
Extrinsic Calibration from Per-Sensor Egomotion
Jonathan Brookshire and Seth Teller

MIT Computer Science and Artificial Intelligence Laboratory, {jbrooksh, teller}@csail.mit.edu

Abstract—We show how to recover the 6-DOF transform
between two sensors mounted rigidly on a moving body, a form
of extrinsic calibration useful for data fusion. Our algorithm
takes noisy, per-sensor incremental egomotion observations (i.e.,
incremental poses) as input and produces as output an estimate of
the maximum-likelihood 6-DOF calibration relating the sensors
and accompanying uncertainty.

The 6-DOF transformation sought can be represented effec-
tively as a unit dual quaternion with 8 parameters subject to
two constraints. Noise is explicitly modeled (via the Lie algebra),
yielding a constrained Fisher Information Matrix and Cramer-
Rao Lower Bound. The result is an analysis of motion degeneracy
and a singularity-free optimization procedure.

The method requires only that the sensors travel together along
a motion path that is non-degenerate. It does not require that
the sensors be synchronized, have overlapping fields of view,
or observe common features. It does not require construction
of a global reference frame or solving SLAM. In practice,
from hand-held motion of RGB-D cameras, the method recov-
ered inter-camera calibrations accurate to within ∼0.014m and
∼0.022 radians (about 1 cm and 1 degree).

I. INTRODUCTION

Extrinsic calibration – the 6-DOF rigid body transform
relating sensor coordinate frames – is useful for data fusion.
For example, point clouds arising from different range sensors
can be aligned by transforming one sensor’s data into another
sensor’s frame, or all sensor data into a common body frame.

We show that inter-sensor calibration and an uncertainty
estimate can be accurately and efficiently recovered from
incremental poses (and uncertainties) observed by each sensor.
Fig. 1 shows sensors r and s, each able to observe its own
incremental motion vri and vsi respectively, such that the
calibration k satisfies:

vsi = g (vri, k) (1)

where g simply transforms one set of motions according to k.
This paper describes an algorithm to find the k that best

aligns two series of observed incremental motions. The al-
gorithm takes as input two sets of 6-DOF incremental pose
observations and a 6×6 covariance matrix associated with
each incremental pose. It produces as output an estimate
of the 6-DOF calibration, and a Cramer-Rao lower bound
(CRLB) [1] on the uncertainty of that estimate. (For source
code and data, see http://rvsn.csail.mit.edu/calibration3d.)

Prior to describing our estimation method, we confirm that
the calibration is in general observable, i.e. that there is
sufficient information in the observations to define k uniquely.
Observability analysis yields a characterization of singularities
in the Fisher Information Matrix (FIM) arising from non-
generic sensor motion. For example, singularity analysis re-
veals that 6-DOF calibration can not be recovered from planar-
only motion, or when the sensors rotate only around a single

Fig. 1: The incremental motions of the r, red, and s, blue,
sensors are used to recover the calibration between the sensors
as the robot moves. The dotted lines suggest the incremental
motions, vri and vsi, for sensors r and s, respectively.

axis. This confirms previous findings [3, 20] and provides a
variance estimator useful in practice.

A key aspect of this work is the choice of representation
for elements of the Special Euclidean group SE(3), each of
which combines a translation in R3 with a rotation in SO(3).
Ideally, we desire a representation that (1) supports vector
addition and scaling, so that a principled noise model can be
formulated, and (2) yields a simple form for g in Eq. 1, so
that any singularities in the FIM can be readily identified.

We considered pairing translations with a number of rotation
representations – Euler angles, Rodrigues parameters, and
quaternions – but each lacks some of the criteria above.
Instead, we compromise by representing each element of
SE(3) as a unit dual quaternion (DQ) in the space H. Each
DQ q ∈ H has eight parameters and can be expressed:

q = qr + εqε (2)

where qr is a “real” unit quaternion representing the rotation,
qε is the “dual part” representing the translation, and ε2 = 0.
An 8-element DQ is “over-parametrized” (thus subject to two
constraints) when representing a 6-DOF rigid body transform.

Although DQ’s are not minimal, they are convenient for
this problem, combining in a way analogous to quaternion
composition and yielding a simple form for g – about 20 lines
of MatLab containing only polynomials and no trigonometric
functions. An Euler-angle representation, by contrast, is min-
imal but produces much more complex expressions involving
hundreds of lines of trigonometric terms. Homogeneous trans-
formations yield a simple form of g, but require maintenance
of many constraints. The DQ representation offers a good
balance between compactness and convenience.

Ordinary additive Gaussian noise cannot be employed with
DQ’s, since doing so would produce points not on SE(3).
Instead, we define a noise model using a projected Gaussian
in the Lie algebra of DQ’s [9] which is appropriate for this
over-parametrized form.

http://rvsn.csail.mit.edu/calibration3d

To identify singularities of the FIM, we adapt communica-
tion theory’s “blind channel estimation” methods to determine
the calibration observability. Originally developed to deter-
mine the CRLB on constrained imaginary numbers [18], these
methods extend naturally to DQ’s.

