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Abstract— We present SCGP, an algorithm for finding a single
cluster of well-connected nodes in a graph. The general problem
is NP-hard, but our algorithm produces an approximate solution
in O(N2) time by considering the spectral properties of the
graph’s adjacency matrix. We show how this algorithm can be
used to find sets of self-consistent hypotheses while rejecting
incorrect hypotheses, a problem that frequently arises in robotics.
We present results from a range-only SLAM system, a polynomial
time data association algorithm, and a method for parametric line
fitting that can outperform RANSAC.

I. INTRODUCTION

Many problems can be cast in the form of finding a
set of consistent hypotheses from a larger set of candidate
hypotheses. For example, outlier rejection can be posed as
finding the set of maximally consistent inlier measurements
from the set of all measurements. Other problems, including
parameter estimation (e.g. fitting points to a line), and data
association can also be cast into this form.

In general, searching for the best subset of hypotheses
requires exponential time in the number of candidate hypothe-
ses. This paper presents an algorithm, Single-Cluster Graph
Partitioning (SCGP), which casts the problem as a graph
partitioning problem and uses spectral analysis to estimate
the optimal set in O(N2) time, where N is the number of
hypotheses being considered.

The basic observation motivating SCGP is that correct
hypotheses tend to be pairwise consistent with each other,
whereas incorrect hypotheses are only randomly consistent.
SCGP uses a pairwise similarity metric to find a cluster of
hypotheses which is approximately the set with greatest intra-
set similarity.

Graph partitioning is a well-studied problem, at least in the
context of identifying two or more clusters of highly similar
nodes. Single-cluster graph partitioning is different; it seeks
to find only a single cluster. In the problems explored in this
paper, the outliers/incorrect hypotheses are not, in general,
pairwise similar to each other.

To introduce the idea of single-cluster partitioning, consider
the points in Fig. 1. Given a cloud of points, we wish to recover
a cluster of “inliers”. We compute an adjacency matrix using a
simple exponentially-weighted Euclidean distance metric and
perform clustering using Shi and Malik’s Normalized Cuts [1]
(a common k-way partitioning algorithm) and with our 1-way
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Fig. 1. K-way versus 1-way clustering. When attempting to identify a single
cluster, k-way algorithms like Normalized Cuts perform poorly in comparison
to the 1-way algorithm described in this paper.

algorithm. Clearly, attempting to produce “balanced” clusters
produces poor results.

This paper will describe our algorithm, first considering the
square/symmetric case, then generalizing the solution to non-
symmetric problems. We then show how our single-cut graph
partitioning algorithm can be used to solve several problems
in robotics.

The main contributions of this paper are:
• Development and derivation of Single-Cluster Spectral

Graph Partitioning (SCGP).
• Application of SCGP to outlier rejection, enabling a high

fidelity Simultaneous Localization and Mapping (SLAM)
result using range-only measurements, despite extreme
noise.

• Application of SCGP to line fitting, demonstrating better
performance than RANSAC.

• Application of SCGP to data association and robot local-
ization, with promising results for future work.

II. RELATED WORK

Our approach is related to the existing body of work in
spectral graph partitioning. Given an undirected, weighted



graph, existing algorithms identify two or more clusters such
that nodes in each cluster are similar (large edge weights),
and nodes in different clusters are dissimilar (small edge
weights.) There are a variety of ways of expressing this
idea numerically, leading to different partitioning algorithms
with different metric functions. Ding’s MinMaxCuts paper
[2] contains a good survey of clustering methods, while the
mathematical foundations of spectral clustering can be found
in Fiedler and Donath’s early papers [3]–[6].

Perona and Freeman explored machine-vision problem of
extracting foreground features from non-salient background
features [7]. Both Perona’s approach and SCGP use the same
eigenvector of the adjacency matrix in their solution, but use
different means to find clusters. The algorithm presented here
is also more general, in that it has been extended to handle
the non-symmetric, non-square affinity matrices that arise in
several problem domains.

