
Communication Visibility in Shared Virtual Worlds

Michael Capps    Seth Teller
<capps, seth>@graphics.lcs.mit.edu

Computer Graphics Group
MIT Laboratory for Computer Science

Abstract
Though the service of shared virtual worlds is an

active area of research, little effort has been made to
optimize such systems for urban world spaces.  Tracking
the motion, action, and communication of thousands of
users in a city requires a application of visibility for
spatial and logical subdivision of updates.  We propose
herein the City-Level Optimizations for Virtual
Environments (CLOVES) substrate for the MIT City Scan
(automated urban geometry acquisition) project.
CLOVES includes a generalized spatial subdivision
optimized for visibility; a Graduated Visibility Set (GVS)
generator; associated interest management techniques;
and model service to distributed heterogeneous clients.

Keywords:  Virtual Reality, Virtual Worlds, Collaborative
Virtual Environments, Interest Management, Data
Subscription, Visibility, GVS

1. Introduction
The Computer Graphics group at MIT-LCS is

engaged in the City Scanning project, a system designed
to automatically generate layout, landscape, and
geometric building structure using pictures of a city taken
by a non-autonomous roving vehicle.

With its vast (virtual) extent, a city model yields
additional complexity by allowing larger user populations.
Hundreds of human-sized avatars can interact
comfortably in a single large building; we envision
models with city blocks lined with such buildings and
worlds with thousands of interacting heterogeneous
clients.

We hope to provide high-fidelity telepresence in
virtual urban environments for both the single user and
large synchronous communities.  For this, we provide
CLOVES (City-Level Optimizations for Virtual
Environments), which serves as the data, navigation, and
communication infrastructure for the MIT City project.
CLOVES includes a central database for storing the city
information, as well as modules which optimize the

database for model traversal, service to remote clients,
and messaging.

There are five primary research issues that we will
address while implementing this system:
• the annotatable image/geometry database uses a

spatial subdivision in which each node can have an
arbitrarily-typed subtree

• a specification protocol for heterogeneous clients, to
inform the server of client capability and type (e.g.,
available bandwidth, class of motion, etc.)

• visibility processors that can make incremental
refinements to the spatial subdivision of the model, as
well as generate specialized information like our
novel Graduated Visibility Set (GVS)

• model server algorithms that use client specifications
to provide proper data formats, avoid starvation, and
incorporate motion prediction for precaching

• interest management techniques including culling
based on functional groups, message frequency, and
level of visibility

We discuss these ongoing research interests in turn in
sections 2 through 6.  For each, we give a broader
overview, a description of related work in the field, and a
discussion of our progress and directions.  The focus of
this paper is on the distributed aspects of CLOVES,
especially as applicable to message transmission and
culling in the later sections.  We follow these with a short
discussion of the implementation of the CLOVES system,
and conclude after a look at our future plans in this area.

2. Content Creation and Storage
The MIT City Scanning project produces CAD models

representing urban geometry by processing photographs.
As geometric information is reconstructed from image
data, it is checked into the model database, along with a
description of the source of the data and any annotations.
Annotations are stored in a variety of formats, and often
far outstrip the geometric data in storage size.  They are
primarily used to store the information used to generate
the reconstruction, such as camera descriptors and digital
images.  In this way, it is possible to incrementally refine
the geometric information in the database by examining



how it was originally generated and using that
information to determine if additional refinement would
be useful.

2.1 Previous work
Most graphics engines use spatial subdivision to

facilitate various functions such as frustum culling,
memory management, visibility, and the like. We are
unaware of a generalized spatial subdivision which
combines the functionality of different tree types.

Object-oriented databases and image processing are
well-explored areas of research; we claim only the unique
application of OO-annotation as a storage medium for
incremental image processing.

2.2 Research issues
The ability to keep an annotation associated with a

group of polygons current throughout the refinement
process is critical to the incremental processing used in
CLOVES.  Large models can require very complex
preprocessing functions, such as model segmentation and
visibility determination, and a driving requirement of our
system is that models be available without requiring hours
or days of initialization.

