
Wide-Area Egomotion Estimation from Known 3D Structure

Olivier Koch Seth Teller

koch@csail.mit.edu teller@csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory

Stata Center, 32 Vassar Street, Cambridge MA 02139

Abstract

Robust egomotion recovery for extended camera excur-

sions has long been a challenge for machine vision re-

searchers. Existing algorithms handle spatially limited en-

vironments and tend to consume prohibitive computational

resources with increasing excursion time and distance.

We describe an egomotion estimation algorithm that

takes as input a coarse 3D model of an environment, and

an omnidirectional video sequence captured within the en-

vironment, and produces as output a reconstruction of the

camera’s 6-DOF egomotion expressed in the coordinates of

the input model. The principal novelty of our method is a

robust matching algorithm that associates 2D edges from

the video with 3D line segments from the input model.

Our system handles 3-DOF and 6-DOF camera excur-

sions of hundreds of meters within real, cluttered environ-

ments. It uses a novel prior visibility analysis to speed

initialization and dramatically accelerate image-to-model

matching. We demonstrate the method’s operation, and

qualitatively and quantitatively evaluate its performance,

on both synthetic and real image sequences.

1. Introduction

Robust, wide-area egomotion estimation within general

environments is one longstanding goal of computer vi-

sion researchers. Existing vision-based SLAM (Simulta-

neous Localization and Mapping) or SFM (Structure From

Motion) algorithms expend storage and computational re-

sources that grow super-linearly with the sequence length,

and incur growing localization error over time; these meth-

ods typically handle only short-duration, short-excursion

sequences [9, 23].

This paper describes an alternative approach to vision-

based localization which assumes availability of a coarse

3D environmental model before exploration commences,

rather than constructing the model on the fly. We show

that under these circumstances egomotion estimation can

be made sufficiently robust and efficient for real-time use

with extended camera excursions through multiple build-

ings. Quantitatively, our method can recover the 6-DOF

rigid body pose of a camera (attached to a user’s head, body,

or hand-held device) as it is moved within a spatially ex-

tended, visually cluttered environment, with an accuracy of

a 10-25 cm in translation and about two degrees in orienta-

tion. Our algorithm has been tested over tens of minutes of

walking-speed motion within an interconnected collection

of buildings with many corridors and hundreds of distinct

rooms.

Figure 1. Recovered motion of an omnidirectional camera during

a long excursion (1,500 frames) within an extended cluttered en-

vironment (450 m2). Our method establishes the camera’s initial

location, then tracks the camera as it moves.

Capturing high-fidelity CAD models of existing built en-

vironments is itself a difficult problem, and in some respects

our solution eases one hard problem (egomotion estimation)

by assuming the solution to another (as-built model cap-

ture). Yet we believe that this is a useful tradeoff, for two

reasons. First, 3D CAD models of existing spaces will be-

come more commonly available as GIS and other mapping

efforts extend indoors and users grow to expect the same

map coverage and quality indoors that they currently enjoy

for outdoor spaces and road networks. Second, our method

requires for effective operation only coarse model geome-

try, comprising only major visible building elements, typ-

ically walls, floors, ceilings, doors and windows. In many

cases such models can be generated through automated “ex-

trusion” of 2D floorplans (as is the case with most 3D model

data used in this paper).

We formulate egomotion estimation as an on-line task al-

ternating between two operating phases. The Initialization

phase determines a valid camera pose estimate when the

camera pose is known poorly, either at the start of explo-

ration or after “loss of lock.” Once the Initialization phase

establishes an accurate camera pose estimate for one or

more frames, the Maintenance phase updates camera pose

over subsequent frames. We show how both phases can be

dramatically accelerated through prior Visibility Analysis of

the environment model.

Our system makes four significant assumptions. First,

we assume that a coarse polyhedral model of the environ-

ment – which we define as including, at a minimum, walls,

floors, ceilings, doors and windows – is supplied as input.

Such a model could be provided by the building’s architects,

or produced independently by a post-construction model-

ing method. However it is acquired, we extract 3D model

“segments” from the boundaries of each polygon in the in-

put model. Second, we assume that the camera is intrinsi-

cally calibrated. Third, we assume that camera motion is

smooth, i.e. that sensor-dependent linear and rotational ve-

locity bounds are not exceeded. Finally, we assume that the

camera never moves through any impenetrable, opaque sur-

face, and consequently can never observe the back side of

any polygon in the input model.

