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Abstract—Precise calibration of camera intrinsic and extrin-
sic parameters, while often useful, is difficult to obtain during
field operation and presents scaling issues for multi-robot
systems. We demonstrate a vision-based approach to navigation
that does not depend on traditional camera calibration, and
present an algorithm for guiding a robot through a previously
traversed environment using a set of uncalibrated cameras
mounted on the robot.

On the first excursion through an environment, the system
builds a topological representation of the robot’s exploration
path, encoded as a place graph. On subsequent navigation
missions, the method localizes the robot within the graph
and provides robust guidance to a specified destination. We
combine this method with reactive collision avoidance to obtain
a system able to navigate the robot safely and reliably through
the environment. We validate our approach with ground-truth
experiments and demonstrate the method on a small ground
rover navigating through several dynamic environments.

I. INTRODUCTION

Vision-based robot navigation algorithms typically assume

that the camera intrinsic parameters (focal length, opti-

cal center, and distortion) and extrinsic parameters (robot-

relative pose) have been determined in advance and do not

change over time unless specifically controlled by the robot.

Knowledge of these parameters enables the projection of

points on the image plane into rays in the robot body frame,

allowing the robot to use its cameras to reason geometrically

about the world with well-studied algorithms such as stereo,

structure-from-motion, visual SLAM, and visual odometry.

Obtaining the calibration parameters typically requires

a special calibration process involving visual patterns or

environments that are specifically designed and constructed

to aid parameter recovery. While the calibration procedure

may be convenient and expeditious in a laboratory or con-

trolled environment, it may not be feasible to execute in

the field or in any situation in which the calibration tools

and equipment are not available. Especially in the case

of deployments of large numbers of robots, executing the

calibration procedure may be challenging. Robots operating

in real-world conditions may often be bumped, damaged,

repaired, or otherwise altered in such a way that would

invalidate previously acquired calibration data. Robots may

often be disassembled for storage or transport and parts may

shift slightly during reassembly. A natural question to ask is

then: What can be accomplished without traditional camera

calibration? We investigate this question in the context of

mobile robot navigation, and propose a method for vision-

based navigation using uncalibrated cameras, suitable for
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Fig. 1. We present a vision-based method for ground robot navigation.
Assuming that the robot has previously explored the environment (red path),
the method provides guidance in the robot’s body frame during revisitation
(black arrows). we demonstrate the robustness of our method on real-world
experiments in highly dynamic scenes.

mobile ground robots.

In particular, we consider the problem of robot navigation

within a previously visited environment, a commonly desired

ability for a mobile robot that operates exclusively within a

target region. Robots serving as delivery agents, passenger

transports, building guides, patrols, etc. all require this func-

tionality, which may be considered as a baseline capability

for a large class of mobile robots. We impose no constraint

on the environment except that the traversable region can be

modeled as a 2D manifold, and that it contains descriptive

visual features.

The primary contribution of this paper is a method that

extends our previous work in human-directed navigation [1]

to provide coarse waypoint navigation for mobile robots. In

contrast to our earlier work, this paper presents a method for

autonomous robotic navigation with uncalibrated cameras, a

problem that is very different from that of guiding a human.

We describe and demonstrate an algorithm that uses multiple

cameras to yield directional commands for a robot, without

having or estimating the camera intrinsic parameters or the

camera-to-robot rigid body transformations. We assume that

the robot can accept directional commands, and has a basic

reactive obstacle avoidance capability.

II. RELATED WORK

Robotic navigation has been well-studied in the context of

range-based sensors such as sonar and LIDAR. Numerous

metric mapping techniques exist for robots operating in a

2D environment using bearing-only sensors [2], [3], and

extensions to full 3D environments have been demonstrated.

Many of these techniques have been successfully applied

to visual navigation, where precise camera calibration is

assumed. Visual odometry [4] and visual SLAM [5]–[7] in
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particular have seen significant progress in recent years. To

alleviate some of the scaling issues present in metric mapping

systems, researchers have also studied topological mapping

techniques that use connectivity graphs to model traversable

regions [8], [9].