To speed view-frustum culling, visibility
determination, and other functions, we use a hierarchical
spatial subdivision to store the geometric data. However,
rather than optimizing storage and traversal by simply
choosing different split-planes for BSP tree, CLOVES
allows any node to be split according to how it can best be
stored.  Therefore, the first division might be a winged-
edge data structure to describe road and city-block layout,
as in [SD97]; flat, open areas might use quad-trees; and
buildings could use octrees, BSPs, or both.  These nodes
all share a C++ superclass of a generic node, and specific
nodes store the type of their children and have access to
virtual methods for their traversal.

The database will be able to serve the geometry in
multiple formats for heterogeneous clients; data may be
pre-stored in some formats to reduce computation time.

3. Heterogeneous Client Specification
A city's inhabitants are diverse, and this should be

supported in a virtual urban environment as well.
However, most large multi-user virtual environment
systems require the use of a proprietary client, available
on limited architectures.  We wish to make very few
assumptions about clients, and expect disparate
processing power, display technology, input devices, local
memory, portability, and bandwidth.  Some VRML
researchers have attempted to develop protocols for

sharing that information, but none have been accepted by
the community.  The distributed model management we
propose would require us to develop our own such
specification.  Some systems have included simple
descriptions of participating federates; instead, we hope to
develop a formal semantic that captures the meaning of
these capabilities.  Such a formalism would allow greater
portability of this specification to other systems, which is
one of many important steps on the road to
interoperability in shared virtual reality systems.

4. Visibility Determination
The city model promises to be larger than can be

easily processed by conventional graphics hardware; we
reduce the visible set through hierarchical subdivision and
occlusion culling.  To speed model traversal, we use
hierarchical visibility information; to allow for disparate
rendering ability in our heterogeneous clients, we store
graduated visibility information rather than using simple
binary occlusion.

4.1 Previous work
Visibility information is now a standard step in

rendering complex models at interactive rates.
Researchers have exploited the axially-occluded nature of
building interiors, for instance, to generate visibility to aid
in radiosity computations [TS91].  Berkeley’s Soda Hall
was split into cells, which generally corresponded to
rooms and hallways, and portal-stabbing techniques were
used to determine a superset of visible cells from each
cell.  Researchers at UNC used similar algorithms to
accelerate architectural walkthroughs [AR90, LG95].

This visibility preprocessing step is seen as a speed-up
technique for other high-fidelity rendering engines. The
commercial product Quake by IdSoftware uses binary
space partitions to store worlds, and a visibility
precomputation is made to speed rendering by
complementing view-frustum culling [MA96].  Coorg and
Teller of MIT developed a heuristic for determining the
largest visual occluders in an environment and culling
geometry accordingly [CT96a].  This algorithm
dynamically selects these objects; precomputation and
storage of the computed occluders is unnecessary and
expensive.

Sillion et al. store precomputed visibility in urban
environments, with the caveat that all viewpoints will be
in a narrowly constrained 2-D area, head-height on the
streets of the city [SD97].  This information is used to
generate textural impostors for complex geometric parts
of the city model.  The city is stored as a winged-edge
graph, with edges in the graph representing streets, and
faces representing city blocks.



4.2 Levels of visibility
With CLOVES we introduce the concept of levels of

visibility.  A binary determination of occlusion ignores
many of the issues in rendering and in distributed virtual
environments.  For example, in Cambridge there are
avenues of unobstructed vision which extend many miles
in the seaward direction.  In that case, binary visibility
would cause a boat in that area to be rendered completely,
though in reality there is no perception of the object.
More importantly to this project, that boat could be a
virtual cruise-ship, so a client on the beach would receive
updates on hundreds of clients with which there is no
chance of interaction.

We propose to enable generation of a Graduated
Visibility Set (GVS) in our visibility processor.  The GVS
consists of n sets of cells; the first cell set is considered
completely visible, and the nth set is 1/nth as visible the
first set.  Each cell set contains a list of its members and a
pointer to the list in the next more-visible cell set, so each
cell set is considered a complete list for that level of
visibility.  Visibility is decreased according to a set of
user-defined rules; we use similar rules to those used in
choosing appropriate Level of Detail (LOD) such as in
[TF96].  These include using projected screen space of a
cell, distance to it, intervening fog, and the like to reduce
the visibility detail in a cell.