We emphasize that we do not make a number of other

assumptions found in other vision-based localization sys-

tems. For example, we do not assume the presence of verti-

cal and horizontal model edges [8], right angles [3], or van-

ishing points [6]. We do not assume knowledge of surface

color or reflectance attributes in the environment, or indeed

of any “appearance” information other than knowledge of

the geometric model itself. Finally, though we do assume

that the portions of the environment represented by the pro-

vided model are static, we do not assume a static world. In

particular, our method handles time-varying lighting, time-

varying clutter (e.g. furniture), and transient image motion

(caused e.g. by passers-by).

2. Related Work

The theoretical background of vision-based localization

is presented in two seminal books [16, 12] and a more recent

survey of multi-view geometry [15].

Three line correspondences are sufficient in theory to

recover 6-DOF camera pose [10] though in practice more

lines may be required [21, 1]. Point features and RANSAC

may be combined [19] to achieve robust real-time local-

ization. In general, standard methods operate by track-

ing point, edge, or contour features between consecutive

frames [18, 11, 14], and minimizing some error function.

Other researchers have combined point-based and segment-

based tracking methods for increased robustness [22].

Alternatively, the geometry of the environment may be

reconstructed explicitly [24], with an optimization based on

Plücker coordinates allowing the removal of superfluous de-

grees of freedom [4, 5]. Our method requires no training

phase (as in [20]), no artifical landmarks (as in [17]) and

one omnidirectional camera (rather than two as in [7]).

3. Contributions

Our method differs from existing work in four respects.

First, it uses omnidirectional images in order to support

full view freedom (e.g., close proximity to environment sur-

faces), and to remove pointing constraints from the camera

operator. Second, the method scales to large, real-world

environments (see section 5). Third, the method includes

an automated initialization capability which runs more effi-

ciently when the user provides a “hint” about the camera’s

location. Finally, the method is robust to significant clutter,

lighting variations, and transient motion.

4. Egomotion Estimation Method

Our method consists of matching detected 2D image

edges to known 3D model segments, without performing

structure-from-motion. We chose to base our egomotion

estimation on line tracking, rather than point tracking, both

because this approach seemed relatively unexplored in the

vision literature, and because intuitively we expected long

model segments to be robustly detectable and precisely lo-

calizable even in the presence of severe clutter.

Given a set of correspondences between image edges and

model segments, we recover the camera pose by minimizing

an error function ξ, defined as the normalized square sum of

angular disparities for each correspondence between image

edge and (reprojected) model segment (Figure 2):

ξ(R, T) =
1

n
·

n
∑

i=1

α(ei, R, T, li)
2 (1)

where R and T are the rotation and translation components

of the camera’s rigid-body pose respectively, n is the num-

ber of correspondences, and α is the angle between the two

planes spanned by the camera center and the observed im-

age edge ei and model segment li respectively.

4.1. Initialization

Initializing the camera pose requires determination of an

initial set of valid correspondences between image edges

and model segments. Rather than incur the geometric com-

plexity of performing SFM from two or more images, then

matching recovered to known 3D structure, we initialize

from a single omnidirectional image. This simplifies the

Figure 2. The angle α between image edge ei and model segment

li as seen by camera (R,T) is defined as the angle between the

normals to the planes generated by the camera center and ei and li

respectively.

geometric computation required to a simple projection of

model segments through our (known) camera model. The

core idea of the initialization algorithm is to find the camera

pose (R0, T0) that minimizes ξ. Neither exhaustive search

of the 6-DOF space of poses, nor naive RANSAC [13],

are tractable approaches when most model features are oc-

cluded. Instead, we search within a volume (center T̃ , di-

ameter δ) known to contain the camera position, and iden-

tify the 6-DOF camera pose within this volume that mini-

mizes ξ. The time required for Initialization is proportional

to the size of the search volume.

4.1.1 Model Coordinate Subdivision

The initialization algorithm uses a visibility data structure

(described in § 4.3). This data structure consists of a dis-

cretization of the 3-DOF model space into nodes at a spac-

ing of about one meter. Each node is associated with a vol-

umetric cell containing all points closer to that node than to

any other node (each cell is indeed the Voronoi region of

one node, but the cell boundary is known by construction,

rather than computed from the arrangement of node posi-

tions). The initialization algorithm is invoked with a spec-

ified search region. It identifies which cells intersect this

region, and searches these cells for the camera pose with

lowest ξ score.