Background on calibration techniques and an introduction
to DQ’s is provided in § II. The problem is formally stated
in § III, along with a noise model appropriate for the DQ
representation. System observability is proven, and degenerate
cases are discussed, in § IV. The optimization process for
constrained parameters is described in § V, with techniques
for resampling asynchronous data and converting between
representations provided in § VI. Experimental results from
simulated and real data are given in § VII.

II. BACKGROUND

A. Calibration

There are several ways to determine the calibration. One
can attempt to physically measure the rigid body transform
between sensors. However, manual measurement can be made
difficult by the need to establish an origin at an inaccessible
location within a sensor, or to measure around solid parts of
the body to which the sensors are mounted.

Alternatively, the calibration can be mechanically engi-
neered through the use of precision machined mounts. This can
work well for sensors in close proximity (e.g., stereo camera
rigs), but is impractical for sensors placed far apart (e.g., on
a vehicle or vessel).

The calibration could also be determined by establishing
a global reference frame using Simultaneous Localization
and Mapping (SLAM), then localizing each sensor within
that frame (e.g., [11]). This approach has the significant
disadvantage that it must invoke a robust SLAM solver as
a subroutine.

Incremental motions have also been used to recover “hand-
eye calibration” parameters. The authors in [5, 3, 20] recover
the calibration between an end-effector and an adjacent camera
by commanding the end-effector to move with some known
velocity and estimating the camera motion. The degenerate
conditions in [3, 20] are established through geometric argu-
ments; we confirm their results via information theory and the
CRLB. Further, the use of the CRLB allows our algorithm to
identify a set of observations as degenerate, or nearly degener-
ate (resulting in a large variance), in practice. Dual quaternions
were also used by [5]; we extend this notion and explicitly
model the system noise via a projected Gaussian. Doing so
allows us to confirm the CRLB in simulated experiments
§ VII-A.

B. Unit Dual Quaternions

Our calibration algorithm requires optimization over ele-
ments in SE(3). Optimization over rigid body transformations
is not new (e.g., [8]) and is a key component of many
SLAM solutions. In our setting, unit dual quaternions (DQ’s)
prove to be a convenient representation both because they
yield a simple form for g (Eq. 1) and because they can be

implemented efficiently [14]. Optimization with DQ’s was
also examined in [6], but their cost function included only
translations; our optimization must simultaneously minimize
rotation error. We review DQ’s briefly here; the interested
reader should see [15, p. 53-62] for details.

A DQ q can be written in several ways: as an eight-element
vector [q0, · · · , q7]; as two four-element vectors [qr, qε] (c.f.
Eq. 2); or as a sum of imaginary and dual components:

q = (q0 + q1i + q2j + q3k) + ε(q4 + q5i + q6j + q7k) (3)

In this form, two DQ’s multiply according to the standard rules
for the imaginary numbers {i, j,k}.

We write DQ multiplication as a1 ◦ a2, where {a1, a2} ∈
H. When we have vectors of DQ’s, e.g., a = [a1, a2] and
b = [b1, b2], where {b1, b2} ∈ H, we write a ◦ b to mean
[a1 ◦ b1, a2 ◦ b2].

A pure rotation defined by unit quaternion qr is represented
by the DQ q = [qr, 0, 0, 0, 0]. A pure translation defined by
t = [t0, t1, t2] can be represented by the DQ:

q =

[
1, 0, 0, 0, 0,

t0
2
,
t1
2
,
t2
2

]
(4)

Given rigid body transform q, the inverse transform q−1 is:

q−1 = [q0,−q1,−q2,−q3, q4,−q5,−q6,−q7] (5)

such that q ◦ q−1 = q−1 ◦ q = I = [1, 0, 0, 0, 0, 0, 0, 0]. A
vector v = [v0, v1, v2] can be represented as a DQ by:

qv = [1, 0, 0, 0, 0, v0, v1, v2] (6)

The DQ form qv of vector v transforms according to q as:

q′v = q ◦ qv ◦ q∗ (7)

where q∗ is the dual-conjugate [14] to q:

q∗ = [q0,−q1,−q2,−q3,−q4, q5, q6, q7] (8)

DQ transforms can be composed as with unit quaternions;
applying transform A, then transform B to point v yields:

q′v = qB ◦ (qA ◦ qv ◦ q∗A) ◦ q∗B = qBA ◦ qv ◦ q∗BA (9)

where qBA = qB ◦ qA. If the incremental motion vri and
calibration k are expressed as DQ’s, then Eq. 1 becomes:

g(vri, k) := k−1 ◦ vri ◦ k (10)

A DQ with qTr qr = 1 and qTr qε = 0 (c.f. Eq. 2) has unit
length. We impose these conditions as two constraints below.

C. Lie Groups & Lie Algebras

Lie groups are smooth manifolds for which associativity
of multiplication holds, an identity exists, and the inverse is
defined [7, 13]; examples include Rn, SO(3), and SE(3).
However, Rn is also a vector space (allowing addition, scaling,
and commutativity), but SO(3) and SE(3) are not. For
this reason, points in SO(3) and SE(3) cannot simply be
interpolated or averaged. We use the Lie algebra to enable an
optimization method that requires these operations.

