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ABSTRACT
This paper describes a distributed, linear-time algorithm for
localizing sensor network nodes in the presence of range mea-
surement noise and demonstrates the algorithm on a physi-
cal network. We introduce the probabilistic notion of robust

quadrilaterals as a way to avoid flip ambiguities that other-
wise corrupt localization computations. We formulate the
localization problem as a two-dimensional graph realization
problem: given a planar graph with approximately known
edge lengths, recover the Euclidean position of each vertex
up to a global rotation and translation. This formulation
is applicable to the localization of sensor networks in which
each node can estimate the distance to each of its neighbors,
but no absolute position reference such as GPS or fixed an-
chor nodes is available.

We implemented the algorithm on a physical sensor net-
work and empirically assessed its accuracy and performance.
Also, in simulation, we demonstrate that the algorithm scales
to large networks and handles real-world deployment geome-
tries. Finally, we show how the algorithm supports localiza-
tion of mobile nodes.

Categories and Subject Descriptors
C.2.4 [Computer-Communications Networks]: Distrib-
uted Systems; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems

General Terms
Algorithms, Design, Experimentation
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Sensor networks, localization, mobility, location-awareness,
tracking, pervasive computing
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1. INTRODUCTION
This paper describes a distributed algorithm for localizing

nodes in a sensor network in which nodes have the ability
to estimate distance to nearby nodes, but such measure-
ments are corrupted by noise. Localization is an essential
tool for the development of low-cost sensor networks for use
in location-aware applications and ubiquitous networking [5,
23]. Distributed computation and robustness in the pres-
ence of measurement noise are key ingredients for a practi-
cal localization algorithm that will give reliable results over
a large scale network. We formulate this as the following
two-dimensional graph realization problem: given a planar
graph with edges of known length, recover the Euclidean
position of each vertex up to a global rotation and transla-
tion. This is a difficult problem for several reasons. First,
there is often insufficient data to compute a unique position
assignment for all nodes. Second, distance measurements
are noisy, compounding the effects of insufficient data and
creating additional uncertainty. Another problem is a lack
of absolute reference points or anchor nodes1 which could
provide a starting point for localization. Finally, it is diffi-
cult to devise algorithms that scale linearly with the size of
the network, especially if data must be broadcast through
the limited communications capacity of a wireless channel.

We present a distributed localization algorithm that gets
around these difficulties by localizing nodes in regions con-
structed from robust quadrilaterals, a term that we formally
define in Section 2. Localization based on robust quads
attempts to prevent incorrect realizations of flip ambigui-
ties that would otherwise corrupt localization computations.
Furthermore, we show that the criteria for quadrilateral ro-
bustness can be adjusted to cope with arbitrary amounts
of measurement noise in the system. The drawback of our
approach is that under conditions of low node connectivity
or high measurement noise, the algorithm may be unable
to localize a useful number of nodes. However, for many
applications, missing localization information for a known
set of nodes is preferential to incorrect information for an
unknown set.

A general result of our simulations is that even as noise
goes to zero, nodes in large networks must have degree 10
or more on average to achieve 100% localization.

At a high level, our network localization algorithm works

1We use the term anchor node to refer to a node that has
prior knowledge of its absolute position, either by manual
initialization or an outside reference such as GPS. This type
of node is also called a beacon.
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Figure 1: An example run of our algorithm to es-
timate the relative positions of node A’s neighbors.
Nodes ABCD form a robust quad because their real-
ization is unambiguous even in the presence of noise.
We select A as the origin of a local coordinate system
and choose positions for B, C, and D that satisfy the
six distance constraints. In the next step, node E is
localized relative to the known positions of ABD us-
ing trilateration. This localization is unambiguous
because ABDE also forms a robust quadrilateral.
Continuing, the same procedure is used to localize
node F which is part of the robust quad ADFE.

as follows. Each node measures distances to neighboring
nodes, then shares these measurements with the neighbors.
This “one-hop” information is sufficient for each node to lo-
calize itself and its neighbors, which we call a cluster, in some
local coordinate system. Coordinate transforms can then be
computed between overlapping clusters to stitch them into a
global coordinate system. Such stitching can be done in an
on-line fashion as messages are routed through the network
rather than attempting to solve for the full localization up
front. Similar cluster-based approaches have been proposed
before, but often suffer from gross localization errors due to
graph flips that can compound over larger distances. Our
novel use of robust quadrilaterals ensures that cluster-based
localization does not suffer from such errors.

Figure 1 depicts an illustrative run of our algorithm. We
find all sets of four nodes that are fully connected by distance
measurements and are “well-spaced” such that even in the
presence of measurement noise, their relative positions are
unambiguous. We adopt this quadrilateral as the smallest
subgraph that can be definitively realized, and define it as
a robust quad. Additional robust quads can be “chained”
to the original quad if they have 3 nodes in common with
it. This approach allows each chained quad to localize its
fourth node based on the 3 known positions common to the
two quads using the standard technique of trilateration [4,
12]. This use of robust quadrilaterals enables our algorithm
to tolerate noise by computing unique realizations for graphs
that might otherwise be ambiguous.

Our algorithm has the following characteristics:

1. It supports noisy distance measurements, and is de-
signed specifically to be robust under such conditions.

2. It is fully distributed, requiring no beacons or anchors.

3. It localizes each node correctly with high probability,
or not at all. Thus, rather than produce a network
with an incorrect layout, any nodes with ambiguous
locations are not used as building blocks for further
localization.