For an example of a GVS, consider a world in which
all points are divided into cells, and the GVS has 4 levels.
From a particular viewpoint, cells at extreme distance
would be in the 3rd set.  Most nearby cells would be in the
1st set, though cells occluded by world objects are in the
4th (invisible) set.  Areas with natural camouflage, such as
man-height objects, might be slightly reduced in visibility
(2nd set), as could areas slightly obscured by fog or at a
medium distance.  Underwater, partially-occluded, or
farther areas would be in the last (3rd) visible set.  The 4th

set is not stored with a cell but rather is computed as those
cells not in the visible sets.

The GVS is an annotation just like any other in the
database, so it is possible to generate multiple GVSs for
different needs.  We envision generating sets for media
other than vision; for example, an audio GVS might
attenuate aural “visibility” by distance or occluder
properties.  Complex aural GVSs might take into account
that glass can be sound-proof and walls can be paper-thin
and permit full audio transmission.

Of course the GVS can be used for geometric LOD
decisions, and we plan to include that functionality in
CLOVES.  The primary use for the GVS, though, is to
give the CLOVES server additional information to aid in
communications interest management.

5. Model Service
The initial data for the MIT City Scanning project, a

geometric model of some portion of Cambridge,
Massachusetts, will likely many gigabytes of storage
space.  We expect very few participants will have the
ability to store such a model locally, much less process it
in a timely fashion.  Regardless of storage needs, the
transfer time for such a model will be prohibitive when
joining such a shared urban world.

The problem of navigating a dataset larger than
memory is not new, and is being well-explored by the
CAD/CAM community.  In fact, the Berkeley
Walkthrough [TF96] made use of extensive memory
management techniques to allow rendering of a very
complex architectural model.  Precomputed visibility
information allowed subdivision of the world into
manageable pieces,  which we accomplish with more
granularity with the GVS.  The model server in CLOVES
uses the client specification to decide the size of model
pieces to send, and at what level of detail.

The Berkeley system and others also use motion
prediction to determine areas of the world that may be
needed in the near future.  Those areas are pre-cached
when possible to prevent memory-swap discontinuity
when the user moves into a new portion of the model.
CLOVES includes class of motion in the client
specification, and it uses these classes (e.g  walking, bus,
helicopter, and a generalized class) to predict possible
paths in the virtual world.  That, in conjunction with a
knowledge of network latency, bandwidth, and available
local memory for that client, comprises a complex
heuristic for how much of the model to serve to whom and
when.

6. Interest Management
Simple point-to-point and broadcast protocols exhibit

traffic growth polynomially with the number of users in a
virtual environment; these protocols are not appropriate
for client-to-client communications in our urban setting.
CLOVES provides a hierarchical client-server network
architecture and protocols designed to scale well for the
thousands of users expected in city environments.

Use of a server hierarchy and inter-client visibility can
greatly reduce the number of messages required to keep
concurrency for all users. When the system updates an
avatar's position only for those users who can see it, many
unnecessary messages can be culled in an environment
with significant occlusion. In such a large system, users
may want more, or even less, selective culling options.
Users may want to see only members of a logical group,
such as a family or team, or a more complex Boolean
operation on many logical sets. In fact, a user may always



wish to see a person, regardless of intervening occluders,
granting a sort of x-ray vision. This brings to mind that
visibility need not refer only to visual occlusion by an
object; for instance, aural "visibility" is affected by glass
walls, and thick fog can affect visibility as much as an
opaque wall.

6.1 Previous work

6.1.1 Spatial culling

MUDs were the first to use spatial culling techniques;
the room metaphor restricts users to interaction with co-
located users.  There are some exceptions, but they must
be explicitly used, such as by paging or telling a
particular user or shouting to all users on the system.
NPSNET [MZ95] is a notable example of a system which
culls communications by separating the virtual world into
grid cells; clients receive updates only from those cells in
which they have an interest.  Low-bandwidth clients and
those that should only have a small field of awareness
(like foot- soldiers) subscribe only to the grid they occupy;
higher-bandwidth clients with greater awareness (for
example, radar installations) would subscribe to a greater
number of grids.  Almost all multi-user VE systems that
have interest managers do some spatial filtering; WAVES
[RK93] and GreenSpace [AP95] are further examples.

The COMIC model of interaction, which is used in the
DIVE [CH93] and MASSIVE [GB95] systems, involves
concepts of focus and nimbus to quantify a client’s region
of interaction.  Focus expresses the area of space in which
a client is interested, for a certain medium, and nimbus is
the area in which that client can be detected.  A client’s
aura is a bounding region containing both the focus and
nimbus for purposes of determining interaction; if and
only if two clients’ auras overlap is there a possibility of
interaction between the two.