Lie algebra describes a local neighborhood (i.e., a tangent
space) of a Lie group. So the Lie algebra of DQ’s, h, can
be used to express a vector space tangent to some point
in H. Within this vector space, DQ’s can be arithmetically

manipulated. Once the operation is complete, points in the
Lie algebra can be projected back into the Lie group.

The logarithm maps from the Lie group to the Lie algebra;
the exponent maps from the Lie algebra to the Lie group.
Both mappings are done at the identity. For example, if we
have two elements of a Lie group {u, v} ∈ H, the “box”
notation of [9] expresses the difference between v and u as
d = v � u. (Here, {u, v} are each eight-element vectors and
d is a six-element vector.) That is, the box-minus operator
connotes d = 2 log (u−1 ◦ v) where d ∈ h. In the Lie group,
u−1 ◦ v is a small transformation relative to the identity, i.e.,
relative to u−1 ◦ u (see Fig. 2). The factor of two before the
log is a result of the fact that DQ’s are multiplied on the left
and right of the vector during transformation (c.f. Eq. 7).

Similarly, the box-plus addition operator [9] involves expo-
nentiation. If d ∈ h, then exp d ∈ H. If d = 2 log (u−1 ◦ v),
then u ◦ exp d

2 = u ◦ exp (log (u−1 ◦ v)) = u ◦ u−1 ◦ v = v.
Since d applies a small transform to u, we use the box-plus
operator to write v = u� d = u ◦ exp d

2 .2	log	(ିݑଵ ∘ ݑ = (ܫ 2 log ଵିݑ ∘ ݒ = ݀

ଵିݑ ∘ ݒ = exp	(݀ 2ൗ)
ଵିݑ ∘ ݑ

ℍ

ज़
explog

Fig. 2: The mapping between the Lie group, H, and the Lie
algebra, h, is performed at the identity, u−1 ◦ u.

This definition of the difference between DQ’s yields a
Gaussian distribution as follows: imagine a Gaussian drawn on
the line h in Fig. 2. Exponentiating points on this Gaussian
“projects” the distribution onto H. This projected Gaussian
serves as our noise model (§ III).

Summarizing, the Lie group/algebra enables several key
operations: (1) addition of two DQ’s, (2) subtraction of two
DQ’s, and (3) addition of noise to a DQ.

1) Logarithm of dual quaternions: The logarithm of some
q ∈ H can be calculated as [17]:

log q =
(1

4(sin θ)3
[(2θ − sin (2θ))q3

+ (−6θ cos θ + 2 sin (3θ))q2

+ (6θ − sin (2θ)− sin (4θ))q

+ (−3θ cos θ + θ cos (3θ)

− sin θ + sin (3θ))I]
)

1:3,5:7
(11)

where θ is the rotation angle associated with the DQ, and
exponentiation of a DQ is implemented through repeated
multiplication (◦). (This expression incorporates a correction,
provided by Selig, to that given in [17].) The (·)1:3,5:7 removes
the identically zero-valued first and fifth elements from the 8-
vector. To avoid the singularity at θ = 0, the limit of log q can

be evaluated as:

lim
θ→0

log q = [0, 0, 0, q5, q6, q7] (12)

For compactness, we write log a to mean [log a1, log a2].
2) Exponential of dual quaternions: If d ∈ h, w =

[0, d0, d1, d2] is a quaternion and q = [w, 0, d3, d4, d5], we
can exponentiate d as [17]:

exp d =
1

2
(2 cos |w|+ |w| sin |w|)I

− 1

2
(cos |w| − 3sinc|w|)q +

1

2
(sinc|w|)q2

− 1

2|w|2
(cos |w| − sinc|w|)q3 (13)

The singularity at w = 0 can be avoided by evaluating:

lim
|w|→0

exp d = I + q (14)

III. PROBLEM STATEMENT

Given the observed incremental motions and their covari-
ances, the problem is to estimate the most likely calibration.
We formulate this task as a non-linear least squares optimiza-
tion with a state representation of DQ’s. DQ’s were chosen to
verify the CRLB in § VII-A. In § V, we show how to perform
the calculation in the over-parametrized state space. (We chose
an over-parametrization rather than a minimal representation,
in order to avoid singularities.)

The calibration to estimate is k = [k0, · · · , k7], where
k ∈ H. The 6-DOF incremental poses from each sensor form
a series of DQ observations (our experiments use FOVIS
[10] and KinectFusion [16]). Let zr = [zr1, zr2, · · · , zrN]
and zs = [zs1, zs2, · · · , zsN] be the observations from sensor
r and s, respectively. Note that {zri, zsi} ∈ H. Finally, let
z = [zr, zs] be the (2N) observations. Both the incremental
poses of sensor r and the calibration must be estimated [2],
so the state to estimate is x = [vr, k] consisting of (N + 1)
DQ’s, where vr = [vr1, vr2, · · · , vrN] is the latent incremental
motion of sensor r.

