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Abstract—Many indoor localization methods are based on the
association of 802.11 wireless RF signals from wireless access
points (WAPs) with location labels. An “organic” RF positioning
system relies on regular users, not dedicated surveyors, to build
the map of RF fingerprints to location labels. However, signal
variation due to device heterogeneity may degrade localization
performance.

We analyze the diversity of those signal characteristics perti-
nent to indoor localization — signal strength and AP detection
— as measured by a variety of 802.11 devices. We first analyze
signal strength diversity, and show that pairwise linear trans-
formation alone does not solve the problem. We propose kernel
estimation with a wide kernel width to reduce the difference
in probability estimates. We also investigate diversity in access
point detection. We demonstrate that localization performance
may degrade significantly when AP detection rate is used as a
feature for localization, and correlate the loss of performance
to a device dissimilarity measure captured by Kullback-Leibler
divergence. Based on this analysis, we show that using only signal
strength, without incorporating negative evidence, achieves good
localization performance when devices are heterogeneous.

I. INTRODUCTION

As more people carry devices that can determine their loca-
tion, numerous applications have emerged that rely on accurate
and continuous location information. Typical examples include
route finding, photo and video geotagging, friend finding,
targeted advertising and coupons, suggesting local points of
interest, and inferring a user’s context. GPS [1] is the primary
source of location estimates for many applications, which
function as expected only when location is available. This
failure typically occurs indoors, but may happen outdoors as
well, in “urban canyons” or in bad weather where the satellite
signals required for GPS are obscured. In order to improve the
availability of these applications, researchers have worked for
two decades on extensions and alternatives to GPS to provide
location information ubiquitously [2]–[5].

Early work on alternatives to GPS typically explored instru-
menting a lab space with beacons and mobile devices with re-
ceivers. For example, ActiveBadge [2] used infra-red beacons;
Cricket [3] used RF/ultrasound beacons. However, as IEEE
802.11 access point coverage has become nearly universal in
most urban environments [6], localization methods that rely on
WiFi beaconing have become the primary alternative to GPS,
particularly in indoor environments. Beginning with work by
Bahl and Padmanabhan [7], these methods achieve accuracy

comparable to that of GPS — typically a few meters [8] —
and, therefore, can often support location-based applications
at no additional infrastructure cost.

The basic survey/use model for WiFi-based localization is
well-understood [4], [7]–[11]. First, an expert surveyor walks
around a building, collecting a set of scans, or a fingerprint, for
each room. In aggregate, the fingerprints for a building make
up its signal map. Second, to estimate its location, a user’s
device observes its own fingerprint and finds the closest match
in the signal map, returning the corresponding coordinate or
semantic name.

While this curated model is practical for highly managed
and popular spaces, such as airports and city streets, it does
not effectively extend positioning applications into schools,
shops, offices, and homes — the long tail of spaces where
people spend most of their time. This is chiefly because expert
surveying is time-consuming, intrusive, requires maintenance
over time, and expensive: a commercial survey of a single
multi-story building can cost more than $10,000.

In order to overcome these shortcomings and extend WiFi-
based localization and its applications into this much broader
range of environments, several recent localization systems
have adopted user-collected fingerprints [12]–[15]. These sys-
tems follow a Wikipedia-style crowdsourcing model with
respect to populating and maintaining the fingerprint database:
a small fraction of local users contribute survey informa-
tion about their locations, while the vast majority of users
simply benefit from the database. Figure 1 illustrates this
process for an office environment. In contrast to survey-
driven WiFi collection and maintenance, these crowd-sourced,
or “organic,” localization systems must determine when to
prompt user/surveyors for input and must exclude invalid
fingerprints automatically [15].