4.1.2 Edge-Segment Matching

The core of the initialization algorithm is a method for gen-

erating and scoring putative correspondences between ele-

ments of two sets, m image edges E and n model segments

L, and using a selected subset of correspondences to recover

camera pose. The method is based on the following obser-

vation: that a pair of image edges is a compatible match

with a pair of model segments only if the dihedral angles

formed by the two associated plane pairs differ by less than

some bound determined by the inter-node distance. Using

this observation, we define a function that takes as inputs

a triplet of image edges and a triplet of model segments

and returns a match score for the pairing of these triplets.

The scoring function is defined as the normalized product

of overlaps between the dihedral angle ranges taken over

the cell interior. Given a set of image edges and a set of

model segments, the algorithm computes the match score

for each triplet of edges and segments and aggregates them

within an m × n table.

The table also stores the k best candidate matches for

each active model segment (we use k = 3). The initial-

ization method next performs a series of random samplings

pairing a model segment with one of its best-matching im-

age edges. From each sample match set, the camera pose

and resulting ξ value are computed; the algorithm returns

the camera pose with the lowest ξ value. Figures 3 and 4

illustrate the algorithm.

li

lj
lk

er
et

es

model segments

ima
ge

edg
es

i j k

r

s

t

Figure 3. Edge-segment matching based on dihedral angle con-

straints. When a segment triplet {li, lj , lk} is compatible with an

edge triplet {er, es, et}, the scoring table is updated accordingly.

1: Given (T̃ , E ,L, δ)
2: Initialize a m × n score table: A = 0
3: for each triplet {li, lj , lk} ∈ L3 (0 ≤ i < j < k < n)

and each triplet {er, es, et} ∈ E3 (0 ≤ r < s < t < m)

do

4: Compute min, max dihedral angles for {li, lj , lk} and

dihedral angles for {er, es, et}
5: if dihedral angles match then

6: Compute the overlap α between observed and ex-

pected dihedral angles

7: Update: A[r][i]+= α; A[s][j]+= α; A[t][k]+= α
8: for each row Aj , 0 ≤ j < n do

9: Determine top k elements {Aj
i1

, · · · , Aj
ik
}

10: Generate multi-hypothesis correspondence

cj = {lj | ei1 , · · · , eik
}

11: Draw random correspondence match set:

12: for each sample {cj1 , · · · , cjp
} do

13: Select a random edge match for each cjk
.

14: Minimize the ξ function over the sample.

15: Return solution (R0, T0,S0) with lowest ξ value.

Figure 4. The INIT-SEGMENT-EDGE Algorithm.

4.1.3 System Initialization

In practice, the system runs INIT-SEGMENT-EDGE given

a coarse user bound around the camera position, and returns

the solution with the lowest ξ value. For more robustness,

the algorithm is followed by a standard simplex minimiza-

tion of ξ. Figure 5 summarizes the Initialization phase.

1: Given (T̃ , δ)
2: Detect edges on the first frame → E
3: Determine the set of visible model segments L =

VIS(T)
4: Run INIT-SEGMENT-EDGE on (T̃ , E ,L, δ).
5: Keep the solution with the lowest ξ(R, T) value.

6: Return the corresponding solution (R0, T0,S0).

Figure 5. Initialization.

4.2. Maintenance

This section describes the algorithm’s maintenance com-

ponent. Given a set of edge-segment correspondences St at

frame t, the maintenance problem is to identify a set of cor-

respondences St+1 at frame t + 1 and to compute the new

camera pose (Rt+1, Tt+1). To account for clutter, we use

a multi-hypothesis approach combined with a color-based

inter-frame constraint.

4.2.1 Hue-based Edge Matching Constraint

Each image edge is associated with a hue mean and vari-

ance for two five-pixel wide regions, one on each side of

the edge. Given a correspondence between an image edge

and a model segment in frame t, the algorithm looks for

matching edges in frame t+1 by considering all edges with

a dihedral angle smaller than a given threshold (we use 10

degrees) and a hue distance smaller than a given threshold

(we use 0.03 in a wrapped hue space [0..1]). We mark a

correspondence observed if it satisfies these two criteria.

4.2.2 Motion Smoothness Assumption

Our system relies on the motion smoothness assumption in

two ways. First, it uses a local visibility computation to

determine the expected model segments in the next frame,

given the camera position at the current frame (see § 4.3).