We then formulate the task as a maximum likelihood
optimization [2]:

x̂ML(z) = argmax
x=[vr,k]

N∏
i=1

P (zri|vri)P (zsi|vri, k) (15)

under the constraint that {vri, k} ∈ H.
The probability functions might be assumed to be Gaussian.

However, it is clear that adding Gaussian noise to each term
of a DQ will not generally result in a DQ. Instead, we use the
projected Gaussian.

By comparison, other approaches [5, 3, 20] simply ignore
noise and assume that observations and dimensions should
be equally weighted. However, when observation uncertainty
varies (e.g., when the number of features varies for a vision
algorithm) or when the uncertainty among dimensions varies
(e.g., translations are less accurate than rotations), explicit
representation of noise minimizes the effects of inaccurate ob-
servations. Further, a principled noise model allows recovery
of the CRLB and, thus, the calibration’s uncertainty.

A. Process model

The process model can be written as:

z = G(x) ◦ exp
δ

2
≡ G(x) � δ (16)

G(x) = [vr1, · · · , vrN , g(vr1, k), · · · , g(vrN , k)] (17)

where δ ∈ h acts as a projected Gaussian: δ ∼ N(0,Σz).
Here, the expected observations G(x) have been corrupted by
a noisy transformation with δ. Notice that the process model
is not typical additive Gaussian noise, z = G(x) + δ, which
would result in z /∈ H.

The difference between the observations, z, and the ex-
pected values, G(x), is λ = −2 log (z−1 ◦G(x)), where λ
includes 12N parameters, six for each of the 2N observations.
The posteriors in Eq. 15 can be written:

P (z|x) ∼ f(z−1 ◦G(x))

f(z−1 ◦G(x)) =
1√

(2π)12N |Σz|
e−

1
2λ

T Σ−1
z λ (18)

IV. OBSERVABILITY

Assume we have some estimate x̂ of the true parameters
x0. We wish to know how the estimate varies, so we calculate
the covariance E

[
(x̂− x0) (x̂− x0)

T
]
. Cramer and Rao [19]

showed that this quantity can be no smaller than the inverse
of J , the Fisher Information Matrix (FIM):

E
[
(x̂− x0) (x̂− x0)

T
]
≥ J−1 (19)

The CRLB is critical because (1) it defines a best case
covariance for our estimate, and (2) if J is singular, no
estimate exists. If (and only if) x cannot be estimated, then
x is unobservable. Indeed, we wish to identify the situations
under which x is unobservable and arrange to avoid them in
practice.

A. Shift invariance

For an unbiased estimator, the FIM is:

J = E
[
(∇x lnP (z|x)) (∇x lnP (z|x))

T
]

(20)

The FIM, as it is based on the gradient, is invariant under
rigid body transformations, so the FIM of a distribution of
f(z−1 ◦ G(x)) equals that of the distribution f(G(x)). This
is because the expectation is an integration over SE(3) and is
unaffected by a shift [4]. Thus, we analyze P (z|x) ∼ f(G(x))
to produce an equivalent FIM.

Let H(y) = −2 log y and λ = H(G(x)). H accepts a
16N×1 parameter vector of DQ’s in the Lie group, and returns
a 12N × 1 vector of differences in the Lie algebra.

B. Fisher Information Matrix

In order to calculate the FIM for our estimation problem,
we first find the gradient of λ by applying the chain rule:

∇xλ =
[
∇pH(p)|p=G(x)

]T
[∇xG(x)]

T

= JH︸︷︷︸
12N×16N

JG︸︷︷︸
16N×8(N+1)

(21)

Then, we calculate:

∇x lnP (z|x) = ∇x ln ce−
1
2λ

T
Σ−1

z λ (22)

= ∇x
(
−1

2
λ
T

Σ−1
z λ

)
(23)

= (JHJG)
T

Σ−1
z λ (24)

= JTGJ
T
H Σ−1

z︸︷︷︸
12N×12N

λ︸︷︷︸
12N×1

(25)

Substituting into Eq. 20:

J = E
[
(∇x lnP (z|x)) (∇x lnP (z|x))

T
]

(26)

= E
[(
JTGJ

T
HΣ−1

z λ
) (
JTGJ

T
HΣ−1

z λ
)T]

(27)

= E
[
JTGJ

T
HΣ−1

z λλ
T (

Σ−1
z

)T
JHJG

]
(28)

= JTGJ
T
HΣ−1

z E
[
λλ

T
] (

Σ−1
z

)T
JHJG (29)

= JTGJ
T
HΣ−1

z Σz
(
Σ−1
z

)T
JHJG (30)

= JTGJ
T
HΣ−1

z JHJG (31)

Since each of the (N + 1) DQ’s in x is subject to two
constraints, JG is always rank-deficient by at least 2(N+1). Of
course, our interest is not in rank deficiencies caused by over-
parametrization but in singularities due to the observations. We
must distinguish singularities caused by over-parametrization
from those caused by insufficient or degenerate data.