4. Cluster-based localization supports dynamic node in-
sertion and mobility.

1.1 Related work
Eren et al. in [4] provide a theoretical foundation for net-

work localization in terms of graph rigidity theory. They
show that a network has a unique localization if and only
if its underlying graph is generically globally rigid. In ad-
dition, they show that a certain subclass of globally rigid
graphs, trilateration graphs, can be constructed and local-
ized in linear time. We take global rigidity and trilateration
graphs one step further with robust quadrilaterals that pro-
vide unambiguous localizations and tolerate measurement
noise.

In [18], Savvides et al. derive the Cramér-Rao lower bound
(CRLB) for network localization, expressing the expected
error characteristics for an ideal algorithm, and compare it
to the actual error in an algorithm based on multilateration.
They draw the important conclusion that error introduced
by the algorithm is just as important as measurement error
in assessing end-to-end localization accuracy. In [13] and
[12], Niculescu and Nath also apply the CRLB to a few gen-
eral classes of localization algorithms. Their “Euclidean”

method is similar to our method of cluster localization in
that it depends on the trilateration primitive. They also
state the relevance of four-node quadrilaterals. In their case,
the quads are constrained with five distance measurements
— the sixth is computed based on the first five. Flip ambi-
guities are resolved using additional information from neigh-
boring nodes. Their “DV-coordinate” propagation method
presented in [12] is similar to our method in that clusters
consisting of a node and its one-hop neighbors are first lo-
calized in local coordinate systems. Registration is then used
to compute the transformations between neighboring coor-
dinate systems. This idea of local clusters was also proposed
by Čapkun et al. in [2]. However, neither algorithm consid-
ers how measurement noise can cause incorrect realization
of a flip ambiguity.

A variety of other research attempts to solve the local-
ization problem using some form of global optimization.
Doherty et al. described a method using connectivity con-
straints and convex optimization when some number of bea-
con nodes are initialized with known positions [3]. Ji and
Zha use multidimensional scaling (MDS) to perform dis-
tributed optimization that is more tolerant of anisotropic
network topology and complex terrain [9]. Priyantha et al.
eliminate the dependence on anchor nodes by using commu-
nication hops to estimate the network’s global layout, then
using force-based relaxation to optimize this layout [15].

Other previous work is based on propagation of location
information from known reference nodes. Bulusu et al. and
Simic et al. propose distributed algorithms for localization
of low power devices based on connectivity [1, 21]. Other
techniques use distributed propagation of location informa-
tion using multilateration [11, 19]. Savarese et al. use a
two-phase approach using connectivity for initial position
estimates and trilateration for position refinement [17]. Pat-
wari et al. use one-hop multilateration from reference nodes
in a physical experiment using both received signal strength
(RSS) and time of arrival (ToA) [14]. Grabowski and Khosla
maximize a likelihood estimator to localize a small team of
robots, achieving some robustness by including a motion
model in their optimization [6].

In this paper we make several departures from previous
research. Most importantly, no previous algorithm consid-
ers the possibility of flip ambiguities during trilateration
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Figure 2: Example graph showing (a) true vertex
positions and (b) an alternate realization of the
graph in which inter-vertex distances, depicted as
lines, are preserved almost exactly. The error met-
ric σerr is shown below each realization, with inter-
vertex distances generated from a Gaussian distri-
bution with a mean of the true distance and σ = 0.35.
Thus, in this example, an incorrect realization of
the graph fits the constraints better than the ground
truth, showcasing why network localization is diffi-
cult.

due to measurement noise. Although the requirement of
global rigidity as a means to avoid flips has been well estab-
lished [4], the effects of measurement noise on global rigidity
are not well understood. Our notion of robust quadrilaterals
minimizes the probability of realizing a flip ambiguity incor-
rectly due to measurement noise. Error propagation during
trilateration is derived in [13], but the potential for signifi-
cant error due to flips is not considered. Secondly, like [2]
and [12], we do not require anchor nodes, enabling localiza-
tion of networks without absolute position information. This
characteristic is important for localization in homogeneous
ad-hoc networks, where any node may become mobile. Fur-
thermore, manual beacon initialization can be error-prone
or impossible, for example, in a sensor network deployed by
a mobile robot.

1.2 Challenges of network localization
The difficulties inherent in localization can be easily demon-

strated with an example. Consider the following metric that
characterizes the error for a given localization,

σ2
err =

M
X

i=1

(d̃i − d̂i)
2

M
(1)

where M is the number of distance measurements, d̃i is each
distance computed from the localized positions, and d̂i is
each measured distance. Without ground truth, σerr tells
us how well a computed localization fits the constraints. Fig-
ure 2 shows why minimizing this error metric is insufficient
for localization. In this example, two possible realizations
shown for the network have similar values for σerr, but the
ground truth actually has higher error than an incorrect
realization. This demonstrates the need for an algorithm
that appropriately handles nodes with ambiguous positions
by refusing to assign a position to any node that has more
than one possible locus for its position. We now formally
address why an algorithm based primarily on numerical op-
timization of the distance constraints fails.

In graph theory, the problem of finding Euclidean posi-
tions for the vertices of a graph is known as the graph re-

alization problem. Saxe showed that finding a realization

(a) Flip ambiguity (b) Discontinuous flex ambiguity

A

D
C

B
E

A

C
E

F

A

C
E

D

DBB
FPSfrag replacements

⇒

Figure 3: (a) Flip ambiguity. Vertex A can be re-
flected across the line connecting B and C with no
change in the distance constraints. (b) Discontin-
uous flex ambiguity. If edge AD is removed, then
reinserted, the graph can flex in the direction of the
arrow, taking on a different configuration but ex-
actly preserving all distance constraints.

is strongly NP-hard for the two-dimensional case or higher
[20]. However, knowing the length of each graph edge does
not guarantee a unique realization, because deformations
can exist in the graph structure that preserve edge lengths
but change vertex positions. Rigidity theory distinguishes
between non-rigid and rigid graphs. Non-rigid graphs can
be continuously deformed to produce an infinite number of
different realizations, while rigid graphs cannot. However,
in rigid graphs, there are two types of discontinuous defor-
mations that can prevent a realization from being unique
[7]:

1. Flip ambiguities (Figure 3a) occur for a graph in a d-
dimensional space when the positions of all neighbors
of some vertex span a (d−1)-dimensional subspace. In
this case, the neighbors create a mirror through which
the vertex can be reflected.