A key problem for organic indoor localization is that de-
vice diversity introduces a new, complicating variable. Where
expert surveys may use an expensive RF-scanner whose prop-
erties, e.g. dynamic range, have been rigorously calibrated,
this level of standardization and equipment cannot be expected
in organic surveying with typical consumer-grade laptops and
cellphones. The “device heterogeneity” problem occurs when
a user/surveyor’s and a standard user’s devices are different,
which is the common case in organic location systems. This
paper addresses device heterogeneity, significantly expanding
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Fig. 1. In an “organic” indoor location system, a small fraction of users
contribute RF signatures for each space, while most user’s devices simply use
the resulting database for positioning. For example, users A and B could be
contributors to the office environment shown, whereas C and D are non-
contributing users. The bars next to A and C represent the set of signal
strengths (the fingerprint) seen by their devices when they are in room 235.
If A and C have different devices, the fingerprints observed may differ, even
if they are in the same room at the same time. This paper examines how to
achieve accurate indoor localization in this situation, which is becoming more
common as more location applications rely on RF signatures in GPS-denied
environments.

the potential of organic localization systems for real-world
deployment.

Previous work has acknowledged the problem of sharing
fingerprints between heterogeneous devices and suggested
it could be solved by a simple linear transformation be-
tween received signal strength indicator (RSSI) values [8].
We demonstrate that linear transformation of signal strengths
is insufficient for cross-device localization. Instead, we find
that a wide kernel applied to the signal strength distribution
provides significantly better end-to-end accuracy than linear
transformation, because the former captures the primary dif-
ference across devices: signal strength dispersion. A second
complication afflicts fingerprint sharing: the set of access
points detected by each device can be different. We show
experimentally that the number and the identity of APs de-
tected by each device can vary widely. As a consequence,
a common alternative to RSSI-based localization — relying
on access point presence or absence — fails when this type
of fingerprint is shared across heterogeneous device types. We
show through an information-theory argument that augmenting
RSSI-based localization methods with presence/absence will
actually degrade performance.

This paper makes the following contributions:

• We analyze the problem of localizing with RF fingerprints
surveyed from and shared by different types of devices:
i.e. , the use of heterogeneous devices for organic indoor
localization.

• We show that using kernel estimation with wide kernel
widths to transform the received signal strengths from
one device to another is beneficial for cross-device local-
ization.

• We show why using AP presence/absence information
yields poor performance for cross-device localization, and
relate it to the device dissimilarity captured by Kullback-

Leibler divergence.
• We contribute a public RF-scan dataset, collected from

six heterogeneous devices, for other researchers to ana-
lyze.

II. BACKGROUND

We describe our client-server model for collecting and
sharing organic fingerprints (§II-A), review Bayesian local-
ization (§II-B), then cover the three features most commonly
used for Bayesian localization (§II-B1,§II-B2,§II-B3).

A. Model

Our model for signature collection, validation, sharing, and
use is based on our previous work deploying an Organic
Indoor Location (OIL) system [15]. OIL follows a client-server
design: devices collect scans, users associate scans with a
location label to form a fingerprint, and devices then send this
fingerprint to a server; fingerprints are shared across devices
via the server; localization itself is performed on each mobile
device. This design is similar to other organic localization
systems, such as RedPin [13] and ActiveCampus [12], all of
which must grapple with device heterogeneity.

B. Bayesian Localization

For localization, we use the naı̈ve Bayes classifier, which
has a number of properties that make it suitable for user-
contribution-based localization systems for mobile devices:
low overhead of model update, simple computation on the
client, and good performance despite its simplicity.