Whether range- or vision-based, each of these approaches

require precise calibration of the sensor intrinsic and extrinsic

parameters. In the absence of executing a specialized camera

calibration procedure, one approach is to attempt automatic

calibration during field operation [10], [11]. Such self-

calibration methods are typically able to recover the focal

length, principal point, and image skew from camera rotation.

Still an active area of research, existing methods are non-

trivial to implement, and usually ignore nonlinear effects

such as radial distortion. Meanwhile, recovering extrinsic

parameters, specifically the camera-to-robot transformation,

is not feasible using these techniques.

A key challenge for a navigation algorithm is the ability

to recognize when the robot has arrived at a previously

visited place, usually referred to as the “loop-closing” prob-

lem. Vision-based algorithms commonly accomplish this by

comparing newly observed visual features with previously

observed features. Recent bag-of-words approaches, which

quantize features into visual “words” and use a set of

observed words to represent a place, have improved the speed

and robustness of visual loop closing [12], [13].

Our approach is motivated by simplicity in practice. It

makes no assumptions about the environment except that

it is traversable by a wheeled robot, and that it contains

descriptive visual features. The latter is a typical requirement

of any vision system, as a sparse visual field often results

in degenerate solutions for many vision algorithms. Our

approach does involve a “training” phase to extract some

basic camera parameters. However, the training procedure is

simple and can be executed quickly and with minimal effort.

III. METHOD OVERVIEW

Our approach assumes that the robot first explores the en-

vironment. During this exploration phase, the system builds

a topological representation of the robot’s path that we call

the place graph. The place graph records visual information

only. In our experiments, this step is performed manually.

However, methods exist to automate this phase [14], [15].

In a second phase, the robot navigates autonomously

through the explored environment. We split the navigation

problem into two complementary processes. First, a high-

level vision-based method provides global localization in the

place graph as well as a coarse directional cue in the robot’s

body frame. The second consists of a low-level obstacle

avoidance algorithm that steers the robot’s motion in the

desired direction while reactively avoiding local obstacles.

Figure 2 illustrates the method.

A. Place Graph Generation

The place graph, shown in Figure 3, is a topological

representation of the robot’s exploration path as an undi-

rected graph G = (V,E). Each node in the graph v ∈ V

Place Graph
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Fig. 2. Method overview. During exploration, the system builds a place
graph representing the robot’s exploration path. During revisitation, the
method uses the graph to localize the robot and provide guidance in the
robot’s body frame.

corresponds to a physical location in the environment, while

an edge e ∈ E corresponds to a known physical path between

the corresponding pair of nodes. Associated with each node

xk is the set of visual features observed at that location on the

way to each of its neighbors. No observations are associated

with graph edges. Hence, the graph G can be thought of as a

sparse visual representation of the robot’s exploration path.
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Fig. 3. We represent the robot’s exploration path as an undirected graph
where nodes represent locations in the world and edges represent physical
paths between nodes. Visual observations (e.g. SIFT features [16]) are
associated with each node.

At the start of the exploration phase, the graph G is

empty. As the robot explores the environment, new nodes are

added to the graph. Nodes are instantiated when the visual

appearance of the local environment differs sufficiently from

that of the previous node, as measured by the variation in

visual features. More specifically, we measure variation in

appearance based upon a distance function Ψ that matches

sets of features between two images, and returns the nor-

malized mean L2 distance between matches in the feature

descriptor space. Feature matching utilizes a function Φ that

we describe in § III-B. When the distance Ψ between the

current observations and those of the last node exceed a

threshold, we instantiate a new node in the graph, joined with

an edge to the previous node. We use a distance threshold of

0.85, although we found the method to yield similar results

for a range of values (0.7 to 0.9).



