
In IJCV, 37(3):259--273, June 2000.

Spherical Mosaics with

Quaternions and Dense Correlation

Satyan Coorg Seth Teller

MIT Computer Graphics Group

Abstract

We describe an algorithm for generating spherical mosaics from
a collection of images acquired from a common optical center. The
algorithm takes as input an arbitrary number of partially overlapping
images, an adjacency map relating the images, initial estimates of the
rotations relating each image to a specified base image, and approxi-
mate internal calibration information for the camera. The algorithm’s
output is a rotation relating each image to the base image, and revised
estimates of the camera’s internal parameters.

Our algorithm is novel in the following respects. First, it requires
no user input. (Our image capture instrumentation provides both an
adjacency map for the mosaic, and an initial rotation estimate for each
image.) Second, it optimizes an objective function based on a global
correlation of overlapping image regions. Third, our representation of
rotations significantly increases the accuracy of the optimization. Fi-
nally, our representation and use of adjacency information guarantees
globally consistent rotation estimates.

The algorithm has proved effective on a collection of nearly four
thousand images acquired from more than eighty distinct optical cen-
ters. The experimental results demonstrate that the described global
optimization strategy is superior to non-global aggregation of pair-
wise correlation terms, and that it successfully generates high-quality
mosaics despite significant error in initial rotation estimates.

1



1 Automatic Spherical Mosaicing

This paper gives an algorithm for robust estimation of the rotations relat-
ing images taken from a common optical center1. We call this a “spherical
mosaicing” algorithm because it allows any number of images to be merged
into a single seamless view, simulating the image that would be acquired by a
camera with a spherical field of view. Our data represents a field of view that
is somewhat more than a hemisphere, but our technique extends straightfor-
wardly to full spherical arrangements of images. The resulting mosaics are
useful as “first-class” data objects for 3-D reconstruction, and as a compact
means for visualizing spatially extended image datasets.

This work is motivated by a system under development for automatic
reconstruction of textured 3D CAD models representing urban environments
[Tel97, CMT98, CT99]. The system requires acquisition and processing of a
suitable dataset, in this case a large number of digital images of the region
of interest. Our instrumentation annotates each acquired image with an
estimate of absolute 6-DOF pose (also called exterior orientation) – 3 DOF
of position, and 3 DOF of orientation for the acquiring camera. Thus our
acquisition system provides both an adjacency map for images in the mosaic,
and an initial estimate of the rotations relating each image to its neighbors.

Figure 1: The roughly hemispherical tiling for a node of the dataset.

Our dataset consists of photographs acquired by a Kodak DCS 420 digital
camera mounted with fixed optical center on an indexed pan-tilt head, itself
attached to a tripod base. The tripod was manually positioned at eighty-one
locations among the buildings of an office complex. At each position, the
camera was rotated through a predetermined “tiling” of 50-70 orientations,

1An earlier version of this paper was presented in CVPR 1998 [CMT98].

2



yielding a roughly hemispherical field of view (Figure 1). We call each set of
images obtained from a common optical center a “node”. The tiling defines
an adjacency map over the images, in which two images are adjacent if they
have significant overlap along a shared vertical or horizontal edge.

Physical instrumentation alone does not produce pose estimates suffi-
ciently accurate for direct incorporation into 3-D reconstruction algorithms.
For example, our actuated pan/tilt head produces orientation estimates accu-
rate to about one degree. This is one to two orders of magnitude less accurate
than the pixel or sub-pixel alignment required for typical reconstruction algo-
rithms. It is thus necessary to design pose refinement algorithms that recover
accurate camera pose from (approximate) initial estimates.

This paper describes our method for refining estimates of camera orien-
tation for images taken around a single optical center. Recovering relative
translations and orientations between mosaics acquired at different optical
centers is addressed elsewhere [Coo98, ATar, ATon].

Related Work

Of fundamental interest in mosaic computations is the warp relating a pair
of overlapping images. The simplest method to compute this warp uses
four point correspondences between the two images [Hec89, Fau93]. Several
algorithms (e.g., [ZFD97]) use this approach. However, identifying suitable
features and correspondences is a difficult problem, and known methods yield
good results only for images with significant overlap and minimal projective
distortion.

An alternative method would use correlation of color or luminance in-
formation present in images to compute the warp by nonlinear optimization
(e.g., [Sze96]). Although such techniques avoid the need for feature detection
and correspondence, they do not guarantee that a series of pairwise warps
will produce a globally consistent set of relative orientations. We show an
example of this problem in Section 4.

The choice of representation for rotations is an important practical issue
in the development of algorithms for mosaic generation. For estimation of
small rotations, the axis-angle representation has been used [Sze96]. How-
ever, that algorithm also uses matrices to avoid instability due to the non-
uniqueness of the axis-angle representation. We have adopted the quaternion
representation because of its convenience and compactness [Hor87, WI95].

Cylindrical panoramas have been computed by McMillan [MB95], who

3



solves for rotation angles for images taken under rotation around a single
(vertical) axis. His algorithm enforces the constraint that angles computed
for a cylindrical panorama should sum to 2π. A similar constraint is employed
by Szeliski and Shum [SS97] to “close the gap” between the first and last
images. These methods do not generalize to arbitrary (e.g., spherical) image
adjacency maps.

Shum and Szeliski in their recent paper [SS98] also compute full-view
spherical panoramas. However, their global alignment algorithm requires
a combination of both correlation-based and feature-based optimization. In
contrast, we optimize correlation directly to perform global alignment, avoid-
ing both the need to identify and correspond suitable features.

