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INTRODUCTION

The Berkeley/Princeton Radiosity Walkthrough (BPRW) System is a three-dimensional computer
graphics rendering system that was designed by Seth Teller, Celeste Fowler, Thomas Funkhouser, and
Pat Hanrahan. The system’s main goal was to create a rendering environment that would allow real-time
traversal of very large radiositized three-dimensional models, meaning models that would normally
require an amount of memory far too great to be stored conventionally. Such examples usually involve
lighting simulations inside structures ranging from small offices to multi-story buildings. 

The BPRW system was created at Berkeley and Princeton, and now it has been brought to MIT. It
was my job to get the entire system running here on our computer system. My tasks involved: 

1) Setting up the source tree.
2) Eliminating useless source directories.
3) Getting the source to compile and link correctly.
4) Creating a master makefile to build all sources and utilities.
5) Getting working copies of several models.
6) Creating a method to build all the models.
7) Creating a WWW page to document the project.
8) Converting Unigraphics model data files to Inventor format.

Many of these tasks involved the traversal and manipulation of large amounts of files. To assist
with this, I took advantage of the text processing capabilities of the Perl programming language,
providing a mechanism to wade through the several hundreds of files involved in the BPRW system. 

There were also several problems and obstacles I ran into while completing this project. While
some were trivial, others required a large amount of work to overcome. It was this problem-solving that
really took up the bulk of my time. After all, the main goal of the project was to circumvent or solve the
problems that had appeared in porting the system. 

OVERVIEW 

Before I go into the details of my project, it is important to give an overview of the BPRW system
as a whole. This system was a breakthrough when it was developed, showing how it was possible to
store highly detailed geometric information of an entire building in a database and access that
information in real time. This enabled the user to wander through the building at will without needing an



unreasonable amount of memory in the machine. While it may not seem impossible to store all this
information, the key feature about the BPRW system was that the information was radiositized.
Radiosity is an complex lighting model process, explained below. 

Radiosity 

Once a geometric model is generated in a computer’s memory, it needs to be drawn to the screen.
In order to do this, the computer needs to know how bright each object should be. This means it needs
some kind of lighting model to base relative brightnesses upon. There are several ways of creating this
lighting model, the simplest being to introduce a standard, ambient light which shines equally on all
surfaces. This creates a very cartoon-like image where light sources within the scene have no effect on
the brightness of individual objects. 

Another method, called interpolative shading, involves calculating the normal vector to a surface
at certain points along each polygon in the scene. By comparing these normals with the vector to the
light sources and the vector to the viewpoint, a fairly accurate lighting model can be created. This
process is known as interpolative because generally the shading of an object in between two points
where the normal is calculated is interpolated. That is, the pixels in between calculated points are shaded
in a linear or ordered manner, smoothly from one to the next. 

A third method, better than the previous two, is radiosity. This is the lighting model used by the
BPRW system. Radiosity involves calculating the energy emitted from every point on every surface in
the geometric model and that energy’s effect on every other surface in the model. This method is
obviously orders of magnitude more complex than the other methods mentioned, but its results are the
most realistic. 

Radiosity is a huge calculation to execute, especially given all the interactions between every pair
of objects in the object database. Because of this, solutions to radiosity equations generally take a long
time to compute. The BPRW system needed to provide a way to generate a radiosity solution for an
entire building, while allowing the user to traverse the building in real-time. 

Until the BPRW system was developed, no one had been able to produce a radiosity renderer for a
model as complex as a building that could calculate its images in a reasonable time period, even on a
very powerful computer. The BPRW system accomplishes this by exploiting two aspects of these large
models that significantly reduce the working size of the data the renderer needs to process at any given
time. Partitioning the model is a process which divides the model into smaller groups based on what is
visible at every point in the model. Ordering is a method which determines the best order to process the
information within and between each partition. Without these two techniques, the large-scale rendering
that the system accomplishes would probably not be possible. 