B. Feature Matching

Our localization and guidance algorithms make use of

a method for matching features between views, where we

define a view to be a set of images captured by all cameras

at the same time. The features within each set are often

sparse and, as a result, it is difficult to find optimal matches

within a high-dimensional feature space. Our approach is

to use a brute-force feature matching algorithm, denoted as

Φ throughout the remainder of the paper, which includes a

mutual consistency check (i.e., no two features in one set

may match the same feature in the other). The algorithm

takes as input two sets of observations {zi, zj} (respectively,

two image views {fi, fj}), and outputs the matches between

them, Φ(zi, zj) (respectively, Φ(fi, fj)). For large feature

sets, an optimized vocabulary tree provides fast matching

(see § III-F).

C. Global localization

The global localization algorithm estimates the position

of the robot in the graph G = (V,E). We propose a

general probabilistic approach to the problem that accounts

for uncertainty in the robot’s motion and in its visual obser-

vations. Specifically, the algorithm maintains a distribution

over the robot’s position in the graph, which we treat as

the hidden state. The formulation models the motion of the

robot within the graph as a first-order Markov process. The

visual measurements z provide observations of the state. The

localization algorithm maintains the position’s distribution

over time using a recursive Bayesian filter.

We model the robot’s transitions between nodes in the

graph p(xk+1 | xk) as a discrete Gauss window function

w(n) = exp
(

− 1

2
( n

N ·σ
)2

)

where n is the distance in graph

space and N the width of the window. We define the ob-

servation model p(zk | xk) using the Ψ distance introduced

in § III-A as:

p(zk | xk) = 1/Ψ(zk, zxk
) (1)

where zxk
denotes the visual observations associated with

node xk. The intuition underlying this representation is that

the probability for the robot to be at some graph location

is directly related to the visual similarity of the current

observations with the observations made at that node during

the first visit.

Given the discrete distribution p(xk | zk) at time k, the
localization algorithm recursively estimates the new distri-

bution at time k + 1. In the prediction step, the filter first

incorporates the effect of robot motion on the distribution

p(xk+1 | zk) based upon a first-order Markov motion model

p(xk+1 | xk). The update step then incorporates the obser-

vation model p(zk+1 | xk+1) to obtain p(xk+1 | zk+1) as:

p(xk+1 | zk) =
∑

p(xk+1 | xk) · p(xk | zk) (2a)

p(xk+1 | zk+1) = λ · p(zk+1 | xk+1) · p(xk+1 | zk) (2b)

where λ is a normalization factor. The distribution is updated

only on a local neighborhood around the current robot’s

position in the graph (i.e., the probability is zero elsewhere),

which yields a constant time complexity for the algorithm.

D. Body-centered rotation guidance

We now present an algorithm that provides rotation guid-

ance to the robot in its own body frame using only data from

uncalibrated cameras. We show that using the presence of a

feature in a camera as a measurement, rather than its precise

position in the image, provides nearly the same navigation-

relevant information when the number of observations is

large.

The intuition underlying our method is as follows: if a

feature corresponding to a static world point is observed

on a camera at time t and re-observed on another camera

at time t′, the correspondence carries information about

the relative orientation of the robot between time t and

time t′ (Figure 4). If the extrinsic and intrinsic calibration

parameters are known, this is a trivial statement since the

relative orientation may be deduced from basic geometric

reasoning. However, we demonstrate a means of estimating

the relative orientation with no prior intrinsic or extrinsic

camera calibration.

time t time t' > t

camera i

camera j

Fig. 4. We estimate the relative orientation of the robot between the first
visit at time t and another visit at time t′ using feature matches between
the two views with no prior camera calibration.