In a different application domain, robust algorithms have been described
for generating mosaics of video frames taken from a slowly rotating cam-
era [SHK98, HS98]. These algorithms assume a single continuous image
sequence, and exploit similarity between successive images due to the small
camera rotation between video frames. In contrast, our technique handles
general arrangements of images on the sphere.

1.1 Overview

(a) (b) (c)

Figure 2: Part (a) shows one image of a hemispherical tiling blended with its
adjacent images. Part (b) illustrates blurring due to incorrect pose estimates.
Part (c) shows the same view after optimization.

Figure 2 illustrates the basic idea behind the optimization technique. As
depth and parallax effects do not occur across images taken from a single op-
tical center [Har97], the apparent pixel motion between such images can be

4



explained by a 2-D projective transformation that depends on camera orienta-
tions and internal parameters (described below). As shown in Figure 2-(a),
this transformation maps pixels from adjacent images into a common 2-D
space. Incorrect transformations arising from inaccurate estimates of camera
pose result in mismatches between pixels, causing the blurring and ghosting

shown in Figure 2-(b). The optimization techniques described here uses these
pixel differences to refine pose estimates and eliminate the blurring artifacts,
as shown in Figure 2-(c).

The rest of the paper is organized as follows. Section 2 briefly describes
the process of image formation via perspective projection, and our represen-
tation of rotations by quaternions. Section 3 reviews 2-D projective trans-
formations and methods to compute them. Section 4 presents a closed-form
method to decouple projective transformations into two parts, one describing
the intrinsic parameters of the camera, and another describing the pure ro-
tations to which the camera has been subjected. While theoretically elegant,
this technique is sensitive to errors in image formation and generally yields
poor results for real imagery. We address this problem in Section 5 with a
global optimization technique that computes revised rotations and camera
internal parameters directly from correlations among images. Constraining
the optimization to manipulate pure rotations produces significantly more
accurate mosaics, as shown in Section 6.

2 Perspective Projection

X

Z

X’

Y’

Z’

f

c=[cx, cy]Y

p=[px, py, pz]

R

s=[x, y, z] (world)

s’=[x’,y’]

s=[xC, yC, zC] (camera)

Figure 3: Overview of perspective projection.

5



Figure 3 shows the process of image formation by perspective projection,
illustrated for a point s = [x, y, z] as viewed by a camera at world-space
position p = [px, py, pz]. The rotation from the global coordinate system
XYZ to the camera coordinate system X′Y′Z′ is specified by a 3×3 rotation
matrix R.

The first step is to compute sC = [xC , yC, zC ], the coordinates of s in the
camera’s coordinate system:

sC = R(s − p)

Next, perspective projection scales the x and y coordinates by depth to yield
normalized image coordinates [xI , yI]:

xI = xC

zC
yI = yC

zC

The normalized image coordinates are converted to pixel values based on
the focal length f (expressed in pixels) and the coordinates (cx, cy) of the
principal point:

x′ = fxI + cx y′ = fyI + cy

Note that it is not necessary that the principal point coincide with the image
center; in practice, it is usually offset by a few pixels. It is convenient to
represent the entire transformation as a chain of matrix transformations.
This is done using projective geometry [Fau93]:







x′

y′

1







∼= KM

[

R −Rp

0 1

]











x

y

z

1











(1)

where K is the 3 × 3 (upper-triangular) internal camera parameter matrix:







f 0 cx

0 f cy

0 0 1







and M is the 3 × 4 canonical perspective projection matrix:







1 0 0 0
0 1 0 0
0 0 1 0







6



The projective equality (∼=) is valid up to scaling.
Note that this discussion restricts the camera to be described by a three

parameter model (instead of the standard five parameter model [Fau93])
by assuming that the pixels are square (i.e., the focal lengths are equal) and
non-linear distortion is negligible. These assumptions are valid for the digital
camera used in our system; radial distortion is less than a pixel even near
the edge of the image. It is straightforward to incorporate non-square pixels
in the algorithms by using different focal lengths. However, any non-linear
distortion must be measured and corrected (e.g., with Stein’s method [Ste95])
before using the images as input to the algorithms. Alternatively, estimation
and correction for non-linear distortion can be incorporated directly into the
mosaic algorithm [SK99].

2.1 Rotations as Quaternions

There are several choices for expressing camera rotations: 3× 3 orthonormal
matrices, Euler angles, quaternions etc. Horn [Hor87, Hor91] demonstrates
that quaternions are a convenient representation, especially for problems
involving numerical optimization. Quaternions represent rotations as four-
dimensional unit vectors q = [q0, qx, qy, qz] where q2

0
+ q2

x + q2

y + q2

z = 1.
The quaternion representation is compact in comparison to the orthonor-

mal representation (only four parameters instead of nine). Unlike the even
more compact Euler angle representation (three angles expressing rotations
about the X,Y, andZ axes), quaternions are stable while representing large
rotations, and exhibit no singularities.

Differentiating a Rotation Matrix

The derivative of the rotation matrix with respect to the quaternion param-
eters is an important quantity used by our algorithm to update the estimate
of each camera’s associated rotation.

