
Acquiring and Rendering
High-Resolution Spherical Mosaics

ADAM KROPP NEEL MASTER SETH TELLER

MIT Computer Graphics Group
{akropp,neel,seth}@graphics.lcs.mit.edu

Abstract

We describe an acquisition and viewing method for
high-resolution, high-dynamic range spherical image mo-
saics. These mosaics consist of hundreds of high reso-
lution, high-dynamic-range color images, each annotated
with 3-DOF orientation about a common optical center. An
automated acquisition platform captures a pre-specified
hemispherical tiling of images. Each image is acquired
with specified approximate camera rotation and bracketed
exposures for high-dynamic range.

Relative rotations among images, as well as inter-
nal camera parameters, are automatically refined using a
correlation-based global optimization. The improved rota-
tion and internal parameter estimates are used in an inter-
active viewer for smooth inspection of the resulting large
spherical mosaic. The renderer uses a modified form of
adaptive, incremental, parallel raycasting to sample the
original images at pixel centers, preserving detail from the
raw imagery while maintaining interactive display rates.
We show an example dataset that resolves millimeter-scale
detail at a viewing distance of ten meters.

1 Introduction
Our group is developing automated capture techniques

for extended urban environments [8]. The idea of the ef-
fort is automatic reconstruction of textured 3D geometric
models of urban landscapes from large numbers of images
annotated with approximate intrinsic and extrinsic camera
parameters. Images are grouped into nodes, each a set of
images acquired at a common optical center. These form
the fundamental data object of the city scanning Project
[2].

A single node contains the information necessary to
recreate a view of the world from one point in space
and time. By combining all of the images in a super-
hemispherical tiling around the viewpoint, it is possible
to trace the color and intensity of a sample of light rays

arriving at the optical center, effectively allowing one to
look around with an appropriate viewer (e.g., as in [1]).
Information viewed from a single point need not have any
notion of the surrounding geometry (i.e., depth).

This paper describes a method for acquiring and view-
ing a single high-resolution high-dynamic range node, with
a camera rig and software viewing system, respectively.
The novelty here is the sheer amount of data – we show
a mosaic of a large interior space which combines several
hundred high-resolution, high-dynamic range images – and
the fact that it can be viewed smoothly on a modest graph-
ics engine.

To facilitate the acquisition of high-resolution mosaics,
a specially designed sensor automatically acquires a node
based on a user-specified sphere tiling (collection of orien-
tations). The mechanized system enables the acquisition of
nodes with hundreds of images, which would difficult and
tedious if done manually. The platform also automatically
generates a high-dynamic-range radiance map for each im-
age [5].

A modified ray-casting algorithm interactively gener-
ates a view from the original images in real time, preserv-
ing the resolution of the acquired node. Radiance data is
used to expand the dynamic range of the generated im-
agery.

2 Acquisition
The acquisition platform employs a motorized pan-tilt

head, which rotates the camera about its optical center. The
camera used for acquisition is a Wintriss Opsis 1300 cam-
era with resolution of 1524×1012 pixels, fit with a 28mm
lens, for an effective field of view of about 18 degrees
horizontally and 15 degrees vertically. The hemispherical
tiling to be acquired is specified programmatically by the
user. By choice of optics and tiling pattern, we can achieve
nearly any conceivable sampling density on the sphere, at
the cost of course of longer acquisition times for mechani-
cal slew, shuttering. Figure 1 depicts the 258-image tiling
used for the mosaics and I/O in this paper.

1

High dynamic range images are acquired using five
bracketing exposures as in [5]. This is performed auto-
matically at each tiling orientation through programmatic
camera control. The acquisition platform (Figure 6) is also
equipped with GPS receivers, wheel encoders, and inertial
navigation sensors to provide an initial 6-DOF estimate of
absolute pose (exterior camera orientation) for each node
[6]. Only the refined 3-DOF orientation estimates are used
in this paper. Refined 3-DOF translation estimates are used
elsewhere in the system for 3D reconstruction and off-node
viewing.

3 Mosaicing
The sensor actuation and inertial unit provide good, but

not perfect, annotations of rotation for each image. These
are typically good to about a degree or so, whereas with
our optics and image resolution pixel-perfect registration
requires orientation known to about a sixtieth (one arc-
minute) of a degree.

To refine rotation estimates within a node, an automatic
spherical mosaicing algorithm is used, based on maximiz-
ing a dense inter-image correlation function [3]. The algo-
rithm assumes approximate initial rotation estimates and
sufficient overlap between adjacent images to drive the op-
timization to a global minimum.