C. Cramer-Rao Lower Bound

In the communications field, a related problem is to
estimate complex parameters of the wireless transmission path.
These complex “channel” parameters are usually unknown
but obey some constraints (e.g., they have unit magnitude).
Since the CRLB is often useful for system tuning, Stoica [18]
developed techniques to determine the CRLB with constrained
parameters.

Following [18], suppose the m constraints are expressed
as f c = [f c1 , · · · , fcm] such that f c(x) = 0. Let F c be the
Jacobian of f c and U be the null space of F c such that
F c(x)U = 0. When K = UTJU is non-singular, the CRLB
exists. In our case,

K = UTJU = UTJTGJ
T
HΣ−1

z JHJGU (32)

= UTJTGJ
T
HLL

TJHJGU (33)

= (LTJHJGU)T (LTJHJGU) (34)

where Σ−1
z = LLT by the Cholesky factorization. In order to

find the cases where J is singular, we examine the rank of K:

rank(K) = rank
((
LTJHJGU)T (LTJHJGU

))
(35)

Since rank(ATA) = rank(A),

rank(K) = rank(LTJHJGU) (36)

Further, since each observation is full rank, Σz is full rank;
LT is a 12N×12N matrix with rank 12N and rank(LTA) =
rank(A). Thus (see Appendix A):

rank(K) = rank(JHJGU) = rank(JGU). (37)

1 5 10 15 18

1

10

20

32

1 5 10 15 18

1

10

20

32

JgU

Fig. 3: Visualization of the ma-
trix JGU shows that only the
first six columns can reduce.
Blank entries are zero; orange
are unity; red are more com-
plex quantities. (Full expres-
sions for the matrix elements
shown in red are included at
the URL given in § I.)

D. Degeneracies

As shown in [2], one observation is insufficient to recover
the calibration. For two observations and a particular null
space matrix, U , JGU has the form shown in Fig. 3. Notice
that columns 7-18 are always linearly independent due to the
unity entries. This is not surprising since vri, the estimated
motion of sensor r, is directly observed by zri. Only the first
six columns, corresponding to the six DOF’s of the calibration,
can possibly reduce. By examining linear combinations of
these columns, we can identify a singularity which, if avoided
in practice, will ensure that the calibration is observable.

Suppose the two incremental motions experienced by sensor
r are {a, b} ∈ H and let ai be the i-th term of the 8-
element DQ, a. When a1b3 = a3b1 and a2b3 = a3b2, JGU
is singular and the calibration is unobservable. Since the 2nd-
4th elements of the DQ correspond to the 2nd-4th elements
of a unit quaternion representing the rotation, it follows that
these relations hold only when there is no rotation or when
the rotation axes of a and b are parallel. Thus, the calibration
is unobservable when the sensors rotate only about parallel
axes.

In principle, this analysis could have been completed us-
ing any representation for SE(3). However, attempting the
analysis using Euler angles and Mathematica 8.0 exceeded
24GB of memory without completing; manual analysis was
equally difficult. By contrast, DQ over-parametrization made
both manual and automated analyses tractable to perform and
simple to interpret, making readily apparent the degeneracy
arising from a fixed axis of rotation.

The condition to avoid degeneracy has several common
special cases:

1) Constant velocity. When the sensors move with constant
velocity, the axes of rotation are constant.

2) Translation only. When the sensors only translate, no
rotation is experienced.

3) Planar motion. When the robot travels only in a plane,
the rotation axis is fixed (perpendicular to the plane).

Fig. 4: Two robots driven along the suggested paths experience
rotation about only one axis (green). As a result, the true
calibration relating the two true sensor frames (red/blue)
cannot be determined. The magenta lines and frames show
ambiguous locations for the red sensor frame.

These special cases, however, do not fully characterize the
degeneracy. So long as the axis of rotation of the incremental
poses remains fixed, any translations and any magnitude of
rotation will not avoid singularity.

In Fig. 4, for example, a robot is traveling along the
suggested terrain. Although the robot translates and rotates
some varying amount between poses, it always rotates about
the same axis (green lines). In such situations, the calibration
is ambiguous at least along a line parallel to the axis of rotation
(magenta line). That is, if the calibration is translated along
such a line, the observations from sensor s remain fixed. Thus,
because multiple calibrations result in the same observations,
the calibration is unobservable.

V. OPTIMIZATION

In order to estimate the calibration in Eq. 15, we per-
form non-linear least squares optimization, using a modified
Levenberg-Marquardt (L-M) algorithm [9]. The optimization
proceeds as:

xt+1 = xt �−
(
J Tt Σ−1Jt

)−1 J Tt Σ−1 (G (xt) � z) (38)

The term G(xt) � z represents error elements in h, which
are scaled by the gradient and added (via �) to the current
parameter estimate to produce a new set of DQ’s. The method
computes error, and applies corrections to the current esti-
mates, in the tangent space via the Lie algebra. After each
update, the parameters lie in H.
Jt is the analytic Jacobian at the current estimate [21]:

Jt =

[
∇hH

(
z−1 ◦G

(
xt ◦ exp (

h

2
)

))]∣∣∣∣∣
h=0

(39)

Essentially, the method shifts the parameters xt via h ∈ h,
then evaluates that shift at h = 0.