A natural extension of spatial culling is to filter
communications based on visual occlusion.  For example,
while two clients may be within a few virtual feet of each
other, if they are on other sides of an opaque wall there is
no need for them to exchange positional updates thirty
times a second. Funkhouser used the cell-to-cell visibility
generated in the Berkeley Walkthrough for the multi-user
RING system; a central server kept track of the current
cell for each client, and then would send a client’s
updates only to other users visible from its cell [TF95].

6.1.2 Functional filtering

Functional filtering is the reduction of
communications based on functional groupings of clients
in a virtual world.  This can be performed in both an
extrinsic and intrinsic manner, though the focus of prior

work in this area has been on filtering communications
based on source.  Papers on WAVES and NPSNET
expressed the importance of enhancing message culling
using functional groups. NPSNET researchers suggested
that some functional groups, such as tanks or foot-
soldiers, could have their messages included or culled as a
group—in addition to the standard spatial grid-based
filtering of that system [MZ95].  Neither system
implemented that functionality.

6.1.3 Network topology for interest management

There are three fundamental network topologies used
in multi-user virtual environment systems: broadcast,
multicast, and centralized.  Most distributed VEs employ
a form of broadcast [SG93, CH93] for communicating
updates, but this means that with each additional client
the message-processing load per client grows linearly  and
the network load grows polynomially.  Both of these
concerns can prevent a VE architecture from being
properly scaleable.  Multicasting communications can
greatly reduce the load on both the sender and the
network, as each sender publishes only a single update
instead of one for each other client.  Broll’s VRML-based
VE system [BR97] uses a single multicast group for all
members of the virtual world.  Since multicast is not a
reliable protocol, Broll also uses a message server as a
backup to store update messages.  NPSNET uses a single
multicast group for each grid cell in the simulation
[MB95].  Multicast has some drawbacks: it is unreliable
(though a reliable version is in development), it is not yet
widely implemented, and the effort in modifying groups
makes supporting highly dynamic populations difficult.

The third network topology frequently seen in CVE
systems is the centralized server approach.  A single
server can be used for all clients, such as in the Virtual
Space Teleconferencing System (VISTEL) [OJ93], to hold
all model data and route all messages; this approach of
course does not scale well.  The STOW-E architecture
[ST95] utilizes a standalone interest manager on each
LAN.  That server gathers the interest expressions of its
clients, unions them, and broadcasts them to all other
servers.  Using that information, it is able to direct its
updates only to LANs containing interested parties.

Id Software’s popular commercial software Quake
uses a central server, to which each of up to 16 clients
makes a direct unreliable (UDP/IP) connection.  Each
client keeps a local version of the virtual environment,
and the server relays position updates for only those
clients and dynamic objects which are in a user’s
Potentially Visible Set (PVS). [DK97].

One successful version of a centralized server topology
was Thomas Funkhouser’s RING system; it reported a



messaging reduction of 98% [TF95] by using the cell-to-
cell visibility algorithm of the Berkeley Walkthrough to
perform culling.  Each client stores a local version of a
static virtual environment and communicates its position
and motion to the server once every n display updates.
The server translates the position into a cell location, and
uses the cell’s PVS to determine which actors a client can
possibly detect.  Funkhouser addresses the scalability
issue by allowing multiple servers to serve a single
intermingled population of clients.

6.2 Graduated levels of visibility
While a powerful graphics engine with high

bandwidth might always render all visible cells,
bandwidth or processing constraints might cause reduced
fidelity for other clients with that load.  Our message
servers can use the CLOVES client specifications,
combined with the GVS, to reduce the amount and
frequency of updates forwarded to certain clients.  As
well, if a server experiences a messaging overload, it can
use the GVS to degrade outgoing traffic smoothly by
lowering the highest visible set that it serves.  This
reduction need not indicate total quenching of messages
from a certain source; the GVS can be used to reduce the
frequency of updates for less “visible” areas, lending a
fuller spectrum of choices.