Let us model the environment as a horizontal 2D plane

(Z-axis up). We consider a set of n cameras rigidly mounted

together observing the environment, each having the same

field of view f . For each camera pair (i, j), we consider

pij(α), the probability of re-observing a feature on camera

j that was observed on camera i after a rotation of the

cameras by an angle α. For instance, pii(0) = 1 for any i if
we assume perfect feature matching. Similarly, pij(0) = 0
if the fields of view of camera i and camera j do not

overlap and i 6= j. Assuming isotropic distribution of the

features, each probability follows a triangular distribution

pij = τ(α;hij , σij) as illustrated in Figure 5. The angle hij

is a function of the geometric configuration of the cameras

with hii = 0 for any i. In addition, the limits of the triangular

distribution are defined by the field of view common to

all cameras σ2
ij = σ2 = f2/6 for any pair (i, j). We

represent the set of distributions pij as an n × n matrix

H = [hij ]i,j=1,...,n that we term the match matrix. We now

demonstrate the process of determining the robot’s relative

orientation between time t and time t′ using the match matrix

and a set of feature correspondences. Given a match between

a feature on camera i at time t and a feature on camera j at

time t′, we know that the relative orientation of the robot α
follows the distribution pij , α ∼ τ(hij , σ). If we estimate α
to be α̂ = hij , the associated error is ǫ = α̂ − α ∼ τ(0, σ).
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Fig. 5. We consider the probability pij(α) of re-observing a feature on
camera j that was observed on camera i, after a rotation of the cameras by α.
Assuming isotropic feature distribution, pij follows a triangular distribution
whose limits are defined by the field of view of a single camera f .

Given N correspondences, the estimate becomes

α̂ =
1

N

N
∑

1

hij (3)

As per the Central Limit Theorem, under the assumption

that the errors are independent and identically distributed,

the error ǫ tends to a normal distribution as N increases,

ǫ ∼ N (0, σN ), σ2
N =

σ2

N
. (4)

Hence, the error in the estimate of α is zero-mean and

exhibits a variance that decreases inversely with the number

of observations when N is large. For instance, a field of view

f = 90◦ yields σ = 36.7◦ (for N = 1) and σN = 2.6◦ (for

N = 200).
Our method yields the following rotation guidance algo-

rithm. Given two sets of image features zt and zt′ cap-

tured at the same location, we compute the feature matches

Φ(zt, zt′). For each match between a feature on camera i and
a feature on camera j, we query the match matrix and obtain

an estimate hij . We then estimate the relative orientation of

the robot using Equation 3.

E. Learning the match matrix from training

The algorithm presented in the previous section relies

on knowledge of the match matrix. Here, we describe a

method that learns the match matrix from training. The

training algorithm takes as input a video sequence captured

while the robot rotates in place clockwise in an arbitrary

environment and outputs the hi,j elements of the match

matrix H . Outlined in Algorithm 1, the method proceeds

as follows. Given any two views {Fp, Fq | p < q} captured

at times p and q and separated by a rotation of the robot by

αpq, the algorithm first computes the set of feature matches

Φ(Fp, Fq), noting the start and end camera, sk,p and sk,q, for

each correspondence k. The algorithm then incorporates the

estimate rotation αpq to update the average estimate for each

pair’s element in the match matrix H(sk,p, sk,q). In order

to take periodicity into account, the average η̂ of a set of

angles {ηi} is derived from averaging rotation angles using

the transformation from polar to Euclidean coordinates, i.e.,

η̄ = arctan(
∑

sin(ηi)/
∑

cos(ηi)). We emphasize that the

training method is fully automatic, is performed only once

for a given camera configuration, and is independent of the

training environment. The matrix H is therefore significantly

easier to compute and more compact than the full set of

intrinsic and extrinsic parameters would be.

We estimate the rotation angle based upon the assump-

tion that the robot rotates in place at constant speed and

performs r turns, which, over m views, yields the estimate

αpq = 2πr(q − p)/m. While this assumption is not perfectly

met in practice, we note that an error of δ degrees spread

over the training sequence generates an error on αpq that is

linear in δ. Simulations reveal an error of 4.7◦ for δ = 20◦

and m = 300, which is acceptable for our application.