VI. INTERPOLATION

Although the DQ representation facilitates the FIM anal-
ysis, and there are methods to develop a noise model, data
and covariance matrices will typically be available in more
common formats, such as Euler angles. Furthermore, sensors
are rarely synchronized, so incremental motions may be ob-
served over different sample periods. Following the process
in [2], we use the Scaled Unscented Transform (SUT) [12] to
(1) convert incremental motion and covariance data to the DQ
representation and (2) resample data from different sensors at
common times.

The SUT creates a set of sigma points, X , centered about
the mean and spaced according to the covariance matrix. Each
point is passed through the interpolation function f i to produce
a set of transformed points, Y . A new distribution is then
created to approximate the weighted Y . We employ the process
adapted by [9] to incorporate the Lie algebra.

First, f i converts the Euler states to DQ’s. Second, it
accumulates the incremental motions into a common reference
frame and resamples them at the desired instants, typically the
sample times of the reference sensor. This resampling is done
via the DQ SLERP operator [14] which interpolates between
poses with constant speed and shortest path. The function then
calculates the incremental motions.

The SUT requires that transformed sigma points, Y , be
averaged according to some weights, w. Because averaging
each individual element of a DQ would not result in a DQ,
the mean of a set of DQ’s must be estimated by optimization.
We wish to find the mean b̂ that minimizes the error term in:

b̂ (w,Y) = argmin
b

N∑
i=1

wi log
(
b−1 ◦ Yi

)
(40)

The averaging procedure given in [9], intended for non-
negative weights, fails to converge when the Yi’s are similar
(i.e., for small covariance). Since our SUT implementation can
return negative weights, we use L-M optimization (Eq. 38)
with the mean cost function given in Eq. 40.

VII. RESULTS

A. Simulation

We validated the calibration estimates and constrained
CRLB by simulating robot motion along the path shown in
Fig. 5. The N = 62 observations and covariances per sensor
were simulated using a translation/Euler angle parametrization
(instead of DQ’s) to model data obtained from sensors in
practice. Additive Gaussian noise is applied to this minimal
representation with a magnitude 10-40% of the true value.

Thirty different calibrations were simulated, each
with rigid body parameters k uniformly drawn from
[±3 m,±3 m,±3 m,±π,±π,±π]. The observations and
covariances were then converted to DQ’s using the
interpolation method of § VI. We validated the CRLB
by performing 400 Monte Carlo simulations [1] for each
calibration, sampling each velocity vector from its Gaussian
distribution.

Fig. 5: Motion simulated
such that the red and
blue sensors traveled the
paths shown. The path is
always non-degenerate;
in this image k =[
0.1, 0.05, 0.01, 0, 0, π3

]
.

0.72 0.74 0.76 0.78 0.8 0.82
0

50

k0

0 0.05 0.1
0

50

100

k1

0.45 0.5 0.55
0

50

k2

−0.45 −0.4 −0.35
0

50

100

k3

0.1 0.2 0.3 0.4
0

50

k4

1.8 1.9 2 2.1 2.2
0

50

k5

−0.8 −0.7 −0.6 −0.5 −0.4
0

50

100

k6

0 0.1 0.2 0.3 0.4
0

50

k7

Fig. 6: Histograms (gray) of calibration estimates from 400
simulations of the path in Fig. 5 match well with the true
calibration (green triangles) and constrained CRLB (green di-
amonds). Black lines indicate the sample mean (solid) and one
standard deviation (dashed); red lines show a fitted Gaussian.

Fig. 6 shows results for a sample calibration:

kEuler = [2.79 m,−2.79 m,−1.45 m,−0.51 r, 0.94 r,−1.22 r]

in meters (m) and radians (r) or, in DQ form, at:

kDQ = [0.77, 0.07, 0.49,−0.40, 0.30, 1.99,−0.57, 0.21]

As shown, the mean and standard deviations from the simu-
lations match well with the true value and the CRLB, respec-
tively. It is important to note that the covariance matrix cor-
responding to Fig. 6 is calculated on an over-parametrization;
there are only six DOF’s in the 8-element DQ representation.
Due to these dependent (i.e., constrained) parameters, the
covariance matrix is singular. However, because we use the Lie
algebra during optimization and filtering, we can employ the
DQ parametrization to avoid problems associated with singular
covariances.

Fig. 7 shows the error between the thirty true calibrations
and the mean of the estimated values for one of the DQ

0 5 10 15 20 25 30
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation

E
rr

or
 o

f D
Q

 P
ar

am
et

er

Fig. 7: The error between the known calibration and the mean
estimate was less than ±0.01 for each DQ parameter.