The following expression represents a quaternion as a 3 × 3 orthonormal
matrix:







(q2

0
+ q2

x − q2

y − q2

z) 2(qxqy − q0qz) 2(qxqz + q0qy)
2(qyqx + q0qz) (q2

0
− q2

x + q2

y − q2

z) 2(qyqz − q0qx)
2(qzqx − q0qy) 2(qzqy + q0qx) (q2

0
− q2

x − q2

y + q2

z)







The derivative of a rotation matrix R−1 with respect to a quaternion

7



q = [q0, qx, qy, qz]
T is a tensor of dimension 3 × 4 × 3. Here, the derivative

is typically multiplied by a vector v = [vx, vy, vz]
T ; only its value at v is

required:

(
∂R−1

∂q
)v =







a d −c b

b c d −a

c −b a d







where: a = +q0vx + qzvy − qyvz

b = −qzvx + q0vy + qxvz

c = +qyvx − qxvy + q0vz

d = +qxvx + qyvy + qzvz

For representing rotations, quaternions hold a significant computational ad-
vantage over other representations (Euler angles, axis-angle). In these other
representations, derivative expressions contain sine and cosine terms, increas-
ing the computational cost of estimating derivatives.

3 2-D Projective Transformations

Image 1
Image 2

P

Figure 4: Transforming pixels from image 1 to the space of image 2.

Figure 4 illustrates the relationship between two images taken from a fixed
optical center, but with differing orientations. In such cases, pixels in one
image can be mapped to the other image by a 2-D projective transformation
[Har97]. Unlike simpler 2-D transformations (translation, rotation, affine),
the projective transformation does not preserve parallel lines. This is evident
in Figure 4, where the lines bounding image 1 intersect after transformation.

8



As depth effects do not occur across two images taken from the same
optical center [Har97, Sze96], the general perspective projection (Equation 1)
simplifies to:







x′

y′

1







∼= KR







x

y

z





 (2)

Inverting Equation 2 yields:







x

y

z







∼= R−1K−1







x′

y′

1





 (3)

Equation 3 provides a method to convert pixel positions in one image (say,
image 1) to 3-D rays. Thus pixel coordinates in another image (say, image
2) can be obtained by projecting back into image 2’s space using Equation 2:







x2

y2

1







∼= KR2R
−1

1
K−1







x1

y1

1





 (4)

Thus the 2-D projective transformation that maps pixel (x1, y1) of image 1
to pixel (x2, y2) of image 2 is:

P = KR2R
−1

1
K−1 (5)

Note that, as ∼= denotes projective equality, Equation 4 is valid only up
to a linear scaling of [x2, y2, 1]T . As a consequence, only eight parameters are
needed to describe the matrix P. Thus 2-D projective transformations are
also known as 8-parameter warps. Typically, the unknown scale factor of the
transformation is determined by fixing either detP = 1 or P33 = 1.

3.1 Computing Warps

Below, we briefly review an optimization due to Szeliski [Sze96] that com-
putes 8-parameter warps using this technique. This discussion also intro-
duces the Levenberg-Marquardt (LM) optimization [PTVF92], which is used
in several places here.

The idea is to compute a warp that (locally) minimizes image-space error
by using nonlinear optimization. The error function for this optimization

9



simply measures the difference in brightness between two images 1 and 2 (in
the overlap region), after pixels in image 1 are mapped to image 2’s space.
The difference in brightness is measured by a sum-of-squared difference (SSD)
error metric using the luminances L1 and L2 of images 1 and 2, respectively:

E12 =
∑

x1,y1

(L1(x1, y1) − L2(P(x1, y1)))
2 (6)

This error term is “one-way”, in the sense that image 1 is used as a sampling
reference for collection of pixel differences. However, we collect error sym-
metrically, by evaluating both Eij and Eji for every adjacent image pair i

and j (Section 5.1). The SSD form is well suited for numerical optimization,
as only first order derivatives are required to compute update values for the
iteration [PTVF92].

The optimization consists of analytically determining derivatives of a sin-
gle error term of the form:

e2

x1,y1
= (L1(x1, y1) − L2(x2, y2))

2

with respect to P. The derivative
∂ex1,y1

∂P
is expressed as an 8-component

vector consisting of derivatives with respect to each entry of P.
In LM optimization, the overall gradient term G is computed by accu-

mulating over all error terms [PTVF92]:

G = −
∑

x1,y1

ex1,y1

∂ex1,y1

∂P

Similarly, the (linearized) Hessian term corresponding to two adjacent images
1 and 2 is:

H = −
∑

x1,y1

∂ex1 ,y1

∂P
(
∂ex1,y1

∂P
)T

where we sum over all pixels (x1, y1) in the overlap region of the images.
The optimization proceeds by incrementing the value of P by

∆P = −(H + λI)−1G

where I is the identity matrix, and λ is a stabilization parameter set initially
to a high value, and reduced to 0 as the optimization converges [PTVF92].

10



Initialization

As in any nonlinear optimization, it is important to initialize the warp with
a value that is close to the optimum. Several techniques have been proposed
for this step. McMillan [McM97] computes a 2-D translation with minimum
error, and uses it to initialize the optimization. However, good initial trans-
lations are difficult to determine, or may not exist at all, if the effects of
perspective are large. Szeliski and Shum [SS97] perform the initialization
interactively, with the help of a human operator.

In our application, initial rotation estimates are provided by our ac-
quisition instrumentation, and approximate camera calibration. It is thus
straightforward to compute a good initial estimate using Equation 5 with
the internal parameter matrix determined by camera calibration and rota-
tions supplied by physical instrumentation.

Warp Example

Figure 5 shows the results of this optimization for two images (sized 762×506
pixels). Note that the blurring, initially present, disappears after optimiza-
tion. The projective matrix P computed (normalized such that its determi-
nant is 1) is:

P =







0.7423 0.0162 584.7688
−0.0994 0.9983 14.2725
−0.0003 0.0000 1.0463





 (7)

We next describe a technique to recover camera internal parameters and
relative rotations from such warps.