2. Discontinuous flex ambiguities (Figure 3b) occur when
the removal of one edge will allow part of the graph to
be flexed to a different configuration and the removed
edge reinserted with the same length. This type of
deformation is distinct from continuous flex ambigui-

ties which are present only in non-rigid graphs. In the
remainder of this paper, we use “flex ambiguity” to
mean the discontinuous type.

Graph theory suggests ways of testing if a given graph
has a unique realization by determining whether or not flip
or flex ambiguities are present in a specific graph. However,
neither these specific tests nor the general principles of graph

theoretic rigidity apply to the graph realization problem when

distance measurements are noisy. Since realizations of the
graph will rarely satisfy the distance constraints exactly, al-
ternative realizations can exist that satisfy the constraints
as well as or better than the correct realization, even when
the graph is rigid in the graph theoretic sense. In this situ-
ation, assuming we can model the measurement noise as a
random process, it is desirable to localize only those vertices
that have a small probability of being subject to flip or flex
ambiguity.

Our algorithm uses robust quadrilaterals as a building
block for localization, adding an additional constraint be-
yond graph rigidity. This constraint permits localization of
only those nodes which have a high likelihood of unambigu-
ous realization. We present the algorithm itself in the next
section, then justify it by deriving the worst-case error like-
lihood in Section 3.



2. APPROACH
For simplicity, we describe two-dimensional localization.

However, our algorithm extends straightforwardly to three
dimensions. We define a node’s neighbors to be those nodes
that have direct bidirectional communications and ranging
capability to it. Depending on the type of ranging mecha-
nism used by the network, these two conditions may always
be satisfied together. A cluster is a node and its set of neigh-
bors.

The algorithm can be broken down into three main phases.
The first phase localizes clusters into local coordinate sys-
tems. The optional second phase refines the localization of
the clusters. The third phase computes coordinate transfor-
mations between these local coordinate systems. When all
three phases are complete, any local coordinate system can
be reconciled into a unique global coordinate system. Alter-
natively, the transformation between any connected pair of
clusters can be computed on-line by chaining the individual
cluster transformations as messages are passed through the
network. The three phases of the algorithm are as follows:

Phase I. Cluster Localization Each node becomes the
center of a cluster and estimates the relative location
of its neighbors which can be unambiguously localized.
We call this process cluster localization. For each clus-
ter, we identify all robust quadrilaterals and find the
largest subgraph composed solely of overlapping ro-
bust quads. This subgraph is also a trilateration graph
as in [4]; our restriction to robust quads provides an
additional constraint that minimizes the probability of
realizing a flip ambiguity. Position estimates within
the cluster can then be computed incrementally by
following the chain of quadrilaterals and trilaterating
along the way, as in Figure 1.

Phase II. Cluster Optimization (optional) Refine the
position estimates for each cluster using numerical op-
timization such as spring relaxation or Newton-Raphson
with the full set of measured distance constraints. This
phase reduces and redistributes any accumulated er-
ror that results from the incremental approach used in
the first phase. It can be omitted when maximum effi-
ciency is desired. Note that this optimization imposes
no communications overhead since it is performed per
cluster and not the network as a whole.

Phase III. Cluster Transformation Compute transfor-
mations between the local coordinate systems of neigh-
boring clusters by finding the set of nodes in com-
mon between two clusters and solving for the rotation,
translation, and possible reflection that best aligns the
clusters.

This cluster-based approach has the advantage that each
node has a local coordinate system with itself as the ori-
gin. The algorithm is easily distributed because clusters are
localized using only distance measurements to immediate
neighbors and between neighbors. Furthermore, if one node
in the network moves, only the O(1) clusters containing that
node must update their position information. The following
sections describe the phases of the algorithm in more detail.

2.1 Cluster Localization
The goal of cluster localization is to compute the posi-

tion of a cluster’s nodes in a local coordinate system up to
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Figure 4: (a) The robust four-vertex quadrilateral.
The characteristic features of this subgraph are that
each vertex is connected to every other by a distance
measurement and that knowing the locations of any
three vertices is sufficient to compute the location
of the fourth using trilateration. (b) Decomposition
of the robust quadrilateral into four triangles.

a global rotation and possible reflection. Any nodes that
are not part of the largest subgraph of robust quads in the
cluster will not be localized. However, after Phases I-III are
complete, the positions of many of these unlocalized nodes
can be computed using more error prone methods that do
not rely on robust quads. We do not use such methods in
this phase since inaccurate position estimates will be com-
pounded by later phases of the algorithm. Our cluster-based
localization strategy is similar to that proposed in [2] except
that our use of robust quads specifically avoids flip ambigu-
ities.

Quadrilaterals are relevant to localization because they
are the smallest possible subgraph that can be unambigu-
ously localized in isolation. Consider the 4 node subgraph
in Figure 4, fully-connected by 6 distance measurements.
Assuming no three nodes are collinear, these distance con-
straints give the quadrilateral the following properties:

1. The relative positions of the four nodes are unique up
to a global rotation, translation, and reflection. In
graph theory terms, the quadrilateral is globally rigid.

2. Any two globally rigid quadrilaterals sharing three ver-
tices form a 5-vertex subgraph that is also globally
rigid. By induction, any number of quadrilaterals chained
in this manner form a globally rigid graph.