Second, the hue-based filter described in § 4.2.1 incorpo-

rates a maximum angle threshold between two consecutive

observations of a model segment on the image. Given a cor-

respondence between an image edge and a model segment

at frame t, only those image edges that fall within the angle

threshold at frame t + 1 are candidates for the correspon-

dence update (Figure 6).

f�a���� f�a���� f�a�����+�1 f�a�����+�1

an�u�a������

co�o������

��

��� ���+1

��

Figure 6. Correspondence update. Given a correspondence be-

tween the 2D image edge et
j and the 3D model segment li at frame

t, the angular and hue constraints determine the most likely edge

match et+1

j at frame t + 1.

4.2.3 Correspondence Subsets

After correspondence update, the system generates a series

of random correspondence subsets. For each subset, the al-

gorithm refines the camera pose (using the position at frame

t for the initial guess), finds the inlier matches, refines again

and finally computes the ξ function over the set of remain-

ing correspondences. The pose with minimum ξ value is

retained. This procedure tends to identify a consensus set

of correspondences.

4.2.4 Correspondence Lifetimes

In order to further improve the robustness of the matching

process, we implement a basic state machine for correspon-

dences. The machine has three states: an entry state un-

known, and two subsequent states pending and accepted.

A correspondence status evolves to pending once it is ob-

served, and to accepted if it is consistently observed over k
consecutive frames (we use k = 4). A correspondence sta-

tus degrades from accepted to pending if it is unobserved

for at least one but no more than k − 1 frames, after which

it either evolves to accepted or (when the edge has been

unobserved in k consecutive frames) degrades to unknown.

The color signature of an edge is retained as long as it is

accepted or pending. However, only correspondences with

accepted status are used for egomotion estimation. Figure 7

summarizes the Maintenance Algorithm.

The number of correspondences per sample λ is defined

by the minimum number of correct correspondences re-

quired to accurately determine the camera pose. In theory,

three correspondences are sufficient (omitting degenerate

configurations). In practice, approximately 10 correspon-

dences are needed to account for image and model noise

(see § 5.1). The number of samples st is defined as the min-

imum number of draws of p out of q elements required to

achieve 95% odds of success assuming the set has b% out-

liers, i.e. the minimum p such that :

(1 −

(

(1 − b
100

)q

p

)

/

(

q

p

)

)n ≤ 5% (2)

Table 1 evaluates st for different values of b and |S̄t|.

|S̄t| = 30 40 50 60
b = 10% 10 9 9 8

b = 30% 254 193 167 152

b = 50% 29971 13743 9413 7516

Table 1. Number of samples versus clutter percentage (b) and num-

ber of correspondences (|S̄t|).

1: Given (Rt, Tt,St)
2: Detect edges at frame t + 1 → E
3: for each correspondence {li, ej} in St do

4: Search for match in E satisfying color consistency

with ej and acceptable angular error with li.
5: If a match is found, update the correspondence.

6: From the set S̄t of correspondences with accepted sta-

tus, draw st samples of λ correspondences (λ � |S̄t|).
7: for each sample do

8: Compute camera pose by minimizing ξ over the λ
correspondences using a simplex method.

9: Score sample by computing ξ over the remaining cor-

respondences in S̄t.

10: Keep sample with lowest score; update camera pose at

frame t + 1.

11: Update each correspondence in St according to the

state machine → St+1.

12: Query new visibility set Lt+1 = VIS(Tt+1)
13: If Lt+1 6= Lt, remove demoted segments and insert

new segments with status unknown in St+1.

Figure 7. The Maintenance Algorithm

UNKNOWN

PENDING

ACCEPTED

{�b���v��}

{n����b���v��}
{�b���v������
>���c�n��cu��v�
������}

{n����b���v������
>���������}

Figure 8. Correspondence state machine.

4.3. Prior Visibility Analysis

In order for the system to scale well, an off-line process

computes the set of visible model segments from each node

in the 3D model. The data is stored in a lookup table and is

queried during both Initialization and Maintenance, greatly

reducing the number of candidate model segments that must

be processed. The resulting look-up table accepts as input

a 3D position T in the model and returns an estimate of the

set of visible faces, segments and vertices (F ,L,V):

(F ,L,V) = VIS(T) (3)

The visibility analysis is not conservative in a sense that

it does not generate a superset of the edges visible to any

point in the cell. However, given a sufficiently fine-grained

sampling of the view space, even an underestimated visi-

bility set will contain most prominent environment edges

observed by the camera.