4 Orientation Estimates from Warps

It is straightforward to recover rotation from warps using Equation 5 if the
camera calibration is known accurately. If not, the following closed-form
solution can be used to derive camera calibration from the warp itself.

4.1 Closed-Form Solution for Internal Parameters

The technique proposed in this section is similar in spirit to closed-form
solutions presented by Hartley [Har97] and McMillan [McM97], but much
simpler to express. The basic idea is the use of Equation 5 to enforce the

11



Figure 5: The projective warp between two images, before and after opti-
mization.

orthonormality constraint for valid 3 × 3 rotational matrices, and the use of
eigen-vectors of the warp matrix to define the solution.

Rewriting Equation 5 in terms of R = R2R
−1

1 , the relative rotation be-
tween the two images, and solving for R, we have:

R = K−1PK (8)

Since R = R−T (the orthonormality condition for rotations), we have

K−1PK = KTP−TK−T

Rearranging terms yields:
PC = CP−T (9)

12



where C = KKT . The matrix C is a symmetric 3× 3 matrix whose compo-
nents are formed from the focal length f and image principal point [cx, cy]:

C =







f 2 + c2

x cxcy cx

cxcy f 2 + c2

y cy

cx cy 1





 (10)

The solution for C in Equation 9 can be expressed in terms of eigen-
vectors of the projective matrix P. The eigen-values of P are the same as
that of R, since they are related by a similarity transform [Str88], i.e., left
and right multiplication by a matrix and its inverse (Equation 8). The eigen-
values of the rotation R are 1, eiθ, and e−iθ, where θ is the angle of rotation
effected by R. Let e0, e1 and e2 be the eigen-vectors of P corresponding to
these three eigen-values, respectively.

Note that C = e0e
T
0

is a solution to Equation 9:

PC = Pe0e
T
0

= e0e
T
0

= e0e
T
0
P−T = CP−T

This derivation uses the fact that if e is a right eigen-vector of P, then eT is
a left eigen-vector of P−T .

Similarly, as the eigen-values corresponding to e1 and e2 are reciprocals
of each other, it can be shown that e1e

T
2

and e2e
T
1

are also possible solutions
of C. The most general symmetric solution to C is therefore a linear com-
bination of the three solutions, where the second two solutions are weighted
equally:

C = c0e0e
T
0

+ c1(e1e
T
2

+ e2e
T
1
)

The coefficients c0 and c1 are solved by enforcing the constraints that the
C33 = 1 and C12 = C13C23 (again using the three-parameter camera model).
The matrix K can be recovered by Cholesky Decomposition of C [PTVF92].

Using this technique for the warp described in Equation 7 gives values of
f = 1141, cx = 397, cy = 249 (all in pixels). The rotation R corresponding
to these parameters is:







0.8897 0.0090 0.4603
−0.0004 0.9961 0.0010
−0.4599 0.0080 0.8901







The rotation determined appears qualitatively reasonable, i.e., it is (close to)
a rotation about the image’s y axis; this agrees with Figure 5. However, as
described in the next section, there is a significant quantitative difference
between this and the physically correct rotation.

13



4.2 Warps and Rotations

The rotation computed in the previous section is approximately 27◦ (=
cos−1 0.89). However, the physical rotation was nearly 30◦ (= 360

12
as twelve

images formed a full circle). Using a 27◦ rotation for this image sequence
would therefore leave a gap between the last and the first image.

At first glance, it might appear that the problem is due to incorrectly
recovered internal parameters. The computed focal length differs significantly
from the focal length determined by Tsai’s calibration algorithm (by about
150 pixels). However, even though a different set of internal parameters might
yield other rotations, the angle of rotation is completely determined by the
eigen-values of the projective warp P. As this is unaffected by the method
by which internal parameters are computed, this problem is inherent in the
warp solution itself.

Figure 6: The projective warp between two images, after direct optimization.

Figure 6 illustrates the problem by showing the warp computed by direct
optimization with respect to the internal parameters K and the relative ro-
tation R (using the method described below). The internal parameters were
computed to be f = 1016, cx = 393, cy = 253 (all in pixels), and the relative
rotation and warp between the two images are:

R =







0.8637 0.0047 0.5040
−0.0054 1.0001 −0.0000
−0.5043 −0.0031 0.8638






P =







0.669371 0.003488 592.614624
−0.114616 0.999421 15.121033
−0.000492 −0.000003 1.058760







The rotation (of cos−10.8637 = 30.27◦) and internal parameters agree well
with initial estimates. Also, visually, the overall warp computed differs from

14



that described in Equation 7. This can be observed in the large “gap” be-
tween the right edge of the image and the border in Figure 5 (which is smaller
in Figure 6). However, within the region of overlap, the two warps appear
identical; there are no blurring artifacts visible in either case. Thus, there
are several possible warps that yield low SSD error, but not all of them cor-
respond to physically correct rotations. It is therefore essential to impose the
rotational constraint during the optimization to obtain quantitatively correct
results.

Similar effects were also observed for warps corresponding to other image
pairs. Thus, while 8-parameter warps generate visually consistent blending
between adjacent images, they appear to be inadequate for recovering quanti-
tative 3-D parameters, such as relative rotations. Also, more fundamentally,
relying on local pairwise warps to compute global quantities can lead to in-
consistencies in the computed internal parameters and rotations. The next
section presents a global optimization method that addresses these problems.