Our approach to dealing with non-symmetric and non-
square affinity matrices is similar to the approach described
by Zha and He [8], in which they explore conventional parti-
tioning algorithms in the context of document classification.

Single-cluster graph partitioning can be used in many do-
mains in which Random Sample Consensus (RANSAC) [9]
is often used. RANSAC forms candidate hypotheses in a
randomized way, counting how many samples from the data
set agree with each hypothesis within a preset threshold. The
largest set of consenting samples is then used to fit a solution.

Another application of SCGP is data association, for which
a number of popular algorithms exist. Neira’s Joint Compati-
bility Branch and Bound (JCBB) [10] performs a tree search
over all possible data associations, leading to an exponential
run time. JCBB differs from other tree searches by adding a
“compatibility” test at each node in order to reduce the search
space.

Outlier rejection is often performed by gating measurements
with a prior, or by using a median window. Gating with a
prior simply means that measurements that are too unlikely
given the current estimate of the process are discarded. Me-
dian windows consider a set of measurements in which the
value is not expected to change considerably, discarding those
measurements that are far from the median. We will present
an outlier detection approach that does not require a prior and
that can work even when a median window would fail.

III. ALGORITHM OVERVIEW

A. Formulation

We can view a set of N hypotheses and their pairwise-
consistencies as a graph. Each hypothesis becomes a node, and
the weight of an edge connecting two nodes is the pairwise
consistency of those two hypotheses, C(i, j). The N × N
adjacency matrix is then:

Aij = C(i, j) (1)

Our goal is to find a set of hypotheses that, in some sense,
are maximally consistent with each other. In terms of the

graph, we want to find a set of nodes that are connected by
edges with large weights.

We represent a set of nodes with an N × 1 binary-valued
indicator vector. For an indicator vector u, ui is 1 if the
ith node is a member, and zero otherwise. There is a large
potential search space of indicator vectors; each node can
either be in the set or not, yielding 2N possible partitionings.

In order to find a set of “maximally consistent hypotheses”,
we must define a means of comparing the consistency of one
set of hypotheses with another. The metric should have two
basic properties:

• It should grow with the number of edges in the inlier clus-
ter. These edges indicate increasing consistency among
the inlier nodes.

• It should be penalized by the number of inliers, so that
new nodes are only added when it is sufficiently desirable
to do so. Otherwise, a trivial solution of setting the inlier
set to be the entire candidate set can result.

In this paper, we use a simple metric that has a strong
intuitive appeal. Namely, we attempt to maximize the average
consensus– the sum of the edge weights that connect a
candidate inlier node to the rest of the inlier cluster:

r(u) =
uT Au

uT u
(2)

The quantity uT Au is the sum of all the edge weights in
the subgraph containing the nodes in u, and the quantity uT u
is the number of nodes in that subgraph.

This metric function rewards clusters with high self-
consistency, while discouraging the addition of nodes which do
not contribute to intra-cluster consistency. It also ignores nodes
and edges belonging to outliers. This is important since we do
not generally know how the outliers will be distributed; we do
not want a randomly-occurring cluster of outliers influence the
inlier set.

To further our intuition, consider a partitioning problem with
boolean edge weights. Suppose we have a partial inlier set u,
and want to determine whether node i should be added to
the cluster. Suppose that before adding i, each inlier node is
connected, on average, to three other nodes. Further suppose
that node i is well-connected to the inliers, and that adding it to
the set increases the average consensus to four. Clearly, adding
node i makes the inlier set a better cluster. Conversely, if
adding node i decreases the average consistency, then the inlier
set is better without it. Unlike this example, our algorithm does
not make these decisions sequentially. However, the intuition
behind the algorithm remains.