Algorithm 1 Match matrix training algorithm

Input: a training video sequence of m views

Output: the n × n match matrix H (for n cameras)

1: Initialize H(i, j) ← 0, 0 ≤ i, j < n
2: Initialize Hs(i, j) ← 0, 0 ≤ i, j < n
3: Initialize Hc(i, j) ← 0, 0 ≤ i, j < n
4: for each pair of views (Fp, Fq) in the sequence do

5: Estimate the robot rotation angle αpq linearly

6: for each match mk = (fk,p, fk,q) ∈ Φ(fp, fq) do

7: Let sk,p (sk,q) be the camera ID for fk,p (fk,q)

8: Hs(sk,p, sk,q) ← Hs(sk,p, sk,q) + sin(αpq)
9: Hc(sk,p, sk,q) ← Hc(sk,p, sk,q) + cos(αpq)
10: H(i, j) ← arctan(Hs(i, j)/Hc(i, j)), 0 ≤ i, j < n

F. Loop closure using an online visual vocabulary

The ability to detect when the robot is returning to

a place that it has previously visited (i.e., loop closure)

is fundamental for autonomous navigation. We propose a

method that detects loop closures automatically using only

the visual appearance of the environment. Our method builds

on the standard “bag-of-words” approach, in which features

are represented by “words” in a visual dictionary [17].

Our method uses this vocabulary to efficiently compute the

similarity between each pair of nodes in the graph. The

data is stored in a similarity matrix. The algorithm then

detects continuous sequences of highly similar nodes in the

matrix. Our method requires no batch processing, no initial

vocabulary, and takes as input only a stream of images.
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Fig. 6. The visual features of each new node in the place graph are stored
in a vocabulary (middle). Each word stores an inverted index pointing to
the nodes where it was observed. Search and query are optimized using a
tree-based data structure.

We represent each word in the vocabulary as a sphere in

the feature descriptor space, centered on the corresponding

feature with a fixed radius. At the start of exploration, the

vocabulary is empty. As nodes are inserted in the place

graph, the corresponding visual features are inserted in the

vocabulary. We declare a new word to match an existing

word in the vocabulary when the L2 distance between their



centers does not exceed the fixed radius rw. If no match

is found, we instantiate a new word in the vocabulary. Each

word stores an inverted index of the nodes in the place graph

where it has been observed (Figure 6). The radius rw is a

parameter of the algorithm and influences the performance

of the vocabulary.

A standard approach to optimize search and query in the

vocabulary is to maintain a tree-based data structure [17]–

[19]. A search within this structure is faster than a naive

search as long as the number of examined nodes is bounded

using a fast approximate search procedure. Alternatively,

we also propose a method that optimizes the naive search

when the feature descriptors are normalized. In this case,

minimizing the L2 distance between two features u and

v is equivalent to maximizing their dot products, since

‖u − v‖2
= ‖u‖2

+ ‖v‖2 − 2· u · v = 2 − 2 · u · v. This
approach is particularly powerful when multiple vocabulary

queries are done at the same time, which is the case when a

node is inserted in the graph.

We represent a vocabulary of n words as an m×n matrix

W , where m is the dimension of the feature descriptor space.

We represent a set of p input features as a p × m matrix

F . The matrix D = F · W therefore contains the inner

product of each input feature and each vocabulary word.

A straightforward search through the matrix determines the

closest word to each feature. We also apply this optimization

to the exhaustive search used in the leaves in the tree-based

method. We find that optimized linear algebra libraries enable

the naive approach to outperform the tree-based method up

to a certain vocabulary size, beyond which the tree-based

method is faster (see § V-A).

The loop closure algorithm maintains a similarity matrix

that contains the co-similarity between nodes. When a node

is inserted in the graph, its features are searched in the

vocabulary. A voting scheme then returns a similarity with

all nodes currently in the graph (Figure 6). The method is

causal and runs online during exploration.