5 Spherical Mosaicing

The optimization described in this section directly produces the “best” pos-
sible rotations for each image, given initial estimates. The advantage of
this approach is that global consistency is guaranteed by computing a unique

rotation for each image. That is, the pairwise rotations inferred from our rep-
resentation have the property that the aggregate rotation along any cycle in
the image adjacency map is the identity. In this manner, our representation
avoids the possibility of “gaps” arising from inconsistent pairwise estimates.

The approach followed is to optimize a global correlation function de-
fined for adjacent images with respect to all orientations (represented as
quaternions). As a by-product, the algorithm computes a spherical mosaic,
a composite of all images corresponding to a single node.

5.1 Optimization

The algorithm minimizes a global error function:

E =
∑

i,j are adjacent
Eij + Eji

15



where Eij is the SSD error between luminance values of images i and j:

Eij =
∑

xi,yi

(Li(xi, yi) − Lj(Pij(xi, yi)))
2

and Pij maps coordinates of image i to those of image j. This correlation
function is computed only for pairs of adjacent images in the spherical tiling,
and only for pixels of image i that map to a valid pixel of image j. Even
though the SSD error function could be minimized by forcing all images to
become non-overlapping, in practice this does not happen, for two reasons.
First, the initial estimates are sufficiently good that gradient descent moves
toward the true optimum. Second, there is not enough “room” on the sphere
for so many rigid quadrangles to become non-overlapping. In practice, our
algorithm converges to a value close to the initial estimates, with significant
overlap between adjacent images.

As in the pairwise warp estimation, this function is minimized by com-
puting derivatives with respect to each orientation and using LM nonlinear
optimization starting from the initial orientations. The various steps in the
computation are described in detail below.

For a single error term for images i and j of the form:

e2

x,y = (Li(x, y) − Lj(x
′′, y′′))2

with
x′′ = x′

z′
y′′ = y′

z′

and






x′

y′

z′





 = v′ = P







x

y

1





 = KR′R−1K−1







x

y

1





 (11)

the derivatives are computed as follows (using the rotation-matrix derivative
given in Section 2.1):

∂v′

∂q
= KR′(

∂R−1

∂q
)v

where v = K−1[x, y, 1]T . Then, the derivative of the term ex,y with respect
to the quaternion q is given by:

∂x′′

∂q
=

∂x′

∂q
−x′′ ∂z′

∂q

z′
∂y′′

∂q
=

∂y′

∂q
−y′′ ∂z′

∂q

z′
(12)

16



∂ex,y

∂q
=

∂Lj

∂x′′

∂x′′

∂q
+

∂Lj

∂y′′

∂y′′

∂q
(13)

Equation 13 involves image derivatives
∂Lj

∂x′′
and

∂Lj

∂y′′
; these are approximated

using the following convolution matrices applied at (x′′, y′′) [Hor86]:






−1 0 1
−2 0 2
−1 0 1







8







1 2 1
0 0 0
−1 −2 −1







8

The gradient term corresponding to the quaternion qi is computed by
accumulating over all terms that depend on qi:

Gi =
∑

xi,yi

exi,yi

∂exi,yi

∂qi

The gradient is computed in the coordinates of image i, with respect to the
quaternion qi associated with image i. Similarly, the Hessian term corre-
sponding to two adjacent images i and j is:

Hij =
∑

xi,yi

∂exi,yi

∂qi

(
∂exi,yi

∂qj

)T

The Hessian is computed in the coordinates of image i, with respect to the
quaternions associated with images i and j, respectively. For a spherical
tiling consisting of n images, the n values of Gi and the n2 values of Hij are
concatenated to yield the global 1 × 4n gradient G and the global 4n × 4n
Hessian H, respectively.

In an unconstrained optimization, the increments would be computed
as −H−1G. Applying these increments directly to the qi, however, would
produce non-unit quaternions which do not correspond to pure rotations. To
constrain the updated quaternions to be unit vectors, we enforce the following
additional constraints on the increments δqi:

∀i : qi · δqi = 0

Applying these δqi moves the qi tangentially to the unit four-sphere. Us-
ing Lagrange multipliers λi to enforce these constraints, the equation for
computing the increments becomes:

[

H Q

QT 0

] [

∆Q

Λ

]

= −

[

G

0

]

(14)

17



where

Q =













q1 0 . . . 0

0 q2 . . . 0
...

...
...

...
0 0 . . . qn













, ∆Q =













δq1

δq2

...
δqn













, Λ =













λ1

λ2

...
λ4n













The optimization proceeds by solving Equation 14 for ∆Q and Λ (both
of dimension 1 × 4n), then normalizing qi:

q′

i =
qi + δqi

‖qi + δqi‖

To avoid matrix inversion, which is ill-conditioned when H is nearly singular,
i.e. when the error surface is nearly flat along one or more dimensions, we
use the SVD and pseudo-inverse instead [PTVF92]. Convergence is detected
when the value of the objective function changes by less than some threshold
(e.g., 0.1%) over one iteration.

5.2 Internal Camera Parameters

In addition to estimating orientations, the algorithm also performs an opti-
mization on the internal camera parameters. Even though the camera was
calibrated offline, in practice, there could be small variations while actually
collecting images. These variations would result in incorrect warps between
adjacent images, yielding misalignment artifacts similar to those arising from
errors in rotation measurements.