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Simulation

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 D

Q
 P

ar
am

et
er

Simulated
CRLB

Fig. 8: The standard deviation of the simulations and predicted
CRLB agreed to within ∼0.01 for each DQ parameter.

parameters. The other DQ elements (not shown) behaved
similarly; they were recovered to within about 0.01 of truth.
Fig. 8 compares the standard deviation of the parameters
resulting from the Monte Carlo experiments and the predicted
CRLB. In general, the method came close (within about 0.01)
to the best-case CRLB.

B. Real data

We further validated the estimator with two different types
of depth sensors and motion estimation algorithms. First, we
collected data with two Microsoft Kinect RGB-D cameras,
mounted on three different machined rigs with known calibra-
tions. The RGB-D data from each camera was processed using
the Fast Odometry from VISion (FOVIS) [10] library, which
uses image features and depth data to produce incremental
motion estimates. Second, we collected data with two rigidly
mounted Xtion RGB-D cameras and used the KinectFusion
algorithm [16] for motion estimation. For all four calibra-
tions, we moved each rig by hand along a path in 3D. The
interpolation algorithm (§ VI) was used to synchronize the
translations/Euler angles and convert to DQs.

We characterized the noise in both systems using data from
stationary sensors. We projected the noise into h and, using a
chi-squared goodness-of-fit test, found the projected Gaussian
to be a good approximation (at 5% significance) for both
FOVIS and KinectFusion.

TABLE I: Calibrations recovered from real data

x (m) y (m) z (m) ρ (r) ϑ (r) ψ (r)

True 1a -0.045 -0.305 -0.572 -1.316 0.906 -1.703
Errorb 0.000 0.011 0.011 0.022 0.002 0.009

True 2a -0.423 -0.004 0.006 -0.000 0.000 3.141
Errorb -0.007 -0.014 -0.003 -0.019 0.003 -0.007

True 3a -0.165 0.204 -0.244 1.316 -0.906 3.009
Errorb -0.007 0.003 -0.013 0.003 0.000 -0.005

True 4a -0.040 0.025 0.000 -0.052 0.000 3.141
Errorb -0.006 0.008 0.006 0.013 -0.017 0.005
a Ground truth calibration
b Difference between mean of the estimates and the true calibration

Fig. 9: We assess the method’s consistency by recovering the
loop of calibrations relating three RGB-D sensors.

Table I summarizes the results of the four different cali-
brations. For clarity, the transforms are shown as translations
and Euler angles, but all processing was done with DQ’s.
We assumed a constant variance for each DOF. The first
three calibrations used Kinects and FOVIS with 2N ' 2000
observations; the last used Xtions and KinectFusion with
2N ' 400. In each case, the method recovered the inter-sensor
translation to within about 1.4 cm, and the rotation to within
about 1.26 degrees.

We assessed the estimator’s consistency with three rigidly
mounted depth cameras r, s, and t (Fig. 9). We estimated the
pairwise calibrations ks,r, kt,s, and kr,t, where, e.g., ks,r is
the calibration between r and s. The closed loop of estimated
transformations should return to the starting sensor frame:

ks,r ◦ kt,s ◦ kr,t = I (41)

The accumulated error was small: translation error was
[−4.27,−2.66, 7.13] mm and rotation error (again in Euler
angles) was [7.03,−5.20,−1.49] milliradians.

VIII. CONCLUSION

We described a practical method that recovers the 6-DOF
rigid body transform between two sensors, from each sensor’s
observations of its 6-DOF incremental motion. Our contribu-
tions include treating observation noise in a principled manner,
allowing calculation of a lower bound on the uncertainty of the

estimated calibration. We show that the system is unobservable
when rotation occurs only about parallel axes.

Additionally, we illustrate the use of a constrained DQ
parametrization which greatly simplified the algebraic machin-
ery of degeneracy analysis. Such over-parametrizations are
typically avoided in practice, however, because they make
it difficult to perform vector operations (addition, scaling,
averaging, etc.), develop noise models, and identify system
singularities. We assemble the tools for each required op-
eration, employing the Lie algebra to define local vector
operations and a suitable projected Gaussian noise model.
Finally, we demonstrated that the constrained form of the
CRLB enables system observability to be shown.

The method accurately recovers the 6-DOF transformations
relating pairs of asynchronous, rigidly attached sensors, re-
quiring only hand-held motion of the sensors through space.

We gratefully acknowledge the support of the Office of
Naval Research through award #N000141210071.

APPENDIX

If A is D×E, B is E × F , N (A) is the null space of A,
R (B) is the column space of B, and dimA is the number
of vectors in the basis of A, then rank(AB) = rank(B) −
dim [N (A) ∩R (B)]. Substituting from Eq. 37,

rank(JHJGU) = rank(JGU)− dim [N (JH) ∩R (JGU)]

Intuitively, this means that if a column of JGU lies in the null
space of JH , information is lost during the multiplication and
the rank of the matrix product is reduced. In order to show
that rank(JHJGU) = rank(JGU), there are two cases:

1) If JGU is singular, then rank(JGU) < 6(N + 1),
where N is the number of observations. This implies
rank(JHJGU) < 6(N + 1). Thus, JGU is singular
implies JHJGU is singular.