Given a set of fingerprinted locations (training data) and
a WiFi scan observation (test data), the Bayesian localization
method infers the most likely location l̂ of the mobile device
using Bayes’ rule. Let L and O denote the random variables
for location and observation respectively. Given a WiFi scan
observation o ∈ O, the posterior probability of being in
location l ∈ L is given by the Bayes’ rule:

pL|O(l|o) =
pO|L(o|l) pL(l)

pO(o)
. (1)

Note that the observation likelihood pO(o) is fixed and can
be ignored in what follows. If we assume that the prior prob-
ability, pL(l), is uniform, the maximum a posteriori (MAP)
estimate, with which posterior probability is maximized, is
given as follows:

l̂ = lMAP = argmax
l∈L

[
pO|L(o|l)

]
. (2)

The MAP estimate depends on the class-conditional prob-
ability pO|L(o|l), which is described by features from WiFi
measurement characteristics. The common features used for
WiFi localization are signal strength and AP presence/absence.
For all models, we assume that each feature is conditionally
independent of every other feature given a location, yielding
the naı̈ve Bayes classifier.

In the following sections, we describe how to model the
class-conditional probability for each feature, along with a
hybrid model that uses both features.



1) Signal Strength: In signal-strength-based localization,
each observation consists of a vector of signal strengths
O = (S1, S2, . . . , Sk) for k access points. Suppose, at the
positioning phase, only m ≤ k access points are observed
with a signal strength value. Let M denote the index of the
observed access points. Then, the decision rule (Equation 2)
becomes:

l̂ = argmax
l∈L

[∏
i∈M

pSi|L(si|l)

]
. (3)

The class-conditional probability pSi|L(·|·) can be estimated
from training data in different ways, by modeling it as a cate-
gorical distribution (histogram), a Gaussian distribution (with
maximum-likelihood parameter estimates), or a kernel density
estimator (Parzen window estimator). The latter accounts for
the variance of each sample.

The kernel density estimator p̂kX(·) [16] estimates the prob-
ability density function pX(·) as follows:

p̂kX(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(4)

where xi is an observed sample of random variable X , h is
a kernel width, and K(·) is a kernel function. A Gaussian
kernel is often used for the kernel function. The kernel width
determines the degree of sample “smoothing” effected by the
kernel.

The estimated probability density function is discretized and
m-estimate smoothing is applied to avoid the zero-probability
problem in Bayesian classification as well as to provide a
regularization effect [17]. Given a discretized probability mass
function p̂X(x) computed from either histogram, Gaussian, or
kernel estimator, our final probability estimate pX(x) using
the m-estimator is:

pX(x) =
Np̂X(x) + Φp̄X(x)

N + Φ
(5)

where N is the weight of the observed histogram, p̄X(x) is
a “prior” probability, and Φ determines how much weight we
attribute to the prior p̄X(x). We use the uniform prior, and
Φ = N/10 for the experiments.

2) AP Detection: Another feature vector can be constructed
to reflect the presence or absence of access points. If we
model the presence/absence of the signal from a certain AP
as a Bernoulli process, the observation follows a multivariate
Bernoulli model in which O = (J1, J2, . . . , Jk) for k APs,
where Ji is a binary variable with 1 indicating presence of
signal from AP i and 0 indicating absence. In this framework,
the decision rule (Equation 2) becomes:

l̂ = argmax
l∈L

[ ∏
1≤i≤k

{
pJi|L(1|l)

}Ji {
1− pJi|L(1|l)

}1−Ji]
(6)

where pJi|L(1|l) is the probability that AP i is detected in a
WiFi measurement at location l.

This localization algorithm requires only presence/absence
information of access points, which can be easily obtained

from any WiFi device, and from which constructed finger-
prints are compact compared to those of signal-strength-
based localization. Because of these merits, presence/absence
information is particularly well-suited to large-scale, coarse-
grained localization.

However, this formulation explicitly considers negative ev-
idence — absence — of a signal from a certain access point;
we show later that this becomes problematic when different
devices detect partially disjoint sets of APs.