Given a similarity matrix S, we identify sequences of

visually similar graph nodes. We use a modified form of the

Smith and Waterman algorithm [20], [21], which computes

an alignment matrix A accumulating the score of diagonal

moves through S. That is, A(i, j) is the maximum similarity

of two matching sequences ending at node i and node j. The
algorithm then finds local maxima in the matrix and traces

the corresponding sequence through A until the similarity

falls below a given threshold. The algorithm is repeated

on the matrix S with rows in the reverse order to detect

alignments when the robot moves in the opposite direction.

A correspondence between a sequence of p nodes

{v1,1, · · · , v1,p} and another sequence {v2,1, · · · , v2,p}
means that nodes v1,k and v2,k (1 ≤ k ≤ p) correspond to the
same physical location. We update the graph G accordingly.

For each k ∈ {1, · · · , p}, we connect all neighbors of

v1,k to v2,k and remove the node v1,k from the graph.

Additionally, v2,k replaces any reference to v1,k in the

other node sequences. The number p is a parameter of the

algorithm (we use p = 5).

IV. SYSTEM DESCRIPTION

The vehicle used in this work is a small rover equipped

with wheel encoders, a low-cost inertial measurement unit,

an omnidirectional camera rig, and a planar laser range

scanner. The rig is composed of four Point Grey Firefly MV

cameras equipped with 2.8mm Tamron lenses. The overall

field of view of the rig is 360◦ horizontally and 80◦ vertically.
The Hokuyo UTM LIDAR is used for obstacle avoidance,

and to build maps for a metric validation of our approach.

All algorithms run on an Intel quad-core laptop (2.5GHz,

4GB RAM) mounted on the robot.

A. Obstacle avoidance

Our algorithm provides high-level navigation instructions,

and assumes that the robot can accept basic directional

commands and avoid obstacles. Using the planar LIDAR

for this task, the avoidance strategy assigns a cost metric

to body-relative angles, penalizing angles that are far from

the guidance direction and those in the direction of nearby

obstacles. The robot then greedily drives in the direction

of lowest cost. This simple reactive strategy has proven

effective in practice, yet our navigation strategy is amenable

to advanced methods based on sonar, infrared range sensors,

touch sensors, and possibly even the uncalibrated cameras

themselves [22], [23]. More accurate obstacle sensing will

result in smoother robot trajectories, though the navigation

algorithm is unaffected by the choice of obstacle avoidance

method.

V. VALIDATION AND RESULTS

A. Vocabulary Tree Evaluation

We compare the performance of the visual vocabulary for

the naive method and the tree-based method [17] described

in § III-F (Figure 7). We use the Intel Math Kernel Library

for fast matrix multiplication in the naive approach. For the

tree-based method, we use a tree branching factor K = 10.
The method considers only KS ≤ K children at every

node. When KS = K, the search is exhaustive and is less

effective than the naive search due to the overhead cost of

parsing the tree. However, for KS ≤ 3, the tree-based

method outperforms the naive search beyond a vocabulary

size of about 105 words (equivalent to roughly one hour of

exploration with our system).
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Fig. 7. Performance of the visual vocabulary for the naive method (dashed
line) and the tree-based method (solid lines). The parameter KS refers to
the maximum number of children explored at every tree node (maximum is
10).



Dataset Mission Duration Distance Traveled Average Speed # nodes µK µD µG µN µR

LAB

Exploration 24min 289m 0.20m/s 242

Mission A 18min 99m 0.09m/s 3/3 0.16m 0.25 0.43m 13.1◦

Mission B 21min 119m 0.10m/s 4/4 0.30m 0.65 0.82m 10.9◦

Mission C 35min 160m 0.08m/s 3/3 0.31m 0.61 0.78m 11.7◦

GALLERIA
Exploration 26min 402m 0.26m/s 255

Mission D 29min 171m 0.09m/s 3/3 1.19m 1.02 2.20m 17.5◦

Fig. 8. Datasets.