Despite these two useful properties of the quadrilateral,
global rigidity is not sufficient to guarantee a unique graph
realization when distance measurements are noisy. Thus,
we further restrict our quadrilateral to be robust as follows.
The quadrilateral shown in Figure 4a can be decomposed
into four triangles: ∆ABC, ∆ABD, ∆ACD, and ∆BCD, as
shown in Figure 4b. If the smallest angle θi is near zero,
there is a risk that measurement error, say in edge AD, will
cause vertex D to be reflected over this sliver of a triangle
as shown in Figure 5. Accordingly, our algorithm identifies
only those triangles with a sufficiently large minimum angle
as robust. Specifically, we choose a threshold dmin based
on the measurement noise and identify those triangles that
satisfy

b sin2 θ > dmin, (2)

where b is the length of the shortest side and θ is the small-
est angle, as robust. This equation bounds the worst-case
probability of a flip error for each triangle. See Section 3 for
a full derivation. We define a robust triangle to be a triangle
that satisfies Equation 2. Furthermore, we define a robust
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Figure 5: An example of a flip ambiguity realized
due to measurement noise. Node D is trilaterated
from the known positions of nodes A, B, and C.
Measured distances dBD and dCD constrain the po-
sition of D to the two intersections of the dashed
circles. Knowing dAD disambiguates between these
two positions for D, but a small error in dAD (shown
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AD) selects the wrong location for D.
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Figure 6: The duality between a cluster rooted at A
and a graph of robust quads, which we call an over-

lap graph. In the overlap graph, each robust quadri-
lateral is a vertex. Edges are present between two
quads whenever they share three nodes. Thus, if all
four node positions are known for some quad, any
neighboring quad in the overlap graph can use the
three common nodes to trilaterate the position of
the unknown node. A breadth-first search into the
overlap graph from some starting quad, trilaterat-
ing along the way, localizes the cluster as described
by Algorithm 2. Note that the overlap graph for
a cluster can have distinct, unconnected subgraphs
as shown in this example. Nodes that are unique
to one subgraph cannot be localized with respect to
those of an unconnected subgraph.

quadrilateral as a fully-connected quadrilateral whose four
sub-triangles are robust.

A key feature of our algorithm is that we use the ro-
bust quadrilateral as a starting point, and localize additional
nodes by chaining together connected robust quads. When-
ever two quads have three nodes in common and the first
quad is fully localized, we can localize the second quad by
trilaterating from the three known positions. A natural rep-
resentation of the relationship between robust quads is the
overlap graph, shown in Figure 6. Since three vertices in
common make it possible to localize two quads relative to

each other, it is natural to represent the space as a graph of
robust quads. Localization then amounts to traversing the
overlap graph with a breadth-first search and trilaterating
as we go, a linear time operation as in [4].

The entire algorithm for Phase I, cluster localization, is
as follows:

1. Distance measurements from each one-hop neighbor
are broadcast to the origin node so that it has knowl-
edge of the between-neighbor distances.

2. The complete set of robust quadrilaterals in the cluster
is computed (Algorithm 1) and the overlap graph is
generated.

3. Position estimates are computed for as many nodes as
possible via a breadth-first search in the overlap graph
(Algorithm 2). At the start of the graph search, we
choose positions for the first three nodes to fix the ar-
bitrary translation, rotation, and reflection. We place
the origin node at (0, 0) to specify the global trans-
lation, the first neighbor on the x-axis to specify the
global rotation, and the second neighbor in the posi-
tive y direction to specify the global reflection. The
remaining nodes are trilaterated as they are encoun-
tered.

Algorithm 1 Finds the set of robust quadrilaterals that contain

an origin node i. Each quad is stored as a 4-tuple of its vertices

and is returned in the set Quadsi. We assume that distance mea-

surements have already been gathered as follows: Measj is a set

of ordered pairs (k, djk) that represent the distance from node j

to node k. dmin is the robustness threshold, computed from the

measurement noise as described in Section 3.

1: for all pairs (j, dij) in Measi do
2: for all pairs (k, djk) in Measj do
3: Remove (j, dkj) from Meask

4: for all pairs (l, dkl) in Meask do
5: for all pairs (m, dlm) in Measl do
6: if m 6= j then
7: continue
8: Retrieve (k, dik) from Measi

9: Retrieve (l, dil) from Measi

10: if IsRobust(djk, dkl, dlj , dmin) AND
IsRobust(dij , dik, djk, dmin) AND
IsRobust(dij , dil, dlj , dmin) AND
IsRobust(dik, dil, dkl, dmin) then

11: Add (i, j, k, l) to Quadsi

12: Remove (k, djk) from Measj

2.2 Computing Inter-Cluster Transformations
In Phase III, the transformations between coordinate sys-

tems of connected clusters are computed from the finished
cluster localizations. This transformation is computed by
finding the rotation, translation, and possible reflection that
bring the nodes of the two local coordinate systems into
best coincidence [8]. After Phase I is complete for the two
clusters, the positions of each node in each local coordi-
nate system are shared. As long as there are at least three
non-collinear nodes in common between the two localiza-
tions, the transformation can be computed. By testing if
these three nodes form a robust triangle, we simultaneously



Algorithm 2 Computes position estimates for the cluster cen-

tered at node i. This algorithm does a breadth-first search into

each disconnected subgraph of the overlap graph created from

Quadsi and finds the most complete localization possible. At

the end of this algorithm, Locsbest is a set containing pairs (j,p)

where p is the estimate for the x-y position of node j. Any neigh-

bors of i not present in Locsbest were not localizable.