When the model gets partitioned, each point in the model is examined, and relationships between
points are considered. The goal is to weed out any calculations which are unnecessary, and thus reduce
the number of elements that the solver needs to take into account. As a result, when the system is
calculating the radiosity information for a particular office, it will only process information for that
office, parts of the surrounding hallway, and whatever else might be visible within a specific number of
degrees of removal. This greatly reduces the work that the renderer needs to carry out. The system is
also ordered to maximize the efficiency of the solver. Ordering mostly deals with more
system-dependent parameters, such as disk reading/writing and memory management. Since these items



can be very time-expensive in a process on this scale, ordering can play an enormous part in the
renderer’s efficiency. By choosing a proper order for the calculations, running time is dramatically
reduced. Finally, the radiosity information for each unit is stored in the database, so that when the user
walks through the visual representation of the model, that information is accessible. The user can thus
see the radiositized model in a real-time environment, going wherever is desired simply by moving the
mouse. 

PROCESSES 

The BPRW system is a large collection of source code, libraries, and executables. The current
system is further enhanced by an enormous tree of geometric data. The source code is mostly written in
C and C++, with a little bit of Motif, and compiled under Unix for X-Windows with the standard cc and
CC compilers. The geometric data is written in Unigraphics format, which is a language developed for
the storage of such data. 

All the geometric data is stored in a large, central tree. To form a model that can be used as input
to be renderer, a new Unigraphics file is created in a new directory. Here, this new file is filled with
instances of objects from the central tree. Each object is created with coordinates that describe where in
the model the object is placed. The new file is also equipped with information about the lighting in the
model, usually a link to another Unigraphics file created exclusively for this model. This file then gets
run through a flattener (ugflatten) which replaces each instance of each object with its more basic form
of vertices and edges. Finally, the file gets run through a program called axialsplit which further
organizes the data base on its visibility. 

Once the model data is collated into a main Unigraphics file, it is ready to be processed through
the BPRW executables, which will ultimately create the visual, radiositized walk-through model. There
are six main executables in the system, and several other less important ones. The main executables are
called wkcreate, wksplit, wkadd, wkvis, wkrad, and wkmotif. They are all called within four scripts
which have been developed to manage the process of creating the radiosity model. 

The wkcreate executable is called first. It creates and initializes a new database file. After this, the
wksplit program creates cells throughout the database, based on the input Unigraphics file. Wkadd is
then used to actually add all the walls, objects, and lights into the database, one by one. The wkvis
program computes visibility information throughout the system, which is eventually used in the
partitioning and ordering techniques described above. Finally the wkrad program computes the radiosity
solution for the database. The resultant file contains all the radiosity information for the viewable model.
This file can be viewed with the wkmotif executable. The user can fly through the model by simply
clicking and moving the mouse. 

TASKS 

When I received the code for the BPRW system, there was a fair amount of work I needed to do to
place it in a state where it could be compiled. Once it was in that state, I needed to create a master
makefile, making it easy for the code to be compiled from the execution of one simple command.
Finally, I needed to augment the master makefile with the capability to generate the model data in
addition to the executable files. 

I decided to take care of a skeleton makefile as a first step. Once I had this, I could attempt to



compile the code and follow the trail of errors it created. I created a makefile whose targets were the
top-level libraries from which the family of executables was built. This makefile was little more than a
central location which would go through its targets and activate the makefile of each library’s base
directory. This approach required me to keep track of each library’s individual dependencies myself, but
at this point, all I needed was a simple method for compiling code on a large scale. 

After my first pass at a large-scale compilation, I was actually surprised its the success. Although
there were quite a number of errors, many of them were of a similar background. On the whole, there
were two main reasons why the compilation was not completely successful, both of them seemingly
differences in the compiler’s features. The first was a problem with how the compiler read C++-style
comments. Apparently, the original compiler understood this style of comment (//) when compiling
regular C files. This kind of comment is normally unsupported by the ANSI standard. When I tried to
compile the C code, I found it to be littered with C++ comments, all causing errors with the compiler we
were using. 

At first, I thought that I would need to actually replace all the unsupported comments throughout
the entire tree to get the code in shape. I began to sketch out a Perl script which would go through each
directory and replace the comments of every file with the correct format. It wasn’t long, however, before
I learned of a much simpler way of doing this. There is a flag in the compiler which can be set on the
command line, enabling the compiler to understand the newer comment style. By setting this flag in
each makefile, the compiler will automatically understand the double-slash comments. This still required
me to edit each makefile, but it would turn out to be far less painless than my earlier approach. I
developed a new Perl script to complete this task. This script traversed the tree, checking the makefile in
each directory to see if the proper variable name contained the new flag, and upon finding an instance
without the flag, would add it in the proper place. 