B. Real-World Explorations

We demonstrate our algorithms on two datasets (Figure 8).

The LAB dataset consists of a 24-minute exploration through

various office spaces, followed by three missions (A, B and

C) totaling 74 minutes. The GALLERIA dataset consists of a

26-minute exploration within a crowded mall-like environ-

ment followed by a 29-minute mission. In each mission, the

robot is tasked with reaching a series of checkpoints within

the graph. The missions often require the robot to traverse

locations in the opposite direction of the first visit. Figure 9

shows the Ψ distance for a section of the GALLERIA dataset.

Whenever the (smoothed) function exceeds a threshold, a

node is added to the graph.
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Fig. 9. The distance function Ψ during exploration for the GALLERIA

dataset (smoothed function shown in bold). A node is added to the graph
whenever the smoothed distance exceeds a threshold (we use 0.85).

C. Loop Closure Detection

Figures 10 and 11 illustrate the loop closure algorithm on

the LAB dataset. Dark values in the similarity matrix indicate

high similarity between nodes. The numbers associate the

detected segments with their locations in the place graph.

The method detects the three loop closure events effectively.

We emphasize that our method runs online and does not build

or require a metric map of the environment. We use metrical

information only for ground-truth validation.

D. Body-Relative Rotation Guidance

We first evaluate the accuracy of the match matrix H
obtained for the system described in § IV. Based upon the

construction of the camera rig, which provides a ground truth

separation of 90◦ between cameras, the error in the match

matrix exhibits a standard deviation of 2.9◦.

H =









0 88.8 −175.8 −84.5
−88.8 0 93.3 −175.4
175.8 −93.3 0 89.0
84.5 175.4 −89.0 0









We validate the rotation guidance algorithm using a sequence

captured as the robot rotates in place for 30 seconds. For

1
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Fig. 10. Loop closure on a 24 minute exploration path across an office
environment (LAB dataset). Loop closure detections are shown in red.
Numbers refer to decision points in the place graph (Figure 11). We use the
metric map and egomotion estimates for validation only.
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Fig. 11. Similarity matrix and place graph rendered using a spring-mass
model (LAB dataset). Loop closure detections correspond to segments in the
similarity matrix. The path of the robot was 0, 1, 2, 3, 2, 4, 5, 6, 4, 5, 1, 0.

each pair of views in the sequence, we run the rotation

guidance algorithm and compare its output with that of

an on-board IMU exhibiting a drift rate of less than one

degree per minute. Figure 12 shows the average rotation

error with respect to the number of features per view (50,000

data points per trial). For large numbers of features, the

standard deviation decreases roughly with the square root

of the number of observations, as expected from Equation 4.

We emphasize that the sequence was captured in an arbitrary

environment that is different from the one used for training.

Number of features 1408 1166 905 676 450 265 148 80 28 8

Rotation error (deg.) 2.0 2.3 2.2 2.4 2.8 3.2 3.9 6.4 20.0 53.7

Fig. 12. Rotation guidance error versus number of features.

We analyze the performance of the vision-guided naviga-

tion method using the ground truth vehicle trajectories, esti-

mated with the publicly available GMapping [24] localization

and mapping tool. The GMapping application provides a

SLAM solution based upon a Rao-Blackwellized particle



filter algorithm. The result is a maximum-likelihood estimate

of the vehicle trajectory along with an occupancy grid map

of the environment, as in Figure 10. For each of the two

datasets, we first process the odometry and LIDAR data from

the exploration phase to generate a reference map and an

estimate of the ground truth exploration trajectory. We do

the same for each of the navigation missions to resolve the

robot’s true trajectory within the corresponding map. We then

align each navigation map with the mission’s reference map

in order to transform the ground truth navigation and cor-

responding exploration trajectories into a common reference

frame.

The ground-truth localization of the robot provides several

metrics to evaluate the navigation performance (Figure 13).