B. Solution

Relaxation to continuous-valued indicator vector: There is
no known polynomial-time solution to maximize r(u) when u
is a discrete-valued indicator vector. However, an approximate
solution can be found by relaxing the constraint on u, allowing
its elements to take any positive real value.

The extrema of r(u) can be computed by setting the gradient
of r(u) to zero. Remembering that A is symmetric:



∇r(u) =
AuuT u − uT Auu

(uT u)
2

=
Au − r(u)u

uT u
= 0 (3)

Au = r(u)u. (4)

This is easily recognized as an eigenvector problem with an
eigenvalue of r(u). The maximum attainable value of r(u) is
the dominant eigenvalue of matrix A, which occurs when u is
the dominant eigenvector. We note that Eqn. 2 is also known
as the Rayleigh Quotient of matrix A. Provided that Ai,j ≥
0 (a natural property of virtually any pairwise consistency
function), the Perron-Frobenius theorem guarantees that the
maximum eigenvalue of A, and its eigenvector u, are both
positive [11].

Discretization of the continuous indicator vector: The
continuous-valued indicator vector can be interpreted as the
importance of each hypothesis to the optimal set, where the set
allows partial membership. For some applications, this ranking
of importances might be sufficient. In general, however, it
is desirable to convert the continuous indicator vector into a
discrete one, resulting in a set v with boolean membership.

Our strategy is to pick a threshold t, computing v as:

vi(t) =

{

1 if ui ≥ t

0 otherwise
(5)

If the size of the desired set is known in advance, then the
threshold can be computed such that v contains the desired
number of hypotheses. This can be the case when there is
prior information on the number of incorrect hypotheses.

In the general case, we do not know how many elements
the set should have; we wish to determine this automatically.
We propose two possible methods, both of which threshold u
by searching for a scalar threshold t, but using different metric
functions.

The simplest approach is to pick v such that the direction
of v is as close as possible to u, i.e.:

v = argmaxv

(

vT u

||v||

)

(6)

While the obvious method of maximizing Eqn. 6 is O(N 2),
v can be found in only O(N log N) time. Only N thresholds
need to be tested, since u can have at most N distinct
values. Given the elements of u in descending order, we can
incrementally compute possible values of Eqn. 6 in O(1) time
each. Since there are N elements, we complete the search in
O(N) time. But we required the elements of u to be sorted,
which requires O(N log N) time.

It can be shown that finding the threshold in this way is
equivalent to maximizing uT Bu/uT u, where B is the rank-1
approximation of A, B = uuT .

The main appeal of this approach is its runtime cost, but
it also preserves more information about the direction of the
eigenvectors. Preliminary work shows that this is helpful when
considering multiple-eigenvector variants of SCGP.

Another approach for picking a discretization threshold is to
search for the v that maximizes r(v). Since this is the metric
that originally motivated SCGP, it makes sense to choose the
v that maximizes it.

There are again N thresholds that must be considered, and
the obvious searching algorithm performs an O(N 2) multiply
for each one, for a total complexity of O(N 3). However, we
can reduce this complexity to O(N 2) by sorting the elements
of u and incrementally computing the value of r(v) as t
decreases. Consider iteration n (n ∈ [1..N ]) of this process;
we can write vn = vn−1 +wn where wn is an indicator vector
such that wj is 1 iff uj = tn.

The denominator of Eqn. 2 is just the number of elements in
vn, which is trivially updated at each step. Let us just consider
the numerator as a function of v, i.e., N(v):

vn = vn−1 + wn

N(vn) = vT
n Avn (7)

N(vn) = (vn−1 + wn)T A(vn−1 + wn)

= vT
n−1Avn−1 + vT

n−1Awn + wT
n Avn−1 + wT

n Awn

= N(vn−1) +
∑

i∈w,j∈v

2Ai,j +
∑

i∈w,j∈w

Ai,j (8)

Each time we increase the threshold, we must compute Eqn.
8, but the cost is only O(N). Since we must perform N
iterations, the total cost is O(N 2). Alternatively, we can see
that the cost is O(N2) since every element of A is included
exactly once after all N iterations (N(vN ) =

∑

Ai,j). The
cost of sorting the elements of u is subsumed by the O(N 2)
cost.