1: Locsbest := ∅
2: for each disconnected subgraph of the overlap graph do
3: Locs:= ∅
4: Choose a quad from the overlap graph.
5: p0 := (0, 0) {Position of the origin node}
6: p1 := (dab, 0) {First neighbor sets x-axis}
7: α :=

d2

ab
+d2

ac
−d2

bc

2dabdac

8: p2 := (dacα, dac

√
1 − α2) {Localize the second neigh-

bor relative to the first}
9: Add (a,p0), (b,p1), and (c, p2) to Locs

10: for each vertex visited in a breadth-first search into
the overlap graph do

11: if the current quadrilateral contains a node j that
has not been localized yet then

12: Let pa, pb,pc be the x-y positions of the three
previously localized nodes.

13: p′ :=Trilaterate(pa, daj ,pb, dbj , pc, dcj)
14: Add (j,p′) to Locs

15: if length(Locs) >length(Locsbest) then
16: Locsbest :=Locs

guarantee non-collinearity and the same resistance to flip
ambiguities as Phase I of the algorithm.

3. ANALYSIS

3.1 Proof of Robustness
In order for Algorithm 2 to produce a correct graph re-

alization, we must ensure that our use of robust quads pre-
vents both flip and flex ambiguities. Since distance mea-
surements may have arbitrary noise we cannot guarantee a
correct realization in all cases — instead we can only predict
the probability of having no flips based on our definition of
robustness. It is difficult to quantify this probability for an
entire graph, so instead we focus on the probability of an
individual error. That is, we define an “error” as the real-
ization of a single robust quad with one vertex flipped or
flexed from its correct location. By deriving the worst-case
probability of error, we will prove our first theorem:

Theorem 1. For normally-distributed distance measure-

ment noise with standard deviation σ, we can construct a

robustness test such that the worst-case probability of error

is bounded.

First, we prove that the use of robust quadrilaterals rules
out the possibility of flex ambiguities as seen in Figure 3b.
This kind of flex ambiguity occurs only when a rigid graph
becomes non-rigid by the removal of a single edge [7]. If the
graph is such that no single edge removal will make it non-
rigid, the graph is redundantly rigid, and no flex ambiguities
are possible. The robust quad has six edges. By removing
any edge, we are left with a 5-edged graph, which must be
rigid according to the following theorem [10]:
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Figure 7: A diagram of a quadrilateral for deriving
the worst-case probability of flip error. Vertex C is
being trilaterated from the known positions of ver-
tices A, B, and D. Its distance to vertex D is used
to disambiguate between the two possible locations
C and C′ by testing which of d̃CD and d̃C′D is closer
to the measured distance between C and D.

Theorem 2 (Laman’s Theorem). Let a graph G have

exactly 2n− 3 edges where n is the number of vertices. G is

generically rigid in R
2 if and only if every subgraph G′ with

n′ vertices has 2n′ − 3 or fewer edges.

Our robust quad with its missing edge has 4 vertices and 5
edges, satisfying the condition in Laman’s Theorem. Since
every 3-vertex subgraph has 3 or fewer edges and every 2-
vertex subgraph has 1 or fewer edges, the 5-edged quad is
rigid. Thus, the 6-edged robust quad is redundantly rigid.
Therefore, flex ambiguities are impossible for a graph con-
structed of robust quads.

Unlike flex ambiguities, flips cannot be ruled out based
on the graph structure alone. Since distance measurements
are noisy, they may cause a vertex to be incorrectly flipped
in a computed realization. Thus, we derive the worst-case
probability of realizing a flipped vertex. Figure 7 depicts the
scenario in which a vertex could become incorrectly flipped.
In this example, vertex C is being trilaterated with respect
to the known positions of vertices A, B, and D. Temporarily
ignoring vertex D, we can pinpoint C to two possible loca-
tions: C and C′, the intersection points of two circles cen-
tered at A and B, of radius d̂AC and d̂BC. To disambiguate
this possible flip, we use the known distance to vertex D as
follows. We compute distances d̃CD and d̃C′D. Whichever
distance is closer to the measured distance d̂CD will deter-
mine whether C or C′ is selected during trilateration.

The probability of an incorrect flip is equal to the proba-
bility that the measured distance d̂CD will be closer to the
incorrect distance d̃C′D than to the correct distance d̃CD.
Note that the problem has an intrinsic symmetry: namely,
disambiguating the position of C based on D is equivalent to
disambiguating D based on C. Assuming the random mea-
surement noise is zero-mean, there must be a measurement
error of magnitude ≥ 1

2
(d̃C′D − d̃CD) for an incorrect flip to

be realized. We can derive this value from the graph in Fig-
ure 7. For simplicity, we constrain the figure to be left-right
symmetric, although the probability of error will only de-
crease by breaking this symmetry. In this problem, we take
the values of d̂AB, θ, and φ as given. We will later elimi-



nate φ by maximizing the error with respect to it. First,

we compute the values of d̃CD and d̃C′D as: d̃CD = d̂AB sin φ

sin(2θ+φ)

and d̃C′D = d̂AB

sin(2θ+φ)

p

sin2 φ + 4 sin2(θ + φ) sin2 θ. Combin-

ing these yields

derr =
d̃C′D − d̃CD

2
(3)

= d̂AB

p

sin2 φ + 4 sin2(θ + φ) sin2 θ − sin φ

2 sin(2θ + φ)
. (4)

Since we are interested in the worst-case probability of error,
we minimize derr with respect to φ by taking the partial
derivative of derr and setting it equal to zero. We find that
derr is minimized when φ = π

2
−2θ. This can be substituted

into Equation 4 and the resulting equation simplified to yield

derr = d̂AB sin2 θ. (5)

Thus, if the true distance is d and the measured distance
is a random variable X, then the worst-case probability of
error is P (X > d + derr). If measurement noise is zero-
mean Gaussian with standard deviation σ, the worst-case
probability of error is

P (X > d + derr) = Φ

„

derr

σ

«

(6)

where Φ(x) connotes the integration of the unit normal prob-
ability density function from x to infinity. This equation
tells us that for arbitrary measurement noise with standard
deviation σ, we can choose a threshold dmin for the robust-
ness test. Only those triangles for which b sin2 θ > dmin,
where b is the shortest side and θ is the smallest angle, will
be treated as robust. By choosing dmin to be some constant
multiple of σ, we bound the probability of error. This proves
Theorem 1.