We use an OpenGL algorithm based on powerful modern

GPUs (Graphics Processing Units) to perform the visibility

analysis efficiently. First, the set of visible faces is com-

puted by rendering the 3D model with a virtual camera cen-

tered at each node position, with each model face assigned

a unique color. The contents of the framebuffer then corre-

spond to the set of faces visible (at pixel resolution) from

the node.

Second, we consider the set of model segments bounding

at least one visible face. Each associated model segment is

rendered through both the OpenGL feedback buffer and the

OpenGL depth buffer (Figure 9). The feedback buffer con-

tains the depth value at each pixel along the segment if the

segment were to be displayed alone. The depth buffer con-

tains the depth value at each pixel along the segment when

rendering the full model. If the depth buffer value is equal

to the feedback buffer value for at least two pixels along the

segment (up to framebuffer precision), the segment is clas-

sified as visible. On the other hand, if the depth values differ

at all pixels along the segment, the segment is classified as

occluded by some model polygon. Figure 9 illustrates our

algorithm.

Z-buffer

Feedback buffer

Camera

Figure 9. Visible segment determination using OpenGL and GPU.

5. Results

We demonstrate our system on one synthetic and three

real image sequences:

• SYNTHETIC: 6-DOF motion within a simulated lab

space;

• LAB: rolling 3-DOF (x, y, θ) motion within a real lab

space;

• CORRIDOR: rolling 3-DOF motion through adjoining

buildings; and

• HAND-HELD: hand-held 6-DOF motion within a real

lab space.

Table 2 summarizes various attributes of the test sequences.

lab corridor hand-held

Number of frames 1,500 7,800 1,900

Frame rate (s−1) 5 5 15

Excursion duration (min) 5 26 2

Excursion length (m) 120 936 33

Total # of 3D segments 3,000 7,400 3,000

Total surface area (m2) 450 7,000 450

Table 2. Test sequence information.

Figure 1 shows the recovered camera motion for the LAB

sequence. The initial camera pose was computed automat-

ically using our initialization algorithm. Figure 12 shows

an omnidirectional image and the re-projected 3D structure

overlaid in green; note the high level of clutter and occlu-

sion. Figure 10 shows the recovered motion for the CORRI-

DOR sequence. The 3D model was generated automatically

from publically available 2D blueprints using a standard

height for ceilings and door frames. Figure 11 shows the

recovered egomotion for the HAND-HELD sequence. Fig-

ure 13 shows a detail view of long-range correspondence

tracking over several hundred frames. Figure 14 shows the

correspondence state for a 3D model segment being oc-

cluded during the sequence.

5.1. Localization Accuracy

Figure 15 shows the localization error (translation and

rotation) for the SYNTHETIC sequence. We simulate im-

age noise by convolving image edges with gaussian noise

(σ = .5 deg), and simulate clutter by removing 25% of the

correspondences and adding gaussian noise of (σ = 2 deg)
to the remaining correspondences. Figure 16 shows the

error in recovered position and orientation with respect to

ground truth. The ground truth for position was obtained

using a flat 2D motion for the camera and comparing the po-

sition component computed by the system along the z axis

with the actual camera height measured with a laser range

finder. The ground truth for rotation was obtained using

an Xsens MTi gyro attached to the camera. The standard

deviation is about 13 cm in position and two degrees in ori-

entation.

5.2. Camera Calibration

The system uses the PointGrey Research Ladybug cam-

era. The camera is composed of six CCD sensors covering

Figure 10. Recovered egomotion for CORRIDOR sequence (7,800

frames). Note motion into and out of adjoining offices. The 3D

model was generated automatically from 2D blueprints and extru-

sion heights.

Figure 11. Recovered egomotion for HAND-HELD sequence (1,900

frames). Our system handles truly 6-DOF camera motion.

Figure 12. Omnidirectional image and re-projected 3D structure

(in green). Localization is fairly accurate despite severe clutter. A

video of this sequence is provided as supplemental material.

more than 75% of the view sphere. The rigid-body transfor-

mation between each sensor and the virtual camera frame is

provided by PointGrey Research. Due to their small focal

length, the sensors are subject to high distortion. We cal-

ibrate each sensor independently using an ellipsoidal lens

model [2].