6.3 Functional culling
In addition to standard walkthrough functionality, the

CLOVES client provides the user with the ability to
specifiy interest in functional groups.  A separate
application can be launched that lets the user join and
leave functional groups (see screenshot), specify viewing
interest in groups, and create new groups.  Group creation
and modification is accomplished either by selecting users
from the population or through more sophisticated
Boolean expressions consisting of client specifications,
user information, and existing groups.  These
membership descriptions are included in the client
specifications mentioned previously.

The viewing interest value is a tiered value similar to
that used in the LVS.  The highest values allow the user
to receive updates on group members regardless of their
position or occlusion status.  Our client is equipped with
an additional ability to display such groups at all times;
certain objects, including avatars, can be placed in an x-
ray visibility group such that they are always shown.  This
function would not be active in competitive scenarios, but
would for example allow a parent to find a child
regardless of intervening objects or avatars.

We envision these functional groups to be extremely
useful in well-populated virtual environments.  Most users

will likely only wish to interact with a small subset of the
urban population at any one time, so functional culling
should contribute significantly to scalability.  Even a
simple binary grouping of two teams in a game would
generally reduce communications by 50%.  In a
competitive scenario, a user could reduce the scope of
awareness to the opposing team, but then easily switch to
fuller representations when coordination with teammates
was desired.

7. Implementation
The CLOVES system consists of four main parts: the

database, processors, the client, and the servers.  The
image processors of the City project interface with the
database through a C++ library, storing geometry and
annotations.  The database allows for incremental
refinement by these processors, as well as incremental
adjustments to the general-tree spatial subdivision and to
multiple visibility sets (PVS, GVS, etc.).  The visibility
processors use a complex set of heuristic to optimize node
depth, balance, and the like for rendering and message
culling.

We currently use a modified version of the Berkeley-
Princeton Radiosity Walkthrough, a later version of the
Berkeley Walkthrough, as our primary client for
visualizing the city database [FT96].  The client uses the
SGI IrisGL libraries, and is currently being ported to
OpenGL.  We plan to support SGI and WindowsNT as
our main platforms, but look forward to greater diversity
as the main portions of CLOVES are completed.

We chose the central server topology as the most
successful trade-off of latency and scalability vs.
centralized message filtering and visibility processing.
We have implemented a messaging substrate and server
software very similar to that of the RING system; all
clients connect directly to a central server, or servers.
The server sends a client only pertinent update messages;
depending on a simple heuristic or administrator
commands, the server culls first by visibility, and then by

Figure 1 : City client with group selection



groupings, or vice-versa.  Multiple servers can work in
tandem either by an arranged spatial division of the world
or by simply load-sharing; each organization offers
advantages, which have been examined in [TF96a].

The model service topology is a single centralized
server, which we will use as we investigate the complex
heuristics for minimizing starvation and model delay
across an entire population.  We expect in the future to
further distribute the model service task to increase
availability, reduce network latency, and of course to
support larger populations.

8. Conclusion and Future Work
The CLOVES architecture, and the overall City

Project, are in an ongoing design and implementation
cycle.   As of this writing, we have completed the
hierarchical server construction and the city client with
group subscription.  In the short term we will complete
general-tree, GVS generator, and a specialized Quake
server as a proof-of-concept for our culling techniques.
The remainder of the project has an expected completion
of 2 years.

Our plans for future additions and refinements include
GVS processors for other media, and for use in rendering
LOD decisions; more complex motion prediction
supporting classes of motion; and quantitative utility
testing of the general-tree spatial subdivision.

This paper presented the CLOVES architecture and its
role in the MIT City project, both currently works in
progress.  The network architecture chosen enables
scalability for potentially populous urban environments,
and the interest management system implements and
improves upon ideas from military, academic, and
commercial systems presently in use.  It is our hope that
the CLOVES system will prove effective for our problem
domain, and that many of the techniques explored can be
leveraged effectively into more traditional collaborative
virtual environments.

9. Works cited
 [AP95] Pulkka, Aaron. "Spatial Culling of Interpersonal

Communication within Large-Scale Multi-User Virtual
Environments." MS Thesis, University of Washington, 1995.

[AR90] Airey, J., J. Rohlf, and F. Brooks, Jr. "Towards image
realism with interactive update rates in complex virtual
building environments." Symposium on Interactive 3D
Graphics, 24(2):41-50, March 1990.

[BR97] Broll, Wolfgang. "Distributed Virtual Reality for
Everyone--a Framework for Networked VR on the Internet."
VRAIS ‘97, IEEE, Albuquerque, NM, March 1997.