For the simulation results presented in this paper, dmin

was chosen to be 3σ. For Gaussian noise, this bounds the
probability of error for a given robust quadrilateral to be
less than 1%. However, for the typical case, the probability
is significantly less than 1%, thus posing minimal threat to
the stability of the localization algorithm.

3.2 Computational Complexity
It is important that any distributed localization algorithm

be scalable to large networks. In this section we discuss
the computational and communications efficiency of the al-
gorithm presented in Section 2. In general, finding a re-
alization of a graph is NP-hard [20]. We are able to do
it in polynomial time because our algorithm purposefully
avoids nodes that may have position ambiguities (i.e., flips
or flexes) at the cost of failing to find all possible realiza-
tions. It is these ambiguities which cause the general case
to blow up combinatorially. Our algorithm grows linearly
with respect to the number of nodes when there are O(1)
neighbors per node. Furthermore, since this computation
is distributed across the network, each node performs O(1)
computation. If the node degree is not constant, each node’s
computation varies with the third power of the number of
neighbors.

Algorithm 1, which finds the set of robust quadrilaterals
in a local cluster, has worst-case runtime O(m4) where m
is the maximum node degree. It can be implemented with
O(m3) runtime using better data structures. In practice,
the algorithm is much more efficient because each neighbor

is generally not connected to every other neighbor. In this
algorithm, we simply enumerate the robust quadrilaterals in
the cluster, thus the worst-cast number of robust quadrilat-
erals is

`

m

3

´

, which is O(1) for a graph of bounded degree.
Algorithm 2, which solves for position estimates for one

cluster, has runtime O(q) where q is the number of robust
quadrilaterals. In the worst case, q =

`

m

3

´

.
Finding the inter-cluster transformations for one cluster

has runtime O(m2). We are finding m transformations, each
of which may take O(m) time to compute because the regis-
tration problem takes linear time in the number of overlap-
ping vertices. Again, for a graph of bounded degree, these
computations take O(1) time.

The only stage of the algorithm that entails communi-
cation overhead is the initial step where each node shares
its measured distances with its neighbors. If we assume
that non-overlapping clusters do not share the same channel
(due to range limitations), the communications overhead is
O(m2) because m2 measurements are being shared. In prac-
tice, this is implemented by each node sending one packet
of constant size for distance measurement and one packet of
O(m) size to share other measurements.

4. EXPERIMENTAL RESULTS
In order to measure the effectiveness of our algorithm on

real sensor networks, we implemented it on-board a func-
tioning sensor network. The network is constructed of Crick-
ets, a hardware platform developed and supplied by MIT [16].
Crickets are hardware-compatible with the Mica2 Motes de-
veloped at Berkeley with the addition of an Ultrasonic trans-
mitter and receiver on each device. This hardware enables
the sensor nodes to measure inter-node ranges using the time
difference of arrival (TDoA) between Ultrasonic and RF sig-
nals. Although the Crickets can achieve ranging precision
of around 1 cm on the lab bench, in practice, the ranging
error can be as large as 5 cm due to off-axis alignment of
the sending and receiving transducers.

4.1 Evaluation Criteria
One criteria by which we evaluate the performance of

the algorithm is how the computed localization differs from
known ground truth. This error is expressed as

σ2
p =

N
X

i=1

(x̂i − xi)
2 + (ŷi − yi)

2

N
(7)

where N is the number of nodes, x̂i and ŷi compose the
localized position of node i, and xi and yi compose the true
position of node i. This metric is simply the mean-square
error in Euclidean 2D space.

It is useful to compare σ2
p to the mean-square error in

the raw distance measurements, since the error model of the
measurements determines the minimum achievable σp of an
ideal localization algorithm [18]. The mean-square error of
the distance measurements is

σ2
d =

M
X

i=1

(d̂i − di)
2

M
(8)

where M is the number of inter-node distances, d̂i is the
measured value of distance i, and di is the true value of
distance i.

Another useful metric is the proportion of nodes success-
fully localized by the algorithm. Let Li be the number of
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Figure 8: A comparison of node positions as local-
ized by our algorithm to the true positions of the
nodes on a physical Cricket cluster. Positions are
computed by Phase I of the algorithm, cluster local-
ization. The experiment involved 16 nodes, one of
which could not localize; thus only 15 are shown.

nodes successfully localized in the cluster centered at node
i, and ki be the total number of nodes in this cluster. In
one cluster, the proportion of nodes localized is Li/ki. For
the entire network, we define the cluster success rate as

R̄ =
1

N

N
X

i

Li

ki

. (9)

This metric tells us the average percentage of nodes that
were localizable per cluster.

Our final metric conveys the proportion of nodes in the
entire network that could be localized into a single coordi-
nate system. Since some clusters will have transformations
between them and others will not, the network may split into
separate subgraphs, each of which is localized with respect
to all its nodes, but is not rigidly localized with respect to
the other subgraphs. We call these subgraphs forests. Nat-
urally, it is desirable for there to be only a single forest that
contains every node in the network. Thus, another use-
ful metric is the largest forest size, which is the number of
nodes in the largest forest. This metric can be expressed as
a percentage R̃ by dividing by the total number of nodes in
the network.