3) Hybrid: Signal Strength and AP Detection: The detec-
tion probability pJi|L(1|l) can be used together with the signal
strength as feature variables. In this formulation, the observa-
tion variable becomes O = ((J1, S1), (J2, S2), . . . , (Jk, Sk)).
The signal strength variable Si is conditioned on the detection
variable Ji, and must be marginalized if it is not observed
(Ji = 0). Based on this, we derive the following classification
rule from Equation 2 as follows:

l̂ = argmax
l∈L

[ ∏
1≤i≤k

{
pJi|L(1|l) pSi|Ji,L(si|1, l)

}Ji
{

1− pJi|L(1|l)
}α(1−Ji)] (7)

where α, 0 ≤ α ≤ 1, is a discounting factor which determines
how much to discount negative evidence. This prevents local-
ization from being dominated by negative evidence if many
access points are present but each WiFi scan captures only a
small fraction of them. When α = 1, the formula is identical
to the one used in [9]; when α = 0, it is equivalent to [18].
We set α = 1 for our experiments.

III. EXPERIMENTAL SETUP

In order to examine the effect of device diversity on
indoor positioning, we collected WiFi scans from six different
devices at 18 locations in one building. We used two different
commodity laptops, a netbook, a mobile phone, and two tablet
computers. The tablets were the same model, illustrating the
homogeneous organic localization case. Table I summarizes
the devices we compared for the experiment.

The six devices were placed on a rolling cart, enabling
simultaneous data collection, with all logging to local storage

Device WiFi Chipset OS Kernel

Clevo D901C Intel 5300AGN Linux Linux 2.6.32
laptop (802.11a/b/g/n) Ubuntu 10.04
Asus EEE900A Atheros AR5001 Linux Linux 2.6.32
netbook (802.11b/g) Ubuntu 10.04
Lenovo Thinkpad Intel 4965AGN Linux Linux 2.6.32
X61 laptop (802.11a/b/g/n) Ubuntu 10.04
Nokia N810 Conexant CX3110X Maemo Linux 2.6.21
tablet (x2) (802.11b/g) OS2008
Nokia N95 TI OMAP2420 Symbian EKA2
cellphone (802.11b/g) S60 FP1

TABLE I
DEVICES USED FOR DATA COLLECTION.



to avoid using their radios for data transmission while data
collection was in progress. The device radios performed no
activity other than scanning.

In each location, each device recorded WiFi scans for seven
minutes. Scans were taken near each device’s peak rate, with
a one-second gap between scans. Because of the variation in
the time each device takes to complete a scan, this resulted
in a maximum of 552 and a minimum of 61 scans collected
at any location; the EEE900A laptop, for example, often took
seven seconds to complete a scan request. While this difference
would affect time-to-update performance for moving users,
our analysis ignores this factor because it is not relevant for
instantaneous localization. To remove the effect of this factor
from our results, in each experiment we selected 60 scans
at random per device from each seven-minute period. (See
http://rvsn.csail.mit.edu/location for the raw data,
and the samples used for each experiment.)

IV. HETEROGENEOUS WIFI SIGNAL STRENGTHS

This section shows that signal strength scans from different
devices exhibit not only a linear shift in signal strength but
also a difference in dispersion. This suggests that sharing
fingerprints between different devices would be more effective
with “smoothed” signal strength values, e.g. a wide kernel
function. We then show that using a wide kernel to share
signatures does indeed lead to a significant improvement in
accuracy.

A. Analysis of Pairwise Device Calibration

Previous work suggested that inter-device calibration can be
achieved by applying a linear transformation of signal strength
values from one device to the other [8], [19]. Such a linear
function can be estimated from WiFi scan data taken from
both devices at the same time and place.

We compare signal strength measurements of the six devices
in our dataset, showing pairwise scatter plots in Figure 2.
We observe a strong correlation in the mean value of signal
strength measurements between every pair of devices. There-
fore, as suggested by previous work, we first attempt the
following simple procedure for cross-device localization.

1) Pairwise device calibration. For every pair of devices
A and B, the coefficients for linear transformation from
device A to device B are computed as:

S̄Bi,l = βBA S̄
A
i,l + αBA , (8)

where S̄Ai,l (S̄Bi,l) denotes the mean signal strength value
of device A (device B) for WAP i at location l, and αBA
and βBA denote linear coefficients for the transformation
from device A to B.