While the continuous indicator vector u is provably the
optimal continuous indicator vector, we cannot be certain
that v will be the optimal discrete-valued indicator. The
global optimum may not correspond to any thresholding of
u. However, like other spectral approximations to NP-difficult
problems, the performance of the algorithm is usually very
good.

IV. ANALYSIS AND OPTIMIZATIONS

A. Rapid calculation of the first eigenvector

Fortunately, it is not necessary to perform a slow eigenvalue
decomposition on matrix A in order to extract the maximum
eigenvector; we can rapidly compute just the first eigenvector
in O(N2) time. The behavior of Anx is dominated by the
behavior of the largest eigenpair of A. The Power Method
exploits this to compute the largest eigenvector by repeatedly
left-multiplying a random vector by A. The product will
converge to the eigenvector if λn

1 � λn
2 , which is typically

the case. In most cases, we have found that performing only
two or three iterations provides enough precision to find a
good solution; we do not need many significant digits in order
to perform the thresholding accurately. However, the Power
Method can converge slowly if the eigenvalues are close in
magnitude. The Inverse Power Method, coupled with shifting,
can accelerate convergence in this case [12].



The relative magnitude of the secondary eigenvalues con-
veys information about the ambiguity in the problem. If two
different eigenvectors have similar magnitudes, it means that
there are two equally-good explanations of the data (e.g.,
two sets of inlier clusters). SCGP, as presented in this paper,
is intended to deal with only one set of inliers. For many
applications (where there can only be one true inlier cluster),
the relative magnitude of the second eigenvalue can serve as
a warning that the reliability of the results may be low.

If the certainty of a clustering is low, it still might be of
use to systems which can cope with uncertainty. For example,
particle filters such as Montemerlo’s FastSLAM [13] can
simultaneously track multiple incompatible hypotheses; parti-
cles incorporating incorrect hypotheses tend to have very low
liklihoods and thus die out. Leonard’s delayed-state filter [14]
could simply delay making a decision until further evidence
was available.

B. Pairwise consistency test considerations

At the heart of the SCGP is the pairwise consistency test
which is used to construct the adjacency matrix. The behavior
of the pairwise test can have a profound effect on the success
or failure of the algorithm.

The robustness of SCGP is particularly sensitive to any “DC
offset” in the adjacency matrix. In other words, it is beneficial
for inconsistent pairs to have a consistency that is not only
smaller than consistent pairs, but as close to zero as possible.
We illustrate this importance with a simplified scenario.

Suppose there are Nt true hypotheses and Nf false hypothe-
ses. Assume that the pairwise consistency test reliably assigns
edge weights of Ct to pairs of true hypotheses, Cf to all other
pairs.

In this special case, if we assume that Ct ≥ Cf , the
optimal solution is either the cluster of true hypotheses, or the
cluster consisting of all points. We wish to determine what
constraint(s) on Ct and Cf will ensure that the cluster of true
hypotheses will have a greater eigenvalue. We begin by writing
down the inlier metrics for the two cases:

r(ut) =
CtN

2
t

Nt
(9)

r(ut + uf ) =
CtN

2
t + CfN2

f + 2CfNtNf

Nt + Nf
(10)

The SCGP will produce the correct value so long as r(ut) >
r(ut + uf ). This will be true so long as:

Ct

Cf
>

Nf

Nt
+ 2 (11)

In other words, the ratio Ct/Cf determines how many
outliers can be tolerated. Thus, a good consistency metric
should try to make Cf as close to zero as possible, in order
to maximize Ct/Cf .

A different consideration for the pairwise consistency test
is the weight of a hypothesis with itself. If we change the self-
consistency of hypotheses, it is equivalent to adding a multiple
of the identity matrix to the adjacency matrix.