A coarse-to-fine approach is employed in which pose
estimates from mosaicing low resolution images are used
to bootstrap the optimization of higher resolution images.
The algorithm represents image rotations as quaternions,
which are subsequently used by the viewing algorithm to
efficiently perform a projection of each image point to 3D.
The output of the mosaicing stage is a rotation for each in-
put image which relates that image to base image for each
node.

The image dataset presented in these experiments was
approximately 900MB. This large amount of data presents
a challenge in performing a nonlinear optimization based
on dense correlation of pixels. This is compounded by mo-
saicing method’s use of luminance and derivative informa-
tion for each pixel. To mosaic this dataset, the optimization
was modified to improve both its memory footprint as well
as the scheduling of computation and I/O. Since adjacen-
cies between images are known beforehand, the algorithm
computes correlation information on the current pair of im-
ages while pre-fetching the next set of required images into
memory. A dedicated memory manager backs out image
derivative and luminance information to disk when mem-
ory is at full capacity. This prevents having to recompute
image information each time an image is swapped out to
disk. This also requires a large amount of swap space,
about four times the size of the input dataset. If swap space
runs out, the memory manager will remove the image in-
formation on disk, and recompute the derivatives and lumi-

nance the next time the image is used.
Total time to mosaic the 900MB dataset on a four-

processor 200Mhz Pentium-Pro with 1GB of RAM is ap-
proximately 17 CPU hours.

4 Viewing
We designed and implemented a viewer to inspect high-

resolution mosaic samples pixels from the original images
at interactive rates with a modified form of raycasting. Al-
though the viewer cannot view full- resolution mosaics at
full frame rate, it can trade off smoothly between quality
and update rate, a significant advantage for interactivity.

4.1 Overview
Every sample in the view originates from one or sev-

eral source images. This guarantees that the node may be
sampled to the same resolution as the original images pro-
vided, allowing very fine detail to be observed. This avoids
limitations that would otherwise be imposed by underlying
hardware. For example, our graphics engine allows a max-
imum texture map size of 2048x1024 pixels. Even a node
acquired with our ordinary optics contains 46 images, each
with 1524×1012 pixels. Thus with a direct sampling ap-
proach we have access to 34 times the data that hardware
texture mapping would allow. In a high-resolution node
this multiplier exceeds 200. This becomes apparent in Fig-
ures 3 and 5 where a large portion of an indoor lobby is
shown, and then an object inside the scene is magnified.
Details as small as millimeters at a distance of ten meters
can be resolved in this node. The other main advantage of
our raycasting approach is that per-pixel operations may be
applied on the fly, in contrast to graphics hardware which
applies operations per vertex, then interpolates to interior
pixels. This allows for such effects as blending between
multiple images to obtain a final pixel value; seamlessly
integrating low-resolution and high-resolution images to
use extra memory only in areas that need it; and adjusting
the viewer’s visual response function for viewing high dy-
namic range images interactively (i.e., without image pre-
processing).

4.2 A Raycasting Method
The viewer, in its simplest form, takes a user-controlled

view direction and field of view and rasterizes it onto the
screen. For each viewport pixel, a ray is calculated from
the optical center of the node to the corresponding point on
the viewport, then extended out into space. The raycaster
then determines the radiance along that pixel based on its
direction. This involves determining which image or im-
ages that ray intersects, calculating the point on each image
in image coordinates where the ray intersects it, and finally
performing a weighted average of the color from each im-
age based on the distance from the ray to the center of the
image, as described in [7], [1]. This entire calculation is

2

(a) (b)

Figure 1. Visualization of 258 image frustum: (a) the FOV for each image; (b) wireframe of overlapping frusta.

enclosed in a nested set of for loops that scans through
each line and each pixel within that line, and can be easily
incrementalized and parallelized.

To speed the calculation of the ray, an incremental ap-
proach is used. First, the ray to the lower-left corner of the
viewport is determined (corresponding to pixel (0,0) of the
viewport). A ray start is constructed from the eye to the
point. Next two delta vectors, dx and dy, are constructed
to increment the starting vector in the screen x and y di-
rections. Finally, at the start of each line, the view vector
is set to start + dy*j (where j is the raster index). It
is then incremented after each pixel calculation by adding
dx. Next, the image or images that the ray intersects must
be determined. The naive approach to this problem is to
simply project the ray onto the plane in which each im-
age is located, then check that the point of intersection is
within the borders of the image. This is efficient for a small
number of images, but as the number of images in a node
increases it becomes wasteful. Since this operation must
be performed once per pixel, it must be as fast as possi-
ble to allow interactive inspection. To speed this search,
a preprocessing stage subdivides space in a tree structure,
and keeps pointers to the images that intersect each region.
The structure is built by adaptive refinement of the triangu-
lar faces of an initial (full-sphere) octahedron (Figure 2),
not unlike quad-tree or kd-tree data structures [4].

