora CRLB Errorb

x y θ x y θ x y θ

(m) (m) (deg) (mm) (mm) (mrad) (mm) (mm) (mrad)

-0.2 -0.5 0 -0.19 0.03 0.37 -0.14 -0.13 -0.24
-0.2 -0.5 -90 -1.19 0.64 -1.06 -0.03 -0.12 -0.18
-0.2 -0.5 -120 -0.78 -0.20 0.00 -0.16 -0.09 -0.34
-0.2 -0.2 -60 -0.05 0.49 -0.73 -0.05 -0.21 -0.20
a Difference between mean of the estimates and the true calibration.
b Difference between standard deviation of the estimates and the CRLB.

We also validated the algorithm by finding the calibration
between the Hokoyu LIDARs r and s and the robot frame u.
We used odometry from wheel encoders, and rotation rate data
from an Xsens MTi IMU, to estimate the robot frame’s trans-
lational and rotational incremental motions respectively. We
manually measured the robot frame’s calibration parameters
to be k = [−0.08 m,−0.06 m, 90◦] at the center of the axle,
with a measurement accuracy of about 1 cm and 5◦. We used
the procedure in § VIII to estimate observation covariances for
the LIDARs, and adopted reasonable values for the covariances
of the robot frame incremental poses. Our method estimated
the transformation from r to u as [−0.081 m,−0.063 m, 90.3◦]
and from r to s to u as [−0.080 m,−0.061 m, 90.3◦], in close
agreement with manual measurement.



X. CONCLUSION

We demonstrate a set of techniques to recover the 3-DOF
rigid-body transformation between two coplanar sensors. Our
contributions include a novel method to estimate the calibra-
tion without relying on accurate sensor localization or any
specific preparation of the environment. We showed observ-
ability of the system, including an analysis of degenerate
conditions, without assuming accurate initial pose estimates or
globally consistent sensor observations. The CRLB provides
a confidence limit on the estimated parameters, which can be
used to design robot paths and incorporated into subsequent
algorithms. From a practical perspective, we presented means
to interpolate observations and covariances of unsynchronized
sensors. These techniques enabled accurate estimation of cal-
ibration parameters in both simulated and real experiments.

Our future work will involve recovering the full 6-DOF
calibration, given 6-DOF incremental pose observations. The
framework presented should generalize to the 6-DOF case,
but characterizing the degenerate conditions and optimization
in SO(3)× R3 will require additional analysis.

APPENDIX

Algorithm 1 shows pseudocode, with Optimize some
non-linear least-squares optimizer of the matrix-valued Cost
function given below, and JacobianOfG the Jacobian of G
(see Equation 1) evaluated at the estimate x̂. Matlab code is
posted at rvsn.csail.mit.edu/calibration.

Algorithm 1: Calibrate (zr,Σr,tr,zs,Σs,ts)
inputs : zr, zs observed incremental motions of

sensors r, s (resp.) as 3N × 1 matrices
Σr, Σs 3N × 3N covariances of zr, zs
tr, ts sample times of zr, zs

outputs: Calibration estimate k̂
Cramer-Rao Lower Bound CRLB

z′s,Σ
′
s ← Interpolate(ts,zs,Σs,tr)

Σ← blkdiag(Σr,Σ′s)
Ψ← chol(Σ−1)
x0 ← [vr0, k0] = [zr, 0, 0, 0] // initial guess
x̂← Optimize(x0, zr, z′s, Ψ, Cost)
JG ← JacobianOfG(x̂)
J ← JTGΣ−1JG
k̂ ← x̂3N−2:3N // extract 3-vector and
CRLB ← J−1(3N−2:3N, 3N−2:3N) // 3× 3 matrix

Function Interpolate(A,vA,ΣA,B)

Create χ according to Equation 14
for χi ∈ χ do

Υi ← f (A,χi, B) // see § VII

Calculate vB and ΣB according to Equation 15
return vB ,ΣB

Function Cost(x, zr, z′s, Ψ)

vr, k ← x

∆←
[
zr
z′s

]
−
[

vr
G(vr, k)

]
return (ΨT∆) // of dimension 6N × 1
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