(A + αI)u = r(u)u

Au = (r(u) + α) u (12)

We see immediately that the eigenvectors (and thus
the SCGP solution) are unaffected. However, α shifts the
eigenvalues, which can help or hinder the convergence of
Power Method-style algorithms for estimating the eigenvec-
tors.

C. Generalization to rectangular matrices

SCGP can be generalized to non-square and non-symmetric
matrices, a situation that arises in many problems. For exam-
ple, given a set of M line hypotheses and N points, we can
construct an M × N affinity matrix A where Aij is some
measure of the consistency between line i and point j. Our
goal is to extract two indicator vectors: an M × 1 vector for
the lines, and an N × 1 vector for the points.

While A cannot be directly interpreted as the adjacency
matrix of a graph, we can still construct a graph that captures
the relationship between lines and points. Lines and points
have edges between them with weights according to the
elements of A. But there are no edges between lines, and no
edges between points. We can write the adjacency matrix for
the resulting bipartite graph as:

P =

[

0 A

AT 0

]

(13)

SCGP can be performed exactly as before on this modified
matrix. The standard SCGP solution will yield a single (M +
N) × 1 indicator vector w, which can easily shown to be the
concatenation of the desired M × 1 vector u and the N × 1
indicator vector v. SCGP on matrix P yields:

wT Pw

wT w
=

[uT vT ]

[

0 A

AT 0

][

u

v

]

[uT vT ]

[

u

v

] =
2uT Av

uT u + vT v

(14)
If we write A according to its Singular Value Decomposition

(SVD), this expression becomes:

2uT Av

uT u + vT v
=

2uT USV T vT

uT u + vT v
(15)

From this we can see that the expression is maximized by
setting u and v to be the dominant left and right eigenvectors
of A (not P ). This is notable; we can solve general SCGP
problems without constructing matrix P .

The dominant eigenpair of A can be computed by using
a variation of the Power Method. The following procedure
can be easily derived: beginning with a random u0, compute
vn+1 = AT un and, in turn, un+1 = Avn. The convergence
rate is again determined by the ratio of the magnitudes of the
two largest eigenvalues.



The resulting vectors could correspond to either a positive
or negative eigenvalue, depending on the initialization of the
Power Method. Assuming that Ai,j ≥ 0, the Perron-Frobenius
theorem [11] again guarantees that the dominant eigensystem
can be written with a positive eigenvalue and positive left
and right eigenvectors; it is these positive vectors that we
want. If the power method produces a negative vector, it
means that the corresponding eigenvalue was also negative:
the minus signs cancel in the eigensystem. This means that if
we encounter a negative vector, we should multiply it by -1
before computing the discrete indicator vector. Alternatively,
we can simply initialize the power method with random
positive vectors; since A is nonnegative, each iteration will
preserve the positivity of the vectors.

V. APPLICATIONS AND RESULTS

We present three different applications of SCGP. These
applications demonstrate not only how a variety of robotics
problems can be mapped onto the SCGP algorithm, but also
the quality of the results.

A. Outlier Rejection for Range-Only SLAM

We demonstrated in [15] a SLAM system operating with
range-only data on an Autonomous Underwater Vehicle
(AUV). With only range (and not bearing) information to
landmark features, SLAM becomes quite difficult. Newman
explored the use of large-scale numerical optimizations over
the entire robot trajectory and feature state [16]; unfortunately,
their approach suffers from numerical instability. Kantor and
Singh also discuss range-only SLAM in [17], however, their
algorithm requires reasonable priors on feature locations.

Fig. 2. Odyssey Autonomous Underwater Vehicle. Using SCGP to reject
outliers from the vehicle’s range measurements to navigation beacons, we
were able to implement a reliable SLAM system.