2) If JHJGU is singular, then either JGU is singular or
dim [N (JH) ∩R (JGU)] > 0.
• If JGU is singular, then this is the case above.
• If JGU is not singular, then rank(JGU) =

6(N + 1). The task then becomes to determine
dim [N (JH) ∩R (JGU)]. Since JGU is full rank,
R (JGU) is the columns of JGU . Furthermore,
there are 4N columns in N (JH), one for each
of the two constraints of the 2N DQ’s. (Fig. 10
shows N (JH) for N = 2.) It can be shown that
rank([JH , JGU]) = rank(JH) + rank(JGU). In
other words, none of the columns of N (JH) will
intersect with the columns of JGU . Thus, N (JH)∩
R (JGU) = ∅ and rank(JHJGU) = rank(JGU).
Since JGU is not singular, JHJGU is not singular,
which is a contradiction. Only the former possibility
remains, and JHJGU is singular implies JGU is
singular.

In conclusion, JHJGU is singular if and only if JGU
is singular. Intuitively, this is not a surprising result; the
log function is designed to preserve information when
mapping between the Lie group and the Lie algebra.

1 10 20 32

1
2
3
4
5
6
7
8

1 10 20 32

1
2
3
4
5
6
7
8

Fig. 10: The matrix N (JH)
T , depicted here for N = 2,

reveals 4N DOF’s corresponding to the constraints of the 2N
DQ’s in z. Blank entries are zero; orange are unity.

REFERENCES

[1] Y. Bar-Shalom, T. Kirubarajan, and X. Li. Estimation
with Applications to Tracking and Navigation. John
Wiley & Sons, Inc., New York, NY, USA, 2002.

[2] J. Brookshire and S. Teller. Automatic calibration of
multiple coplanar sensors. RSS, 2011.

[3] H. H. Chen. A screw motion approach to uniqueness
analysis of head-eye geometry. In CVPR, Jun 1991.

[4] G. Chirikjian. Information theory on Lie groups and
mobile robotics applications. In ICRA, 2010.

[5] K. Daniilidis. Hand-eye calibration using dual quater-
nions. IJRR, 18, 1998.

[6] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-
d rigid body transformations: a comparison of four major
algorithms. Mach. Vision Appl., 9(5-6), March 1997.

[7] V. Govindu. Lie-algebraic averaging for globally consis-
tent motion estimation. In CVPR, 2004.

[8] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and
W. Burgard. Efficient estimation of accurate maximum
likelihood maps in 3D. In IROS, Nov 2007.

[9] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder.
Integrating generic sensor fusion algorithms with sound
state representations through encapsulation of manifolds.
CoRR, 2011.

[10] A. Huang, A. Bachrach, P. Henry, et al. Visual odometry
and mapping for autonomous flight using an RGB-D
camera. In ISSR, Aug 2011.

[11] E. Jones and S. Soatto. Visual-inertial navigation,
mapping and localization: A scalable real-time causal
approach. IJRR, Oct 2010.

[12] S. Julier. The scaled unscented transformation. In
Proc. ACC, volume 6, pages 4555–4559, 2002.

[13] K. Kanatani. Group Theoretical Methods in Image
Understanding. Springer-Verlag New York, Inc., 1990.

[14] L. Kavan, S. Collins, J. Zara, and C. O’Sullivan. Geomet-
ric skinning with approximate dual quaternion blending.
volume 27. ACM Press, 2008.

[15] J. McCarthy. An Introduction to Theoretical Kinematics.
MIT Press, 1990.

[16] R. Newcombe, A. Davison, S. Izadi, et al. KinectFusion:
real-time dense surface mapping and tracking. In ISMAR,
Oct. 2011.

[17] J. Selig. Exponential and Cayley maps for dual quater-
nions. Adv. in App. Clifford Algebras, 20, 2010.

[18] P. Stoica and B. C. Ng. On the Cramer-Rao bound under
parametric constraints. Signal Processing Letters, IEEE,
5(7):177–179, Jul 1998.

[19] H. Van Trees. Detection, Estimation, and Modulation
Theory, Part I. John Wiley & Sons, New York, 1968.

[20] R. Y. Tsai and R. K. Lenz. A new technique for
fully autonomous and efficient 3D robotics hand/eye
calibration. IEEE Trans. Robot. Autom., 5(3), Jun 1989.

[21] A. Ude. Nonlinear least squares optimisation of unit
quaternion functions for pose estimation from corre-
sponding features. In ICPR, volume 1, Aug 1998.

	Introduction
	Background
	Calibration
	Unit Dual Quaternions
	Lie Groups & Lie Algebras
	Logarithm of dual quaternions
	Exponential of dual quaternions

	Problem Statement
	Process model

	Observability
	Shift invariance
	Fisher Information Matrix
	Cramer-Rao Lower Bound
	Degeneracies

	Optimization
	Interpolation
	Results
	Simulation
	Real data

	Conclusion
	Appendix