4.3 Ray Location Data Structure

During the preprocessing stage, a subdividable Image-
Branch record is instantiated for each triangle. This record
keeps track of all images that fall within its associated tri-
angular region. The preprocessor passes all input images
to each of the eight ImageBranches. If a branch contains
the image, it is added to the branch’s internal list. Once
the number of images reaches a constant threshold, the Im-
ageBranch subdivides into four smaller equally-sized trian-
gles, passing its stored images to its children. The resulting
structure can be searched with O(lg n) region comparisons
rather than O(n), giving a large reduction in computation
and increase in viewing speed (or quality for fixed speed).

Many of the values needed for the ray-triangle intersec-
tions used in this search can be pre-computed, giving an
additional time savings. The structure is built such that
each ray is passed to the top level, which determines which
of eight branches to search. A ray can be placed into one
of these regions using three comparisons (one for each di-
rectional component) with zero. The ray is passed to that
branch, which determines if it contains the ray. If it does,
the branch searches its (short) list of images for intersec-
tions, or passes the ray to its four children. The process is
repeated recursively until image intersections are found, or
none are found. The query returns a list of images inter-
sected by the ray, if any.

3

Figure 2. The data structure for rapid ray location in the
spherical tiling.

Once the images intersected by the ray are known, pix-
els can be sampled in each image. Each image has an asso-
ciated transformation matrix specifying its projection from
the node origin (optical center). The ray is projected by
this matrix, resulting in a point (x, y, z) that can be used
to index into the actual image data as (x

z
, y

z
). The radi-

ance value from each image is then weighted inversely by
its distance from the center of the image, and the values
are added and divided by the total weight. Vignetting ef-
fects which occurred during image formation are corrected
during the aquistion process.

4.4 Optimizations
Three modifications were made to optimize perfor-

mance.

4.4.1 Precomputing weights

First, the pixel weights depend only on x, y index, not on
the image itself, so they can be pre-computed and stored
in an array. The appropriate weight can be accessed by
the same index used to read the radiance sample from the
image. This approach increases speed at the cost of addi-
tional memory usage, an acceptable tradeoff when respon-
siveness is of primary concern. If all images are guaran-
teed to have the same size, a single set of weights can be
calculated at the beginning of time for use with all images;
otherwise a per-image array could be used.

4.4.2 Exploiting continuity

The second improvement comes from noting that, in gen-
eral, adjacent pixels come from the same image. Addi-
tionally, the transformation to image space is expensive,
so an incremental method of finding the next pixel is de-
sirable. Both of these are addressed during the sampling

stage. When the ray transformation is performed, an addi-
tional ray through the next pixel is also transformed. Since
this is effectively a perspective transformation, distances
are not preserved, so a simple delta between pixels will not
yield proper results. However, the z value is recorded as
well, and by storing the delta for x, y, and z, the viewer
can increment all of them across the image. Using this in-
cremental value in each image, a count is determined for
the number of samples left before an edge of the image
is reached. The top-level loop can then simply increment
each pixel location and sample each image until the count
reaches zero. At that point, it must again find the image set
to be sampled, by appeal to the ImageBranch data struc-
ture. This reduces the number of ray-image intersection
searches from once to pixel to once per image edge inter-
sected per scan line. Since each image typically spans be-
tween an eighth and a fourth of the viewing area (or more
when the field of view is quite wide), a full search must be
performed only a few times per scan line.

4.4.3 Parallelization

The final optimization is to split the raycasting task among
more than one processor on a multiprocessor machine us-
ing pthreads. Two main structures facilitate this. First,
a RaycastInfo record is created for each scan line of the
viewport, encapsulating all of the information needed to
calculate one line of the image, including the ray point-
ing to the beginning of the line, the dx vector, a pointer
to the line of the output image, and various other account-
ing information. Next, the record is added to a thread-safe
queue. Worker threads wait on a semaphore until a line
is available for processing. Once a line is available, the
acquiring thread removes it from the queue and processes
the line. When done, it delivers the rendered raster and
again waits on the queue. This produces an improvement
in frame rate which is nearly linear in the number of avail-
able processors.