Figure 13. Top and bottom row: long-range correspondence track-

ing over several hundred frames (LAB sequence). Note recovery

after occlusion (top row).

F������u����

A����T��

U�K�OW�

����I�G

0 50 �00 �50 200 250 300 350 400

Figure 14. Correspondence state for a 3D segment being occluded

from frame 240 to 350. The algorithm automatically detects the

start and end of occlusion and maintains the correspondence state

accordingly.

�� �� 4� �� 6�
�

�

4

6

8

��

��

�4
������������u����
��u��������y
���������y
z���������

�� �� 4� �� 6�
�

�.�

�.4

�.6

�.8

�

�.�

�.4

�.6

T��
���

���
���

���
���

(��
)

R��
���

���
���

���
(��

���
��)

�u��������������p��������

Figure 15. Localization accuracy with respect to the number of

correspondences (simulated data, Gaussian noise on image edges

σ = 2 deg). Accuracy plateaus at about 40 correspondences.

5.3. Initialization

Figure 12 shows the result of Initialization on

a real image using a search volume three meters

wide. Figure 17 shows a correspondence generated by

INIT-SEGMENT-EDGE. The model segment is shown in

red. The three putative correspondences are shown on the

image in blue and white. The algorithm succeeds in finding

the correct match despite the high level of clutter.

6 4 2 0 2 4 60

5

10

15

20

25

40 30 20 10 0 10 20 300

5

10

15

20

25

30

Translation Error (cm)

µ = 0.04 cm
σ = 13.2 cm

Rotation Error (deg)

µ = 0.96 deg
σ = 2.16 deg

H
is

to
gr

am
 v

al
ue

Figure 16. Position and orientation accuracy with respect to

ground truth. (Gaussian fit shown as red dashed line).

Figure 17. Putative correspondence determined by

INIT-SEGMENT-EDGE. The algorithm determines the

highest-scoring matches for the model segment (in red on the left)

among the observed image edges. The three best candidates are

displayed on the right. The correct match appears in blue on the

left-hand side.

5.4. System Performance

The system currently runs at about 1Hz on a desktop

PC with four 2GHz CPUs. Two thirds of the processing

time are spent in edge detection and color processing (six

512 × 384, 8-bit images). The remaining time is spent in

the random sample algorithm. The initialization phase takes

one minute given a three-meter search volume. We have

implemented an optimization for the special case of vertical

camera pose which runs in about 10 seconds.

6. Discussion

This section discusses several limitations of the current

method, and possible directions for its future development.

6.1. System Limitations

The system suffers from the following limitations. First,

the method’s performance could be improved, through more

focused sampling, through code optimization, or with faster

hardware. Second, the system’s localization accuracy could

be higher. Some error is surely due to feature localization;

another error source is inaccuracy in the input 3D model.

Third, the present sensor is not light-sensitive enough; it re-

quires slow, smooth motion in order to avoid motion blur in

indoor environments. Fourth, the initialization method can

give ambiguous results in the presence of repeated environ-

ment structures such as multiple doorways along extended

corridors. Finally, the visibility analysis assumes that a one-

meter grid is fine enough to capture most variations in visi-

bility.

6.2. Future Directions

We are currently pursuing several promising directions.

First, a geometric signature-based initialization could en-

able the method to quickly eliminate inconsistent locations

and cut down the number of regions in which to run the ini-

tialization algorithm. Second, integration of an inertial sen-

sor and a camera motion model could increase the robust-

ness of the maintenance phase. Third, we will investigate

tracking of 3D points in addition to 3D segments. Finally,

an on-line update of the model combined with occlusion

processing could further decrease the occurrence of false

matches.

7. Conclusion

We described an algorithm for 6-DOF localization from

a coarse 3D model and an omnidirectional video sequence,

based on establishing and maintaining matches between im-

age edges and model segments. Our system makes few as-

sumptions about the environment other than that it contains

prominent straight line segments. Our solution algorithm

employed two phases, initialization and maintenance, along

with prior visibility analysis to drastically decrease running

time and increase the scale of environments that can be han-

dled by the method. We demonstrated the system, and eval-

uated its performance, on a variety of long-duration, spa-

tially extended, visually cluttered image sequences.

Acknowledgements

We gratefully acknowledge the support of Draper Labo-

ratory’s University Independent Research and Development

Program.