The overall optimization alternates between a step that updates all rota-
tions, and a step that updates internal parameters. The new parameters are
computed using derivatives of v′ in Equation 11 with respect to the camera
focal length f and image principal point (cx, cy):

∂v′

∂f
=













1 1 0
0 1 0
0 0 0





 R′R−1K−1 + KR′R−1







− 1

f2 1 cx

f2

0 − 1

f2

cy

f2

0 0 0



















x

y

1







∂v′

∂cx

=













0 0 1
0 0 0
0 0 0





 R′R−1K−1 + KR′R−1







0 0 − 1

f

0 0 0
0 0 0



















x

y

1







The derivative with respect to cy is similarly determined. These are used to
generate derivatives of the error term ex,y as in Equations 12 and 13.

18



5.2.1 Relative Importance of Camera Parameters

Are all the internal parameters equally important for this optimization? The
following simplified analysis shows that determining the focal length accu-
rately is more important than determining the coordinates of the image prin-
cipal point. This result is also confirmed empirically in Section 6. This en-
ables the simpler calibration technique of Tsai [Tsa87] (which assumes that
the image center is the same as the principal point) to be used instead of a
more complex technique (e.g., [LT87]).

cx cx
x

x’

f f

α
θ

Image 1

Image 2

Figure 7: Rotation and camera parameters in 2-D.

Figure 7 shows two 1-D images rotated formed by rotating a “line” camera
by an angle θ. In this figure, the transformation between pixel x (with offset
angle α from the center) in image 2 to pixel x′ in image 1 is given by:

x′ = cx + f tan(θ + α) = cx + f
tan θ + tan α

1 − tan θ tanα

For small angles of rotation and small fields of view, tan θ tan α � 1. Thus:

x′ ≈ cx + f tan θ + f tan α = cx + f tan θ + x − cx = f tan θ + x

To first order, the mapping is insensitive to the principal point. Thus the
image center can be used as an initial value for optimization.

5.3 Implementation

Our implementation contains several elements that improve its performance
in practice. In this section, we briefly describe them: 1) the use of both low-
and high-pass filtering; 2) a modification to account for textureless images;
and 3) efficient computation of the correlation and derivative terms required
for the optimization.

19



Band-Pass Filtering

Figure 8: An image and its filtered values.

Straightforward implementation of our algorithm will fail where there
are large textureless regions. High-pass filtering alone introduces many dis-
continuities into previously smooth image regions, corrupting the derivative
computations and preventing convergence. Thus our implementation filters
the images to remove textureless regions, while simultaneously preserving
smoothness. We generate “band-pass” luminance values by convolving im-
age luminance values with the derivative of a Gaussian (of 5 pixel radius).

We maintain all images at several resolutions, and optimize each resolu-
tion to completion before processing the next higher resolution image set.
Each optimization phase is initialized with the rotation estimates produced
by the previous phase. In practice, the chosen filter radius is comparable to
the error in the initial rotation estimates, which come either from our ac-
quisition instrumentation or from the previous (lower-resolution) optimiza-
tion phase. (An alternative strategy might use the entire image pyramid
simultaneously, with a filter radius proportional to the corresponding image
resolution.)

Our implementation actually optimizes twice for each resolution, each
time until convergence: first, on the filtered luminance values (see Figure 8),
and second on the original luminance values. The first stage produces good
estimates of rotation, which are used as initial estimates for the second stage,
making it converge reliably. Note that the second phase is necessary for
two reasons. First, since the filtered values are not invariant under planar
projective transformation, the second optimization phase must use the orig-
inal image values to avoid geometric bias when computing the correlation
scores. Second, the second phase incorporates a correlation term, arising
from matching of the textureless regions, which was suppressed in the first

20



phase. Section 6 demonstrates that use of band-pass values results in both
faster convergence and increased avoidance of false minima.

Textureless Images

Several images in our data lack sufficient texture to determine their orien-
tation accurately (e.g., those corresponding to cameras oriented toward the
sky). As the optimization is global, such textureless images may “corrupt”
the orientation estimates of other images. We avoid this problem by exclud-
ing from the optimization any images with less than a threshold fraction
(80%) of textured pixels. For these images, the initial rotation estimates
suffice for incorporation into subsequent processing.

Correlation and Derivative Terms

The dominant computational costs in our optimization arise from traversing
(and mapping) pixels in each image, and accumulating global derivatives.
Our implementation mitigates these costs with several techniques. First, only
pixels that actually map to a valid pixel in the adjacent image are traversed.
This is achieved by computing a boundary for the overlap region from the
warp, and traversing pixels only inside the boundary. Second, warped image
coordinates and their derivatives are computed incrementally as each image
is traversed.

6 Mosaicing Results

This section presents both quantitative and qualitative results obtained on
the dataset using the spherical optimization technique. Section 6.1 explores,
using pairs of images, the sensitivity of the technique to initial values supplied
to the optimization procedure. Section 6.2 presents results for full nodes in
the form of spherical mosaics produced by the algorithm.

6.1 Image Pairs

In these experiments, optimal calibration parameters and the rotation be-
tween two images were obtained by optimizing initial values provided by
camera calibration and physical instrumentation. Then, each of these pa-
rameters was perturbed by some amount and the optimization was rerun.

21



The metric used to measure the sensitivity is the number of iterations re-
quired to converge to the optimal (unperturbed) values. Optimizations that
converged to a different minimum were not considered. The results tabulated
below are for data obtained from two different adjacent image pairs in our
dataset.

0

20

40

60

80

100

-3 -2 -1 0 1 2 3

N
um

be
r 

of
 it

er
at

io
ns

Error (degrees)

Image pair B
Image pair B (bandpass)

Image pair A
Image pair A (bandpass)

Figure 9: Convergence for different rotation errors.