4.5 High Dynamic Range
The raycaster described above can use an arbitrary num-

ber of images of arbitrary spatial resolution, but is limited
in its reproduction of a node due to physical limitations of
the camera – digital cameras have a very limited dynamic
range (typically seven bits or so) – and of the computer
graphics display. The location of this range can be ad-
justed by changing the exposure time on the camera, but
a single image cannot capture detail in both shadows and
very bright areas. A trial node was captured at multiple ex-
posure settings, and the results were combined to produce
a radiance map that reflects the true brightness (radiance)
of every pixel up to a single absolute scale [5]. This map
was then compressed using a logarithmic scale into 24-bit

4

(a) (b)

Figure 3. Figure (a) wide angle view (b) narrow field of view, zoomed. The dotted lines in (b) denote image boundaries

pixels, but retaining the full dynamic range. For each ra-
diance image minimum and maximum radiance values are
stored, allowing conversion to true radiance values.

In adding radiance map support to our viewer, one goal
was to adjust the displayed range and visual response func-
tion on the fly. This precludes mapping each image with
the appropriate visual response function each time the user
adjusts gamma. Also, because of the use of logarithms in
both the decoding and visual response functions, it would
be prohibitively slow to convert each pixel as it is sampled.
The solution was to keep the images in their logarithmi-
cally compressed form, and generate a 256-entry lookup
table for each image which converts each channel (r, g, b)
to the appropriate value. These lookup tables must be re-
generated each time the user changes the response func-
tion or dynamic range, but they contain only 256 entries,
instead of over a million pixels. In the decode stage, a sim-
ple table lookup is performed per channel per pixel, caus-
ing a minimal performance hit. As can be seen in Figure 4,
details in the shadows of MIT’s Lobby 7 are visible, while
with a different gamma the clouds outside the windows are
visible, though it is a bright sunny day. The image can be
viewed with a compressed dynamic range so that all values
are visible at once, or the range can be expanded to bring
out detail in one particular segment of the range (at the ex-
pense of saturating regions that are brighter or darker than

the target region).

5 Conclusion
We described an actuated camera rig and control sys-

tem for capturing spherical mosaics with high spatial reso-
lution and high dynamic range. The data is viewed with an
optimized, adaptive, parallelized software viewer that re-
quires only an ordinary CPU and framebuffer, but no spe-
cialized graphics hardware. The viewer smoothly trades
off between image quality and frame rate. Overall these
elements provide a novel capability for capturing and in-
specting high fidelity spherical imagery.

Future work includes improvement of the modeling and
use of the visual response function. Currently, users inter-
actively specify an gamma to modify the contrast in the im-
age. One approach would be to try and adaptively change
the gamma as the viewer navigates the mosaic. Another
avenue for future work is to better handle high contrast im-
ages, as described in [9]. This poses a challenge due to
the requirement of a real-time response for a large amount
of data. Furthermore, as the user varies the field of view,
the displayed dynamic range for the current view should
change continuously.

6 Acknowledgments
We are grateful to the anonymous reviewers for their

comments and suggestions.

5

(a) (b)

Figure 4. Figures (a) long exposure and (b) short exposure

References
[1] S. E. Chen. Quicktime VR – an image-based approach to vir-

tual environment navigation. In SIGGRAPH ’95 Conference
Proceedings, pages 29–38, Aug. 1995.

[2] S. Coorg, N. Master, and S. Teller. Acquisition of a large
pose-mosaic dataset. In CVPR ’98, pages 872–878, 1998.

[3] S. Coorg and S. Teller. Automatic spherical mosaics with
quaternions and dense correlation. In IJCV, 2000. To appear.

[4] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer-Verlag, Berlin, Germany, 1997.

[5] P. E. Debevec and J. Malik. Recovering high dynamic range
radiance maps from photographs. In SIGGRAPH ’97 Con-
ference Proceedings, Aug. 1997.

[6] D. DeCouto. Instrumentation for rapidly acquiring pose im-
agery. Master’s thesis, Dept. of Electrical Engg. and Com-
puter Science, MIT, 1998.

[7] R. Szeliski. Video mosaics for virtual environments. IEEE
Computer Graphics and Applications, 16(2):22–30, Mar.
1996.

[8] S. Teller. Automated urban model acquisition: Project ratio-
nale and status. In Proceedings of the Image Understanding
Workshop, 1998.

[9] J. Tumblin and G. Turk. Lcis: A boundary hierarchy for
detail-preserving contrast reduction. In SIGGRAPH ’99 Con-
ference Proceedings, pages 83–90, Aug. 1999.

6

(a) (b)

Figure 5. Figure (a) wide angle view (b) narrow field of view, zoomed

Figure 6. Diagram of the acquisition platform

7

	Text1: Proceedings IEEE Workshop on OmniDirectional Vision, June, 2000, pp. 47-53