References

[1] A. Ansar and K. Daniilidis. Linear pose estimation from

points or lines. In Proc. ECCV, volume 4, pages 282–296,

New York, May 2002.

[2] M. Antone. An ellipsoidal lens model for fisheye calibration.

Technical Report TR-1940, BAE Systems Advanced Informa-

tion Technologies, Computer Vision Group, Nov. 2005.

[3] M. Antone and S. Teller. Scalable extrinsic calibration of

omnidirectional image networks. IJCV, 49(2-3):143–174,

2002.

[4] A. Bartoli, R. Hartley, and F. Kahl. Motion from 3D line

correspondences: Linear and non-linear solutions. In Proc.

IEEE CVPR, pages 477–484, Madison, WI, June 2003.

[5] A. Bartoli and P. Sturm. Structure from motion using lines:

Representation, triangulation and bundle adjustment. CVIU,

100(3):416–441, Dec. 2005.

[6] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and

S. Teller. An Atlas framework for scalable mapping. In Proc.

ICRA, pages 1899–1906, Taipei, Taiwan, 2003.

[7] A. Clerentin, L. Delahoche, C. Pegard, and E. B. Gracsy. A

localization method based on two omnidirectional perception

systems cooperation. Proc. ICRA, 2:1219–1224, April 2000.

[8] S. Coorg and S. Teller. Matching and pose refinement with

camera pose estimates. Technical Report MIT/LCS/TM-561,

MIT, 1996.

[9] A. J. Davison. Real-time simultaneous localisation and map-

ping with a single camera. In ICCV ’03: Proceedings of the

Ninth IEEE International Conference on Computer Vision,

page 1403, Washington, DC, USA, 2003. IEEE Computer

Society.

[10] M. Dhome, M. Richetin, and J.-T. Lapreste. Determination

of the attitude of 3D objects from a single perspective view.

IEEE Trans. PAMI, 11(12):1265–1278, 1989.

[11] T. Drummond and R. Cipolla. Real-time visual tracking

of complex structures. IEEE Trans. PAMI, 24(7):932–946,

2002.

[12] O. Faugeras, Q.-T. Luong, and T. Papadopoulou. The Geom-

etry of Multiple Images: The Laws That Govern The Forma-

tion of Images of A Scene and Some of Their Applications.

MIT Press, Cambridge, MA, USA, 2001.

[13] M. A. Fischler and R. C. Bolles. Random sample consensus:

a paradigm for model fitting with applications to image anal-

ysis and automated cartography. Commun. ACM, 24(6):381–

395, 1981.

[14] V. Gouet and B. Lameyre. SAP: A robust approach to track

objects in video streams with snakes and points. British Ma-

chine Vision Conference (BMVC’04), 2004.

[15] R. I. Hartley and A. Zisserman. Multiple View Geometry

in Computer Vision (2nd ed.). Cambridge University Press,

ISBN: 0521540518, 2004.

[16] B. K. P. Horn. Robot vision. MIT Press, Cambridge, MA,

USA, 1986.

[17] G. Jang, S. Kim, J. Kim, and I. Kweon. Metric localization

using a single artificial landmark for indoor mobile robots.

IEEE Intl. Conf. on Intelligent Robots and Systems, pages

2857–2862, August 2005.

[18] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau.

Robust real-time visual tracking using a 2D-3D model-based

approach. In Proc. IEEE ICCV, pages 262–268, Sep. 1999.

[19] D. Nister. An efficient solution to the five-point relative pose

problem. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 26(6):756–777, 2004.

[20] L. Paletta, S. Frintrop, and J. Hertzberg. Robust localization

using context in omnidirectional imaging. Proc. IEEE ICRA,

2:2072–2077, May 2001.

[21] L. Quan and Z.-D. Lan. Linear n-point camera pose determi-

nation. IEEE Trans. PAMI, 21(8):774–780, 1999.

[22] E. Rosten and T. Drummond. Fusing points and lines for

high performance tracking. In IEEE ICCV, volume 2, pages

1508–1515, Beijing, China, 2005.

[23] R. Sim, P. Elinas, M. Griffin, A. Shyr, and J. Little. De-

sign and analysis of a framework for real-time vision-based

SLAM using Rao-Blackwellised particle filters. In Proc.

CRV, pages 21–21, 2006.

[24] C. J. Taylor and D. J. Kriegman. Structure and motion

from line segments in multiple images. IEEE Trans. PAMI,

17(11):1021–1032, 1995.