Figure 9 shows results obtained by perturbing the rotation angle (about
the rotation axis) by a few degrees. Note that the optimization converges
within a few iterations if the perturbation is on the order of a degree (the
optimization fails to converge for larger angles with image pair B). In addi-
tion, using band-pass images reduces the number of iterations required for
convergence.

Figure 10 shows results obtained by perturbing the focal length. The
perturbation is expressed in terms of the fraction of the correct value. Note
that the algorithm is robust up to a few percent of error in the focal length.
However, it fails to converge for larger errors; fairly good camera calibration
is thus required to provide initial focal length estimates. Note that a focal
length estimate can also be provided by enforcing the 2π constraint [McM97].

Figure 11 shows convergence behavior under perturbation of the principal
point (only results for cx are shown here). The optimization is quite robust,

22



0

5

10

15

20

25

30

35

40

45

50

-0.04 -0.02 0 0.02 0.04

Ite
ra

tio
ns

Error (fraction)

Image pair B
Image pair B (bandpass)

Image pair A
Image pair A (bandpass)

Figure 10: Convergence for different focal length errors.

converging to the optimal values even with initial errors of ten or twenty
percent. This confirms the validity of the simple theoretical model in Sec-
tion 5.2.1. Also, note that the convergence behavior need not be symmetric
between positive and negative errors: images are asymmetric in general, and
shifts in the transformation by a few pixels to the “right” can yield very
different results than shifts to the “left”.

6.2 Node Optimization

Figure 12 shows convergence rates for images from two nodes. The graph
plots total pixel luminance SSD error across all images in a node as the
optimization proceeds. Note that the error decreases faster away from the
optimum; this is consistent with the quadratic convergence rates guaranteed
by LM optimization near the minimum [Sca85]. Also, due to slight errors in
image formation and use of discrete sampling to estimate the error function,
the optimization converges to a non-zero value. Despite this, the mosaics
generated using the optimal values do not exhibit any visible misalignment
artifacts (see below), providing evidence that the images are registered accu-
rately with respect to each other.

23



0

2

4

6

8

10

12

14

16

18

20

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Ite
ra

tio
ns

Error (fraction)

Image pair B
Image pair B (bandpass)

Image pair A
Image pair A (bandpass)

Figure 11: Convergence rates under perturbation of the principal point.

In a batch process, the algorithm successfully processed all (close to four
thousand) input images2 from eighty-one nodes, requiring about twenty min-
utes of processing per node for 381 × 253 pixel images and about two hours
of processing per node for 762×506 pixel images (both on a 150MHz R10000
SGI O2 workstation). Internal camera parameters converged to values that
differed by less than one percent across all nodes3.

The relative rotations and camera parameters can be used to blend all
node images into a single seamless image, without “blurring” or “ghosting”
artifacts. Each pixel is blended with a weight inversely proportional to its
distance from the image center. Two mosaics resulting from this procedure
are shown in Figure 13.

To illustrate the advantage of global optimization, we modified the opti-
mization to use pair-wise correlation on an adjacency tree, i.e., an adjacency
map containing no cycles. (This is a generalization of omitting the correla-
tion term between image n − 1 and image 0 in a cylindrical panorama of n

images.) The resulting mosaic has several evident defects (Figure 14).

2A few input images were unusable due to sun flare and/or CCD oversaturation.
3For 762× 506 images, focal length f = 1015 pixels; principal point cx, cy = 397, 261.

24



0

20000

40000

60000

80000

100000

5 10 15 20 25 30

S
S

D
 E

rr
or

Iterations

Node 1
Node 2

Figure 12: Convergence for different rotation errors.

6.3 Mosaic Representations

We use three alternative visual representations for mosaics in practice. Each
resamples the source imagery onto a three-dimensional shape for purposes of
direct display, texture mapping, etc. The first representation is the familiar
sphere. The second representation (Figure 13) projects the sphere onto a
cylindrical surface by projecting each point (φ, θ) on the sphere to (φ, sin θ).
This cylinder is then unrolled onto a plane for display. This projection pre-
serves area on the sphere [Pae90], so exhibits less distortion than the more
commonly used (φ, θ) projection. However, it does distort straight edges
from the source images into curves in the projected image.

Our third representation, the cubical environment map used in computer
graphics (Figure 15) ameliorates this problem. Here, the mosaic consists of
six images corresponding to each face of the cube. The drawback of this
representation, of course, is that edges spanning two cube faces are discon-
tinuous. However, since most edges are small relative to the 90◦ field-of-view
provided by each cube face, this is not a problem in practice.

25



Figure 13: Two typical mosaics, shown as spheres and cylinders.

7 Conclusion

We described two methods to recover relative rotations and internal camera
parameters for the set of images acquired from a common optical center. The
first is a closed-form solution using eigen-vectors of 8-parameter warps. This
method is theoretically elegant, but yields quantitatively inaccurate results.
The second method solves this problem by computing rotations and internal
parameters directly from image-space correlation using a global optimization
technique. The results, demonstrated for over eighty nodes, demonstrate that
this method accurately recovers relative rotations about a common optical
center.

There are several benefits in performing the spherical mosaicing opti-
mization. First, it provides robust automatic estimation of internal camera
parameters as a by-product. Second, it produces an image with an effectively
super-hemispherical field of view, eliminating the ambiguity between camera
translation and camera rotation found in narrow field-of-view images. This
image can be of any desired effective resolution, subject to the choice of optics
and number of raw images that are composited. Third, spherical mosaicing
allows the resulting mosaic to be treated as a rigid, composite image. Thus

26



Figure 14: This mosaic, computed with pair-wise optimization over an adja-
cency tree, exhibits numerous defects. The mosaic computed by our method,
using the same image data, is shown at the bottom of Figure 13.