First, we consider µK , the number of times the robot suc-

cessfully reaches the target destination. In addition, we define

µD as the distance between each point on the navigation

path and the closest point on the exploration path. This

metric measures the reproducibility of the navigation. We

evaluate the precision of the local node estimation algorithm

by defining µG as the distance in graph space between

the location estimated by the robot and the true location.

Similarly, we consider µN the metric distance between the

current location of the robot and the physical location of

the estimated node. Finally, we define the rotation guidance

error µR as the difference between the body-centered rotation

guidance and the direction from the current position of the

robot to the next node in the path. Figure 8 summarizes the

results.

µK Successful arrival at destination unitless

µD Distance between exploration and navigation path meters

µG Place graph error unitless

µN Distance to estimated node meters

µR Rotation guidance error degrees

Fig. 13. Evaluation metrics.

Figure 14 shows the evolution of µD over time for

mission C. The average distance to the original path is

0.30m and reaches about one meter at several locations

along the mission. These variations can be explained by the

low reaction time of the controller, yielding slightly off-path

trajectories in tight turns. Figure 15 illustrates the error (in

graph space) of the node estimation algorithm. Overall, the

algorithm performs well and localizes the robot with a worst-

case accuracy of three nodes. Similarly, the distance to the

estimated node is bounded over time and exhibits an average

of 0.42m (Figure 16). Finally, the rotation guidance error

average is nearly zero with a typical standard deviation of

12◦ (Figure 17). At time t = 450 sec, we observe a peak in

the rotation error due to motion blur in the images which

resulted in poor feature detection.

The GALLERIA dataset (Figure 19) is of particular interest.

For this dataset, we purposely explored the environment dur-

ing a very low-activity period of the week, while executing

the navigation mission at rush hour. Consequently, many

passers-by interfered with the robot’s path during the mis-

sion. Despite the significant variation and busy conditions,

the robot was able to recover from severe off-path trajectories

and successfully reached its destination (Figure 1).

E. System Performance

We run all algorithms on an Intel quad-core computer

(2.5GHz, 4GB RAM). Each camera produces 376 × 240
grayscale 8-bit images at 30Hz. The computation of the

SIFT features runs at 6Hz for an average of 150 features per

camera (each of the four cameras maps to one processor). A

loop of the place graph generation runs in 100msecs with

600 features per view. Node creation takes negligible time,

so the place graph generation algorithms runs overall at 10

Hz. During navigation, the global localization algorithm runs

at 1.5Hz using a graph search radius of 5. The rotation

guidance algorithm runs at 5Hz. All algorithms run in

parallel, so the system provides directional guidance at 5Hz

while localization updates occur at 1.5Hz.
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Fig. 14. Distance to original path (LAB dataset, Mission C). Mean value
shown as a dotted line.
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Fig. 15. Distance in graph space between the estimated node and the
correct node (LAB dataset, Mission A).
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Fig. 16. Distance to the estimated node (LAB dataset, Mission A).
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Fig. 17. Rotation guidance error with respect to the direction to the next
node (LAB dataset, Mission A). Time lapse (left) and histogram (right).
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Mission B: X, Y, Z

Mission C: V, W, Z, V

10 m

Fig. 18. LAB dataset: ground-truth paths followed by the robot during
mission A (blue), B (red) and C (green).

Fig. 19. GALLERIA dataset: exploration path (red) and revisit path (blue).
During the second half of the mission, many passers-by interfere with the
robot’s path. Yet, the robot reaches its destination successfully.

VI. CONCLUSION

We described a vision-based navigation method for a

ground robot in unknown environments. On the first excur-

sion through the environment, the method builds a topologi-

cal representation of the robot’s path. Upon revisitation, the

method localizes the robot in the graph and provides coarse,

yet robust navigation guidance in the robot’s body frame.

Our method assumes no prior intrinsic or extrinsic camera

calibration. We demonstrated our system on 2.5 hours and

1,200m of exploration through real, dynamic environments.
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