4.2 Accuracy Study: Hardware Deployment
Figure 8 shows the results of the first experiment. In this

experiment, 16 crickets were placed in a pseudo-random,
2-dimensional arrangement. Ground truth was measured
manually with the aid of a grid on the surface. The small
circles depict the positions of each node as computed by the
localization algorithm running on-board the cricket in the
bottom-most position of the figure. The positions shown are
for Phase I of the algorithm, where positions are trilaterated
using robust quadrilaterals. No least-squares optimization
was performed. The true position of each node is shown with
an “x.” A line between the two points shows the amount of
positioning error.

The error metrics for the experiment shown in Figure 8
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Figure 9: The localized positions of 40 Crickets in a
physical network. The two “holes” in the network
are where two nodes could not localize, and thus
only 38 are shown. The coordinate transformations
between each cluster were computed and used to
render the localized positions in the single coordi-
nate system seen here. Ground truth positions are
overlaid, with lines showing the amount of error for
each node. The dotted line depicts the extent of one
cluster.

are as follows:

metric value
σd 5.18 cm
σp 7.02 cm
R̄ 15/16 = 0.94

R̃ 15/16 = 0.94

The fact that σp (the localization error) is only slightly larger
than σd (the measurement error) tells us that our algorithm
performed well relative to the quality of the distance mea-
surements available. In addition, all nodes but one were suc-
cessfully localized, indicating that the algorithm provided
good localization coverage of the cluster.

A second experiment, the results of which are shown in
Figure 9, demonstrates both Phase I and Phase III of the
algorithm. Once again, for simplicity, the optional least-
squares relaxation phase is omitted. A total of 40 nodes
were placed in a 5×6 meter region. The RF and ultrasound
ranges of each Cricket were arbitrarily restricted so that
only 12 neighbors were rangeable from each node. Then,
cluster localization was performed separately on five nodes,
dividing the network into five clusters. The range of one
cluster is shown by a dotted line in the figure. Phase I of
the algorithm, running on each of the five clusters, localized
its nodes in a local coordinate system. Transformations be-
tween each pair of coordinate systems with at least three
nodes in common were computed by Phase III of the algo-
rithm. Figure 9 shows the localized positions of each node as
small circles, overlaid with the ground truth. The localized
positions of three nodes are used to bring the entire network
into registration with the global coordinate system used by
ground truth.

The error metrics for the Figure 9 experiment are:



Figure 10: The office floorplan used for sensor net-
work simulation. Dark lines are the walls of the
building and light-colored lines represent the graph
edges between nodes. Each edge represents a dis-
tance measurement that a node can perform. Mea-
surements cannot be taken through walls.

metric value
σd 4.38 cm
σp 6.82 cm
R̄ 0.97

R̃ 38/40 = 0.95

As in the first experiment, these results show that localiza-
tion error was not much greater than measurement error.

4.3 Scalability Study: Simulated Deployment
We have tested the three phases of our algorithm on a

variety of simulated networks in order to evaluate its scal-
ability beyond the physical experiments performed in Sec-
tion 4.2. In this paper, we simulate an environment based
on an actual floorplan of an office building, shown in Fig-
ure 10. We placed 183 nodes uniformly and randomly in the
two-dimensional region, but connectivity is only available
between nodes that are within the maximum ranging dis-
tance and not obstructed by walls. The floorplan has three
rooms and one hallway, and is approximately square with
each side 10 m long.

When evaluating the algorithm’s performance, we are in-
terested in how both node degree and measurement noise
affect the results. Node degree was varied by changing the
maximum ranging distance. We also consider three different
degrees of measurement noise:

1. Zero noise, where all measurements are exact. Simula-
tions without noise give an upper bound on how much
localization is possible for a network. Without noise,
any unlocalizable nodes must be due to disconnection
or non-rigidity in the graph structure.

2. Noise with σd = 1 cm, similar to that of a Cricket
device in ideal circumstances.

3. Noise with σd = 10 cm. This figure is to designed to
simulate sensor networks with more imprecise ranging
capability.

Figure 11 shows the simulation results for the building en-
vironment. Each data point on the plots represent a single

run of the simulation, which localizes as many nodes as pos-
sible. As one would expect, the ability of the algorithm to
localize goes down as the measurement noise increases. In-
terestingly, the algorithm is nearly as effective with σd = 1
cm noise as with zero noise. With more noise, the algo-
rithm is still effective, but the requirements for node degree
are higher. Note that the largest forest size R̃ rarely ob-
tained 100% even with high node degree due to obstruction
by walls. In a practical deployment, nodes would have to be
strategically placed around doorways to achieve 100% forest
size.

4.4 Error Propagation
Cluster-based localization algorithms generally suffer from

poor error propagation characteristics because they have
no absolute reference points as constraints. We show that
our approach, using robust quads, significantly reduces the
amount of error propagated over approaches based on basic
trilateration.

Figure 12a shows localization results of our algorithm after
Phase I and III on a simulated network of 100 nodes. Nodes
were randomly placed within the square region, each with
a maximum ranging distance of 350 cm. Distance measure-
ments were corrupted by Gaussian noise with σd = 5.0 cm.
In order to compare to ground truth, we pick three nodes
as “anchors”. These nodes are used solely for transforming
between the separate coordinate systems of the algorithm
and ground truth, and are not used by the algorithm at
run-time. The anchor nodes are closely-spaced so that er-
rors can accumulate towards the edges of the network. In
contrast, Figure 12b shows localization results for the same
network, but with an algorithm that uses trilateration alone
and does not check for quad robustness.