The second error I encountered was one having to do with derived class type casts. It seems as
though the original compiler was considerably more forgiving than the compiler the use here at MIT.
The compiler found an abundance of errors of this sort, and each one required me to edit the code and
insert an explicit type cast where it was called for. Luckily I didn’t run into an unmanageable amount of
these errors, and even more fortunately, many of them were caused by identical accesses of a specific
variable, thereby all correctable via the same fix. 

There were only a few more errors to rectify past those listed above, and it didn’t take me much
longer to bring all the code in the libraries into a working state. Once I had these in order, I created a
similar master makefile for the executables’ side of the tree. This code seemed to compile extremely
well, and the only significant errors I encountered had to do with which libraries were linked into the
final program. This actually took a fair amount of time, trying to search through the library tree for a
lone variable name given as a linker error. Some of the programs weren’t even complete, and it took a
bit of asking around to find which were the important executables, which were the non-essentials, and
which were non-compilable, developmental entities. Eventually, though, this was all completed, giving
me a full family of fully-functional executables. 

As mentioned above, there are six main executables in this family, but there are about fifteen
others built in the BPRW compilation process. It was at this point that I began to trim some of the
useless code out of the system. Each library in the source code tree serves to provide its own area of
functionality in the final group of programs. Many of these libraries were in the tree as a result of the
ongoing process of development and enhancements involved in a project the size of the BPRW project.



It must be expected that any project of that magnitude will continue beyond what its authors imagined,
and even when there is a final project, there is an abundance of other modules that are either out of date
or not fully implemented. 

In order to determine which of the files were important and which were superfluous, it became
important for me to sort through and study each library’s makefile. Inside each of these files is a list of
the other libraries which must be linked in with current one in order to fully compile the code. By
constructing a list of all the libraries and checking this against those which exist, I was able to eliminate
a significant amount of dead code. This was all verifiable with the code in working order; any necessary
files which I accidentally deleted would give me a link-time error, and I could immediately replace
them. Fortunately, most of my guesses were accurate, and the number of missing libraries was small. 

With all these programs ready to run, the next obvious step was to begin the formation of the
model data I was required to assemble. I was fortunately not starting from scratch with these models,
there were several existing models I could both use and learn from. 

I need to form four separate sets of geometric models. The first was to be an empty office, a
simple test of the system. The office contained nothing more than four walls, a floor, a ceiling, and two
fluorescent light strips, each represented by a series of light sources. The second model was to be a more
complex office, consisting of desks, chairs, bookshelves, a door handle, and various other objects such
as trash cans and books. All of these were enclosed in the original empty office. The third model was
one step better: the entire fifth floor of the already existing model of Soda Hall at Berkeley. Finally, the
fourth model was to be the entire Soda Hall building from the third floor to the roof, a total of about six
full stories. 

All of the data for each of these for models existed well before I got to it. Once again, it was my
job to make sure it was all set up correctly. Not everything was perfect, but things were mostly alright
once I overcame a small number of obstacles. The bulk of the work came from implementing the proper
build scripts into each model’s base directory. 

The problems I ran into trying to build the models were, for the most part, rather trivial. It was
quite early on that I encountered the first problem, one of environment variables. When the BPRW
system compiles the Unigraphics code, it uses several environment variables to operate tell it where to
look for references to other included files, much like a path variable. This environment variable, called
UGMODELPATH, needs to be set in order for the system to locate the appropriate files. Another
environment variable, BASE, gets set to the base of the entire source/library/model tree. This variable is
more of a convenience for scripting and makefiles, but it is integrated enough into the compilation
system that it is important. 

The task of creating the build process for these model databases was a straight-forward one, but it
was not without its problems as well. I began my work off the existing procedure that was present in
some of the model directories I found throughout the system. This procedure consisted of a master file,
similar in purpose to a makefile, called makeit. Makeit was nothing more than an envelope for four other
procedures called prepit, addit, visit, and radit, which were scripts designed to execute the programs
created in the source/library tree in the proper order as described above. 