[CH93] Carlsson, C., and Hagsand, O. "DIVE-A Platform for
Multi-User Virtual Environments. Computer & Graphics,
Vol. 17, No. 6 (1993), pp. 663-9.

[CT96a] Coorg, S. and S. Teller. "Temporally Coherent
Conservative Visibility." Proceedings of the 12th ACM Symp.
on Computational Geometry, Philedelphia, PA, May 1996.

[DK97]  Kirsch, Dave, ThreeWave Software, responsible for
QuakeWorld server.  Personal Communication, June 1997.

[FT96] Funkhouser, T., S. Teller, et al. “The UC Berkeley
System for Interactive Visualization of Large Architectural
Models.”  Presence, 5 (1), January 1996.

[GB95] Greenhalgh, C. and S. Benford. "MASSIVE: a
Collaborative Virtual Environment for Teleconferencing."
ACM TOCHI, Vol. 2, No. 3, Sept. 1995.

[GS96] Smith, Gareth. "Cooperative Virtual Environments:
lessons from 2D multi user interfaces." Proceedings of
CSCW '96, November 16-20, Boston, MA, pp. 390-398.

[LG95] Luebke, D. and C. Georges. "Portals and mirrors:
Simple, fast evaluation of potentially visible sets."  Symp. on
Interactive 3D Graphics, pp. 105-6, April 1995.

[MA96] Abrash, Michael. "The Quake Graphics Engine."
Compuer Game Developers Conference, April 2, 1996.

[MB95] Macedonia, M., D. Brutzman, M. Zyda, D. Pratt, P.
Barham, J. Falby, and J. Locke. "NPSNET: A Multi-player
3D Virtual Environment over the Internet." Symposium on
Interactive 3-D Graphics, (Monterey, CA), 1995.

[MZ95] Macedonia, M., M. Zyda, D. Pratt, D. Brutzman, and P.
Barham. "Exploiting Reality with Multicast Groups: A
Network Architecture for Large-scale Virtual Environments."
VRAIS 1995, IEEE, pp. 2-10.

[OJ93]  Ohya, Jun, Kitamura, Yasuichi, Takemura, Haruo, et.
Al.  “Real-time Reproduction of 3D Human Images in
Virtual Space Teleconferencing,” VRAIS ‘93, pp. 408-414.

 [RK93] Kazman, R. "Making WAVES: On the Design of
Architectures for Low-end Distributed Virtual
Environments." VRAIS ‘93, pp. 443-449.

[SD97] Sillion, F., G. Drettakis, and B. Bodelet.  "Efficient
Impostor Manipulation for Real-Time Visualization of Urban
Scenery." Eurographics '97, Volume 16, Number 3

[SG93] Shaw, C. and M. Green. "The MR Toolkit Peers
Package and Experiment." VRAIS 1993, IEEE, pp. 463-9.

[SO97] Sandin, D., G. Olson, and M. Macedonia. "Distributed,
Interactive Collaboration--Where is it?" Symp. on Interactive
3D Graphics, Providence, RI, April 29, 1997.

[ST95] RDT&E Division and Advanced Telecommunications
Inc.  “Synthetic Theater of War-Europe Technical Analysis.”
Naval Command, Control and Ocean Surveillance Center.

[TF95] Funkhouser, T. "RING: A Client-Server System for
Multi-User Virtual Environments." 1995 Symposium on
Interactive 3-D Graphics, (Monterey, CA), 1995, 85-92.

[TF96] Funkhouser, T. "Database Management for Interactive
Display of Large Architectural Models." Graphics Interface
'96, Toronto, Ontario, May 1996, pp. 1-8.

[TF96a] Funkhouser, T. "Network Topologies for Scaleable
Multi-User Virtual Environments." VRAIS ‘96, IEEE.

[TS91] Teller, S. and C. Séquin. "Visibility Preprocessing for
Interactive Walkthroughs." SIGGRAPH ’91, 25(4):61-69.


	Text1: Workshop on Distributed System Aspects of Sharing a Virtual Reality,  Proceedings of the Sixth Workshops on Enabling-Technologies: Infrastructure for Collaborative Enterprises, Cambridge, MA, June 18-20, 1997, pp. 187-192