The various error metrics for three simulation runs are as
follows. Each was run with a different amount of measure-
ment noise, σd. The error metrics for the simulation without
robust quads are also shown:

metric Our algorithm
w/o robust
quads

σd 1.0 cm 3.0 cm 5.0 cm 5.0 cm
σp 4.43 cm 14.39 cm 16.22 cm 54.87 cm
R̄ 0.91 0.85 0.79 0.95

R̃ 0.93 0.87 0.75 0.99
Shown in: Figure 12a Figure 12b

This comparison demonstrates that robust quads signifi-
cantly reduce error propagation.

4.5 Localization of Mobile Nodes
An advantage of our algorithm is that it handles node

mobility well because each cluster localization can be re-
computed quickly. Even on a low power device, the cluster
localization phase can take less than one second for 15–20
neighbors. Thus, as nodes move, Phase I can simply be re-
peated to keep up. Furthermore, by excluding mobile nodes
from the transformation computation in Phase III, it does
not need to be repeated.

There are practical issues with time difference of arrival
(TDoA) distance estimation that complicate the handling
of node mobility. Specifically, since each node-to-node dis-
tance is estimated at a different moment in time, a moving
node will corrupt the self-consistency of the distance mea-
surements. Such discrepancies will hurt the performance of



(a) Plots of cluster success rate, R̄, versus node degree for the building environment
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(b) Plots of largest forest size, R̃, versus node degree for the building environment
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Figure 11: (a) The cluster success rate R̄ versus the average node degree for three different levels of mea-
surement noise in the building environment of Figure 10. Each data point shows the value of these quantities
for a single simulation run. A moving average of the data points is overlaid on each plot. (b) The size of the

largest forest R̃ versus average node degree for three different levels of measurement noise.

the localization algorithm and potentially cause large errors.
In our experiments we solve this problem by measuring the
distance to moving nodes using only ultrasound pulses gen-
erated by the moving node itself. This way, all other nodes
will sense the same physical pulse and generate a measure-
ment estimate for the same moment in time. These mea-
surements are then shared within each cluster.

Mobility also complicates the handling of noise, since out-
liers and noisy measurements can be misconstrued as ob-
served motion. We address this issue by first feeding the raw
measurements into a per-edge Kalman Filter with two state
variables: the node-to-node distance and the rate of change
of the distance. The filter simultaneously smooths noisy
measurements and eliminates outliers by rejecting measure-
ments with noise inconsistent with the filter state. The fil-
ters for static distances are tuned with a single process noise
that limits mobility, and the filters for mobile distances are
tuned to allow mobility. Algorithm 1 is then run on the out-
puts of the filters instead of the raw measurements. These
per-link filters use much less state and computation than a
Kalman Filter involving all nodes simultaneously (e.g. [22]).

A final issue in localization with mobility is that trilatera-
tion can be inaccurate when tracking a moving device, since
it does not generally use all distance constraints available.
Using a large number of constraints is important for mobile
localization, which has more noise than static localization.
Thus, we have found it important to use least-squares op-
timization, employing all distance constraints for position
refinement, after computing an initial estimate in Phase I.

Figure 13 shows our experimental results localizing a mo-
bile node. Six stationary nodes were deployed in a roughly
circular configuration, as shown by the small circles in the
figure. A node was attached to an autonomous robot placed
in the center of the stationary nodes. Once activated, the
robot randomly traversed a rectangular space. The localiza-
tion as computed by the sensor network was logged over time
and manually synchronized with a calibrated video camera.
The video was post-processed to obtain the ground truth
robot path with sub-centimeter accuracy. This path was
then compared to the path computed by the localization al-
gorithm. The localization algorithm computed a position
estimate for the robot roughly once per second for 3 min-
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Figure 12: (a) Our algorithm’s localized positions
for a simulated network compared to ground truth.
Lines show the amount of error for each node’s po-
sition. The three nodes used to compute the trans-
formation to the ground truth’s coordinate system
are shown with small circles. The large dotted cir-
cle depicts the maximum ranging distance of a node.
(b) Localization of the same network using basic tri-
lateration without checking for quad robustness.

utes. Since discrete computations were made, each of these
separate localizations could be compared to ground truth.
The mean-square error, σp, computed from these values is
2.59 cm. Thus, our localization algorithm is shown to be
successful at localizing networks with mobile nodes.

5. CONCLUSION
We have demonstrated an algorithm that successfully lo-

calizes nodes in a sensor network with noisy distance mea-
surements, using no beacons or anchors. Simulations and
experiments showed the relationship between measurement

(a) Localized path of mobile node
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(c) Experimental setup

Figure 13: (a) The path of a mobile node computed
by our localization algorithm compared to ground
truth over a 3 minute period. A sensor node was
attached to a mobile robot (an autonomous floor
vacuum) that randomly covered a rectangular space.
Six static nodes, depicted as circles, were used to
localize this mobile node over time. Ground truth
(dashed) was obtained from calibrated video. (b)
The Euclidean distance between the mobile node’s
localized position and ground truth over time. (c)
A photo of the experimental setup.



noise and ability of a network to localize itself. As long as
the error model of the measurement noise is known, the al-
gorithm copes with this noise by refusing to localize those
nodes which have ambiguous positions. Furthermore, even
with no noise, each node in the network must have approxi-
mately degree 10 or more before 100% node localization can
be attained. As noise increases, so will the connectivity re-
quirements. The Cricket platform has a moderate amount of
noise and thus exercises our algorithm’s tolerance for noisy
distance measurements. We have also shown that the algo-
rithm adapts to node mobility by filtering the underlying
measurements.

For future work, we are interested in extending our phys-
ical experiments to even larger node deployments that also
include obstructions. Also, we would like to use the prin-
ciple of robust quads to compute the optimal placement of
additional nodes so that a partially localized graph becomes
fully localizable. Finally, it would be useful to further re-
fine our approach to allow “passive” mobile nodes to localize
without transmitting.
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