Figure 15: Four faces of a cubical projection for two nodes.

27



it reduces, by a factor linear in the number of images per node (here, about
fifty), the number of degrees of freedom when determining global position
and orientation by subsequent optimization.

Acknowledgments

We are grateful to the anonymous reviewers for their suggestions, and to Neel
Master for his help in preparing the figures.

References

[ATar] Matthew Antone and Seth Teller. Automatic recovery of relative cam-
era rotations for urban scenes. In CVPR, 2000 (to appear).

[ATon] Matthew Antone and Seth Teller. Automatic recovery of relative cam-
era translations in urban scenes. In Workshop on 3D Structure from
Multiple Images, 2000 (in submission).

[CMT98] Satyan Coorg, Neel Master, and Seth Teller. Acquisition of a large
pose-mosaic dataset. In CVPR ’98, pages 872–878, 1998.

[Coo98] Satyan Coorg. Pose Imagery and Automated Three-Dimensional Mod-
eling of Urban Environments. PhD thesis, MIT, 1998.

[CT99] Satyan Coorg and Seth Teller. Extracting textured vertical facades
from controlled close-range imagery. In Proceedings CVPR ’99, pages
625–632, June 1999.

[Fau93] Olivier Faugeras. Three-Dimensional Computer Vision. MIT Press,
1993.

[Har97] Richard Hartley. Self-calibration of stationary cameras. IJCV, 22(1):5–
23, 1997.

[Hec89] Paul Heckbert. Fundamentals of texture mapping and image warping.
Technical Report UCB/CSD 89/516, CS Division, UC Berkeley, 1989.

[Hor86] Berthold Klaus Paul Horn. Robot Vision. MIT Press, Cambridge, MA,
1986.

28



[Hor87] Berthold K. P. Horn. Closed-form solution of absolute orientation using
unit quaternions. Journal of the Optical Society of America A, 4(4),
April 1987.

[Hor91] Berthold K. P. Horn. Relative orientation revisited. Journal of the
Optical Society of America A, 8(10):1630–1638, October 1991.

[HS98] S. Hsu and H. Sawhney. Influence of global constraints and lens distor-
tion on pose and appearance recovery from a purely rotating camera.
In Workshop on Applications of Computer Vision, pages 154–159, Oc-
tober 1998.

[LT87] R. Lenz and R. Tsai. Techniques for calibration of the scale factor and
image center for high accuracy 3D machine vision metrology. In Proc.
IEEE International Conf. on Robotics and Automation, 1987.

[MB95] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-
based rendering system. In SIGGRAPH ’95 Conference Proceedings,
pages 39–46, August 1995.

[McM97] Leonard McMillan. An Image-Based Approach to Three-Dimensional
Computer Graphics. PhD thesis, Dept. of Computer Science, Univ. of
North Carolina (Chapel Hill), 1997.

[Pae90] Alan Paeth. Digital cartography for computer graphics. In Andrew
Glassner, editor, Graphics Gems, pages 307–320. AP Professional,
1990.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C: The Art of Scientific Com-
puting (2nd ed.). Cambridge University Press, Cambridge, 1992.

[Sca85] L.E. Scales. Introduction to Non-Linear Optimization. Springer-Verlag,
1985.

[SHK98] H. Sawhney, S. Hsu, and R. Kumar. Robust video mosaicing through
topology inference and local to global alignment. In European Confer-
ence on Computer Vision, pages 103–119, 1998.

[SK99] H.S. Sawhney and R. Kumar. True multi-image alignment and its appli-
cation to mosaicing and lens distortion correction. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 21(3):235–243, March
1999.

29



[SS97] Richard Szeliski and Harry Shum. Creating full-view panoramic mo-
saics and texture-mapped 3D models. In SIGGRAPH ’97 Conference
Proceedings, pages 251–258, August 1997.

[SS98] H.-Y. Shum and R. Szeliski. Construction and refinement of panoramic
mosaics with global and local alignment. In Proceedings of Sixth ICCV,
pages 953–958, January 1998.

[Ste95] G.P. Stein. Accurate internal camera calibration using rotation, with
analysis of sources of error. In ICCV95, pages 230–236, 1995.

[Str88] G. Strang. Linear algebra and its applications. Harcourt Brace Jo-
vanovich, 1988.

[Sze96] Richard Szeliski. Video mosaics for virtual environments. IEEE Com-
puter Graphics and Applications, 16(2):22–30, March 1996.

[Tel97] Seth Teller. Automatic acquisition of hierarchical, textured 3D geo-
metric models of urban environments: Project plan. In Proceedings of
the Image Understanding Workshop, 1997.

[Tsa87] R. Tsai. A versatile camera calibration technique for high accuracy 3D
machine vision metrology using off-the-shelf TV cameras and lenses.
IEEE Journal of Robotics and Automation, RA-3(4), August 1987.

[WI95] M. Wheeler and K. Ikeuchi. Iterative estimation of rotation and transla-
tion using the quaternion. Technical Report CMU-CS-95-215, Carnegie
Mellon University, 1995.

[ZFD97] I. Zoghiami, O.P. Faugeras, and R. Deriche. Using geometric corners
to build a 2D mosaic from a set of images. In CVPR97, pages 420–425,
1997.

30