As pointed out in both [15] and [16], outlier rejection is
critical in range-only SLAM. Given reliable data, the problem
becomes relatively tractable. But in the underwater setting,
explored by both of these papers, the noise in range measure-
ments can be profound. In this section, we will elaborate on
how SCGP was used, as well as present new navigation results

on a much longer and more difficult dataset than we did in
[15].

Range measurements to stationary beacons were collected
as the AUV maneuvered, but the range measurements were
corrupted by noise due to interference from the AUV’s Syn-
thetic Aperture Sonar (SAS). While range measurements were
collected every few seconds for two beacons, measurements
for the other two beacons occurred much more rarely due to
interference.

1000 1500 2000 2500 3000 3500 4000
−500

0

500

1000

1500

2000

2500

time (s)

di
st

an
ce

 (
m

)

InliersRaw data

Fig. 3. Outlier Rejection Results. The ranges to four stationary beacons are
plotted during the course of a mission. Due to extensive interference from the
vehicle’s synthetic aperture sonar, range measurements were unreliable. Use
of SCGP removed virtually all spurious data, without rejecting an excessive
number of inliers. Notably, SCGP worked well even when data was very
sparse. No prior on the positions or ranges to the beacons was used.

Outlier rejection is typically performed by rejecting points
which differ too much from the prior. However, the goal of
this system was to localize the beacons, thus no prior was
available. SCGP provided a means of identifying a set of
consistent samples, without the need for a prior.

For a set of N measurements, we form N hypotheses:
hypothesis i asserts that measurement i was an inlier. Re-
stricting ourselves to the 2D case, a single range measurement
constrains the location of the beacon to a circle around the
vehicle’s current position. Two range measurements form two
circles, and these circles might or might not intersect. Two
measurements are consistent (Aij = 1) if the circles intersect,
indicating a possible solution for the beacon’s location (see
Fig. 5). If the circles do not intersect, we set Aij = 0.
The vehicle’s true position is not actually available, so we
use the vehicle’s dead-reckoned position when computing the
consistency function.

In other words, the consistency function measures whether
it is possible for the two measurements to be simultaneously
true, without needing to actually determine what solution (or
solutions) that would imply. This boolean consistency function
is quite weak; it is quite easy for outliers to intersect with other
measurements. However, the inliers are better connected than
the outliers, and so SCGP is able to produce good results.

The filter can be operated in a causal manner, classifying
measurements as inliers/outliers in real time, by using a sliding
window including the most recent measurements.
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Fig. 4. SCGP-based Range-Only SLAM. The AUV’s dead-reckoned position is quite poor (left). In middle, a conventional Extended Kalman Filter (EKF),
with prior knowledge of beacon locations, serves as our baseline “ground truth”. The SCGP-based SLAM algorithm, using neither GPS nor prior information
on beacon locations, closely resembles the conventional EKF.

Fig. 5. Consistent and Inconsistent Range-Only Measurements. Left: Two
range measurements are consistent if they overlap (i.e., have a simultaneous
solution). If the measurements do not overlap (right), they are inconsistent.

The pairwise consistency test was able to incorporate infor-
mation about the vehicle’s motion to help reject outliers. Not
only did measurements have to be consistent with each other
(which, for an intersection test, requires little more than that
range measurements vary slowly), the change in range had to
be consistent with the motion of the vehicle. Consequently,
the filter could reject “bunches” of outliers which a median
filter might accept. Multi-path measurements, in which the
measured range varies at some multiple of the vehicle’s speed,
are also reduced.

Once the inlier range measurements were isolated, im-
plementing a SLAM filter was relatively straightforward. A
Hough Transform-style algorithm was used to initialize new
features, after which a simple EKF incorporated additional
operations. The full details of this algorithm are described in
our earlier paper [15]. Note that only four range transponders
were deployed for this experiment.

B. Line Fitting

Using the generalized rectangular case, SCGP can be used
to robustly fit points to a line. In this problem, we assume we
have a large number of points, some fraction of which lie near
a single line. Our goal is to discover the line.