2) Positioning. If device A is used for training and B is
used for positioning:

a) Linear transformation from B to A is applied to
test scans of device B.

b) Device B is then localized using device A’s training
data.
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Fig. 2. Each point in each scatter-plot represents a pair of mean RSSI values
from the same access point. The values were observed by pairs of devices
placed in the same location for the same time interval. For example, the
scatter-plot in row 3, column 4, compares the scans of the N810(1) with
the Thinkpad X61. Most pairs show a strong linear correlation, but some
devices, e.g. N810s, show noisy values at low signal strength ranges. The
Pearson correlation coefficient for each dataset is given in the corresponding
scatter-plot.

The linear transformation is computed by linear least squares,
with sample pairs differing by more than 20 dB excluded from
fitting.

Figure 3 shows the resulting localization error in meters
when WiFi measurements from each device are tested against
training data from device N810(2). Other combinations of
devices showed similar characteristics. For baseline evalua-
tion, we used the Gaussian distribution for class-conditional
probabilities.

As Figure 3 shows, linear transformation with Gaussian
class-conditional probability improved localization perfor-
mance significantly only for EEE900A, while it did not pro-
vide significant improvement for other devices. Among every
combination of training and test device, linear transformation
improved performance significantly only when EEE900A was
used for either the training or test device. For the 10 de-
vice pairs including EEE900A, the improvements in spot-
on accuracy and error distance were 29.8% and 5.47 meters
respectively, while for the other 20 device pairs, improvements
were 3.29% and 0.418 meters, which are not significant.

This observation led us to investigate the net effect of
linear transformation on actual WiFi measurements of each
device. Table II shows the dynamic range of each device.
Only EEE900A was significantly different from other devices
with respect to the dynamic range of signal strengths. As a
result, the linear transformations shift signal strengths only
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(b) Signal strength histograms after linear transformation
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(d) Kernel estimation

Fig. 4. Kernel density estimation vs. Gaussian estimation. In 4(a), the raw data show the histogram of RSSI values from a single AP that three devices
observed in the same room during the same seven-minute window. Only the signal strengths for EEE900A are considerably different, while the difference
between N810(1) and N95 is smaller. In Figure 4(b), the linear transformation is effective for EEE900A, while its effect is minimal for N95. Even after
transformation, the dispersion and shape of signal strength values for each device differ significantly. Therefore, the Gaussian probability estimates (and
histogram) for these devices differ significantly (Figure 4(c)), and this difference adversely affects localization. For example, a signal strength of -64 dBm
is observed often for N95, but has near-zero probability if Gaussian-fitted training data for N810(1) is used. Estimation with a wide kernel significantly
reduces the difference between different devices (Figure 4(d)).

D901C EEE900A X61 N810(1) N810(2) N95
0

2

4

6

8

10

12

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r 
(m

)

 

 

Gaussian w/o Linear Trans.

Gaussian w/ Linear Trans.

Kernel w/ Linear Trans.

Fig. 3. Localization accuracy, as measured in mean physical distance away
from the correct room, when the N810(2) acted as the organic surveyor and
the other devices act as users.

slightly for most devices, except for EEE900A. However, the
mean deviation (regression residual) of signal strength values,
excluding outliers, from the linear transformation lines was
3.5 dB. This means that the amount of deviation of each signal
strength value is comparable to the amount of global shift
by linear transformation, except for EEE900A. Thus linear
transformations are ineffective for other devices. Figure 4(a)–
4(c) illustrate the details.