Prepit is the first script called, and it initializes a new database using the ugflatten, axialsplit, and
wkcreate procedures. The next script, addit, goes through the model data and adds all the objects into the



database with wkadd. Visit is a script which calculates the visibility information for the database using
wkvis, and finally radit uses the wkrad program to calculate the radiosity information. I also created a
cleanit script to act as a special ’make clean’ for the model directories. This enabled all the information
to be rebuilt entirely from scratch in an easy manner. To get these scripts fully functional, I needed to
make sure all the proper files were in each individual model’s directory, and that each reference to a file
in the script was correct. There were a fair number of problems with this, but since the scripts are
relatively small, it wasn’t at all difficult to find everything. For a long time, I refrained from using the
radit script because calculating the radiosity information was a time-consuming process, and the
wkmotif viewer works fine without this calculation, providing a constant-color, ambient-lit model.
Because of this, it took some time for me to discover a small bug in the radit script which caused the
radiosity information to be calculated for only one iteration. Usually, one desires at least three iterations
of the radiosity algorithm. Before I could see if the scripts, and therefore the build process, did in fact
work, I just needed to go through and make sure all the correct files were being included in the
compilation. It turned out that there were some problems with the lighting files, as well as wrongly
included data in the larger models. This turned out to be a trivial problem, and it was not long before the
models were in working order. It took a little tweaking to get them perfect, but once they were,
everything worked together quite well. 

I had finally gotten to a point here where I could begin with nothing but source code and model
data, and end up with a full set of libraries, executables, and model databases, and the executables
provided the expected manipulation and viewing of those model databases. The one thing I did not have
was a coherent way of managing all this code and the process from a central location within the tree. My
next task was the creation of a makefile to control the building and cleansing procedures of all the
libraries, executables, and models. Since I had some smaller makefiles already completed, it was not too
difficult to begin this job. 

I decided to place the final master makefile in the base directory, where it could access everything
easily, and still be somewhat central in locale. My goal in creating this makefile was to design a smart,
simple, makefile that could be used for all purposes. Additionally, it needed to be smart about its targets.
That is, if one library depends on another, and the other library is rebuild, the first library should also be
rebuild. 

I found a lot of the dependencies for each library and program already existed in that component’s
directory, and thus it became merely a matter of including a rule for each library that would call make on
the library. This was a welcome feature in the existing code; it certainly made my job significantly
easier. I did continue to lay out a dependency map for the relationships of different parts of the code. For
example, if you rebuild the lib directory, you will need to rebuild the bin library and the model
databases. Besides these targets, I also included some cleansing targets, such as a make clean to clean
out intermediate files, and a make superclean to remove end product files. This makefile ended up taking
a fair amount of time to complete, but mostly because it took so long to compile all the libraries that
errors would not be readable for quite some time after the code was modified. There was unfortunately
no easy way I could see around this, so I just went with it, and eventually all the problems were worked
out. 

The setup I have described above constituted the major portion of my project, however, there were
also some other additional tasks I undertook. The most significant among these was the creation of a
Perl script to convert the entire Soda Hall model directory from its original Unigraphics format into the
more modern and more standard Inventor format. I also had to design a web site documenting the



procedure for installing the BPRW files on a new computer system. 

In order to convert the Unigraphics files to Inventor, I needed to utilize two existing tools. The
first is called Ug2Inv, which is a small C program designed at MIT to convert Unigraphics files to
Inventor. This program takes care of all the syntactical conversion of the most basic level Unigraphics
file to a simple Inventor format. However, the Soda Hall files are not in the most basic level of
Unigraphics, and this is where the second tool I used came in. This tool was the ugflatten executable
described above for the BPRW system. This is the Unigraphics equivalent of a C++ to C converter. It
takes the Unigraphics code and flattens out all the instances and declarations of objects, and reduces all
the data into a basic set of about four main keywords (for vertices, edges, colors, and textures), plus any
additional primitive keywords. These keywords are the set of tokens understood by Ug2Inv, and so the
combination of the two will successfully turn any Unigraphics file into an Inventor one. My Perl script
took care of the coordination of these two tools, the recursion and duplication of the directory structure,
and the error checking that let me know where Ug2Inv and ugflatten failed. There were some
augmentations that needed to be made to these programs, but those enhancements were out of my hands.