A pairwise consistency function between points, in this case,
is not revealing: any two points form a perfectly valid line.
Instead, our solution is to generate a number of line hypotheses

by randomly selecting points. We can then compute the
consistency of each line hypothesis with each point, forming
a rectangular affinity matrix. If d is the distance from a point
to a line, the pairwise consistency of the point and line is:

Aij = e−d2/2σ2

(16)

We set σ according to an estimate of the noise magnitude,
which gives our consistency function a natural interpretation
as the probability that the point was drawn from a distribution
of points around the line. We can safely omit scale factors, as
they do not impact the eigenvectors.

If M is the number of line hypotheses we consider, and N
is the number of points, our affinity matrix will be M × N .
We note that, for a given ratio of inliers to outliers, that M
will need to grow as O(N2). The total runtime for SCGP will
be O(MN).

RANSAC is similar in several ways; it randomly generates
line hypotheses and tests points against them. RANSAC sim-
ply returns the line which was consistent with the greatest
number of points. Like SCGP, RANSAC has a complexity of
O(MN).

SCGP returns a set of points which are classified as inliers.
We then perform a least-squares line fit to these points,
producing a robust and accurate estimate. With SCGP, the
inlier points are affected by every line hypothesis, whereas
with RANSAC, only the best line hypothesis affects the line
estimate. In RANSAC, all of the computation performed while
evaluating other line candidates is discarded. This explains
why SCGP can produce better results than RANSAC with the
same asymptotic runtime complexity.

Fig. 6 shows a set of 200 2D points, 100 of which are
noisy samples of an actual line. The remainder are uniformly
distributed random points. Given the task of extracting the line,
we have found that SCGP performs better than RANSAC for a
given number of line hypotheses (and thus identical asymptotic
complexity.) This is attributable to the SCGP’s greater ability
to estimate the set of points belonging to the line.
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Fig. 6. Line Fitting Results. SCGP can be used to estimate lines in a method
similar to, but more stable than, RANSAC. Given a fixed number of line
hypotheses, SCGP consistently outperforms RANSAC with lower average
error and less variance. A typical run is plotted. Each run contained 200
points, half of which were inliers corrupted by σ = 0.1 noise; the remainder
were uniformly distributed noise. Both SCGP and RANSAC were limited to
40 hypotheses.

Our line fitting experiments show that not only is the asymp-
totic complexity of SCGP the same as RANSAC, but that they
have similar coefficients. Over a broad set of problem sizes,
our experiments showed that SCGP’s runtime was between
0.996 and 1.251 times that of RANSAC.

C. Data Association

Data association, determining which observations corre-
spond to the same physical features, is an essential component
of most navigation systems and a key problem in Simultaneous
Localization and Mapping (SLAM). Recognizing landmarks is
a fundamental way of correcting accumulated navigation error.

Algorithms like Joint Compatibility, which perform expo-
nentially complex searches over all possible data associations,
can use an arbitrarily complex metric for evaluating a hypothe-
sis set. But while full searches require exponential time (in the
worst case), the SCGP can be computed in polynomial time.
Further, the performance of the SCGP is quite good on data
association problems, either providing a solution or serving as
a smoke test to reduce the number of hypotheses which would
be fed into a traditional search.

As a concrete example, consider a data association problem
on corner features. Corners are a convenient landmark for
navigation systems, since a data correspondence on corners
uniquely and completely specifies a rigid-body transformation.

A typical data association problem is shown in Fig. 7. A
robot is attempting to determine its position in a previously
known map (with corners designated with letters), by matching
corners currently visible to it (designated by numbers). We can

Fig. 7. Example Data Association/Robot Localization Problem. A global map
(left) is composed of a number of corner features. A subset of those features
are reobserved (right). SCGP can be used to solve the correspondence problem
and localize the robot.

see that the correct data association solution is d1/e2/f3/g4.
Note that any one of these data associations is sufficient to
specify the rigid body transformation that aligns the robot’s
scan with the map. These four data associations all result in
identical rigid-body transforms.