The purpose of the web page I developed is mostly to provide instructions of the installation
procedures for other people who want to install the BPRW tree on their systems. The work I completed
from throughout the course of this project will reside there for future use. Additionally, most of the
information in this report is located there to help out wherever it can. 

CURRENT STATE 

At this point I would like to describe the directory structure and the state of the environment of the
BPRW system. This information is useful to those who want to install the system on another computer
system. It will give a basic overview of how the structure is organized, and what each section does. 

The root of the entire BPRW tree is a directory stored by the environment variable $CVS. CVS
(Concurrent Version System) is the source code control system that was used for this project. It is an
augmentation of the RCS (Revision Control System) source code control system, enhanced to allow for
an entire hierarchical system to be archived, as opposed to just the one directory supported by RCS. In
this root directory, there exist four subdirectories and a master makefile. Execution of the makefile
results in a build of the entire directory tree. All the helper applications and tools are built, along with
models if so specified. The four subdirectories include the following: 

1) ff: This module is the lowest level of code in the BPRW system.
2) gur: This module provides the real foundation for the walkthrough system, and is dependent on
the ff module.
3) megagur: This module enhances the gur module, and completes the basic structure of the
BPRW system.
4) walthru: This is where most of the source, libraries, models, and executables live. This directory
contains only one item, a subdirectory version11.1, referenced by the $BASE environment
variable. From now on, I will refer to this version 11.1 directory as $BASE. 

The $BASE tree is comprised of the following six subdirectories: 

1) bin: This directory holds the executables for the BPRW system.
2) util: This directory contains the high level source code for the programs in $BASE/bin.



3) lib: This directory holds the lower level libraries that are used to compile the programs in
$BASE/bin.
4) src: This directory holds the lower level source code that creates the libraries in $BASE/lib.
5) models: This directory is the root of the tree which contains all the geometric descriptions of the
items in Soda Hall. It is a repository for the models of all the individual items, and thus serves as
the building blocks for actual models to be rendered. This directory must be included in the
$UGMODELPATH environment variable.
6) largemodels: This directory contains each of the actual model collections I revised, i.e., the
office and building collections which are rendered through the makeit scripts. This directory is
referenced by the $MODELBASE environment variable. 

And so, the environment variables which must be defined are as follows: 

1) $CVS - The root of the BPRW tree.
2) $CVSROOT - Your personal CVS repository. If you do not use CVS, it is unimportant,
however, if you are using the CVS system, you need to tell CVS where to look for the archived
files. Note that this variable is only used by CVS itself.
3) $BASE - The base directory of most of the code, equal to $CVS/walkthru/version11.1.
4) $UGMODELPATH - The path of the Unigraphics model primitives. I used a path which also
included the current directory. The variable looked like this: .:$BASE/models
5) $MODELBASE - The path of the final Unigraphics models, which are to be rendered, equal to
$BASE/largemodels. 

Finally, the master makefile, located in $BASE, contains many targets. I will list here the
important ones: 

1) make default - Build the executables (populates $BASE/bin)
2) make all - Builds all executables and radiosity models. This target is not the default because of
the huge amount of time it takes to build the large radiosity models.
3) make lib - Builds the libraries (populates $BASE/lib)
4) make allmodels - Renders the models with the existing executables (does not rebuild these
executables). Does not run radit, and so there is no radiosity information in the final databases.
5) make allmodelsrad: Same as allmodels, but does include the radiosity information.
6) make clean - Deletes all object files and intermediate files from the library and executable trees.
This leaves all final targets intact, including .lib files and the final executables.
7) make superclean - Deletes all object files, all intermediate files, and all output files. Leaves only
the source code. The program must be rebuilt to be used.
8) make cleanmodels - Deletes all output files in the models. The model databases must be rebuild
to be used.
9) make ultraclean - This is simply a combination of superclean and cleanmodels, deleting all
output in the entire system. 

CONCLUSION 

In conclusion, this project provided a good introduction to the BPRW system. Although I was not
able to learn as much about it as I would have liked to, I did learn a lot about its structure and its
purpose. The results of this project were very visible, which is always a nice feature when taking on
such a task. It was nice to have a final, working system at the end of the project, as well as a working



knowledge of that system and its components. 

This document was dictated with Kurzweil VOICE 2.0 for Windows 95. 