In order to map this problem onto SCGP, we create a
hypothesis for every possible data association. Note that the
figure contains both 90 degree and 270 degree corners, and
we do not form hypotheses for corners of different types.

Twenty hypotheses are possible; corners 1 and 4 can each
be matched to c, d, and g. Corners 2 and 3 can each be
matched to a, b, e, f, h, i, and j. For this example, we define
a boolean pairwise consistency function which is true if the
rigid-body transformations implied by the two hypotheses are
identical. In the 20× 20 adjacency matrix, twelve hypotheses
pairs are consistent; all other cells are zero. Six result from
the true correspondences: d1e2, d1f3, d1g4, e2f3, e2g4, and
f3g4. Three result from the laser scan partially matching the
left most vertical area (abc): a2b3, a2c4, and b3c4. Similarly,
three result from the partial match on the far right: g1h2, g1i3,
and h2i3. In this simplified problem, we set Aij = 1 if the
data associations lead to the same rigid-body transformations,
otherwise 0. In the more general case where measurements
are corrupted by noise, a “softer” consistency function (most
likely a probability) would instead be used.

The SCGP solution to this data association problem is
shown in Fig. 8. The four correct hypotheses are strongly
amplified by the SCGP.

It is also interesting to consider the case when the data
association is, in fact, ambiguous. To see this, the same
experiment–with corner 4 deleted– was run again. The eigen-
values in this case are also shown in Fig. 8. Without corner 4,
there are two possible locations for the robot. The eigenvectors
give these two solutions, and their eigenvalues are equal,
indicating that the solutions are equally well supported.

The runtime of the SCGP on data association, with M
features being mapped onto N features, is O(M 2N2), since
there are MN feature-correspondence hypotheses to consider.
The resulting affinity matrix is MN × MN .

It is possible to introduce null hypotheses into SCGP, though
each null hypothesis adds a column and row to the matrix. To
prevent a cluster of null hypotheses from forming a highly
self-consistent set, null hypotheses should be considered to be
inconsistent with other null hypotheses.
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Fig. 8. Eigenvector elements for the data association problem in Fig. 7.
The top figure corresponds to the problem shown in Fig. 7; the correct
hypotheses d1, e2, f3, and g4 are given strong scores, with all other hypotheses
scoring zero. In the second diagram, corner 4 has been removed, creating an
ambiguity: the robot could either be in the middle or on the right. Not only is
the situation ambiguous, but both situations are equally-well supported. The
largest eigenvalue is repeated, and the corresponding eigenvectors represent
both solutions.

VI. CONCLUSION

Single Cluster Graph Partitioning provides a useful method
for extracting a set of consistent hypotheses from noise.
In these problems, conventional k-way clustering algorithms
generally perform poorly.

SCGP is the result of maximizing a simple heuristic: the
average consistency of the inlier set. We showed how this
maximization is performed, both in the square and symmetric
case, and also extended this result to the general rectangular
case. We also showed how to minimize computational com-
plexity, and how to design a pairwise consistency metric for
maximum performance.

When applied to several contemporary robotics problems,
SCGP performs very well.

• In the context of range-only SLAM, SCGP can correctly
identify inlier range measurements, enabling good map-
ping performance with a simple EKF.

• SCGP compares favorably to RANSAC, producing lower
error and lower variance estimates with the same asymp-
totic computational complexity.

• SCGP can estimate solutions to data association problems
in polynomial time.

This paper presented real-world outlier rejection results us-
ing SCGP. While the synthetic results of SCGP on line fitting
and data association are promising, one area of future work
is to test SCGP on additional real-world datasets. Another
future goal is to examine the case when multiple inlier sets
are present.
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