B. Kernel Density Estimation

This observation implies that the major characteristics of
signal strength diversity lie not only in the linear difference
between devices, but also in the different local deviation
and shape of individual signal strength distributions. While
global linear transformation may be able to adjust for large
differences in dynamic range, it fails to adjust for local
differences that are specific for a certain location and an AP. In
order to reduce such differences in signal strength distributions
across devices, we consider kernel density estimation (Eq. 4)
in computing individual class-conditional probabilities.

Kernel density estimation takes the noisiness of individual

(dBm)

% D901C EEE900A X61 N810(1) N810(2) N95

0 -92 -106 -93 -92 -110 -90
25 -86 -98 -87 -81 -83 -81
50 -81 -90 -81 -76 -77 -75
75 -72 -79 -69 -69 -70 -68
100 -25 -41 -29 -35 -39 -35

TABLE II
DYNAMIC RANGE OF THE TEST DEVICES (IN PERCENTILES)
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Fig. 5. Use of kernels significantly improves cross-device localization.
Localization performance with varying kernel widths for the same type of
devices (N810) and for the heterogeneous pairs of devices (all excluding
N810 pairs) are shown. The results with Gaussian density estimation are
also provided for comparison. As the kernel compensates for the difference
between signal strength distributions across devices, localization accuracy
improves significantly. Improvement is greater for different device types
than for homogeneous devices. However, if too wide of a kernel is used,
localization performance starts to degrade as RSS differences arising from
true changes in location are masked.

samples into account. Here, we use kernel density estimation
to compensate for the difference between signal strength
distributions across different devices. We evaluated a Gaussian
kernel with widths varying from 1 dBm to 10 dBm. An
example of kernel estimate with width 4 dBm is shown
in Figure 4(d). Figure 3 also shows enhanced localization
accuracy when kernel estimation with the same width is used,
if N810(2) acts as a training device.

Figure 5 shows the effect of kernel width on cross-device
localization, and compares kernel estimation to the histogram
method and Gaussian density estimation. We show localization
error between the same type of device (i.e. between N810(1)
and N810(2)) and the error between different types of
devices separately. A kernel width of 3 dBm provided the best
localization performance with our dataset. Not surprisingly,
the effect of kernel estimation is more significant for different
device types, as their deviation was greater. Neither raw
histogram estimation (kernel width → 0 dBm) nor Gaussian
density estimation perform well, particularly for localization
between different device types.

The standard deviation computed from the signal strength
samples taken from one device for two minutes was approxi-
mately 2 dBm. Compared to this value, the best kernel width
of 3 – 4 dBm for cross-device localization is somewhat higher
than the smaller-scale variation of a specific device type. The
reason is that, as each device shows a different dispersion
and shape of its signal strength distribution, a strategy of
doing more “smoothing” than that required for single device
localization is more effective.

V. FEATURE DESIGN OF LOCALIZATION ALGORITHMS
FOR ORGANIC INDOOR LOCALIZATION

This section first analyzes another characteristic of the
wireless scan signal — visibility, or detection of access points
by diverse devices. The detection feature has been used
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Fig. 6. Number of distinct AP MAC addresses observed per WiFi scan for
each device. The number of APs differs by more than a factor of two. In
general, devices with larger form factors (laptops) observe more APs than
smaller devices (tablets and cellphones).

exclusively, or augmented with the signal strength feature in
various contexts of RF-based localization [9], [18], [20], [21].
We compare its use to the signal strength feature, and discuss
feature design of localization algorithms for heterogeneous
devices.

A. Analysis of Detection Rate for Diverse Devices

In any practical, large-scale localization system based on
wireless networks, a mobile device captures only a subset of
all access points “visible” at a given location because some
access points are only intermittently detected by the mobile
device. Factors may be both environmental, such as multipath
fading, and transient, such as occlusion by humans or other
objects. In addition, the OS or driver may allow only a limited
time for collecting scan information, so APs may be missed
if the beacon and driver are off-cycle.

A localization algorithm can use the probability of observ-
ing an individual access point, or detection rate, to give a
different weight for the features it uses, i.e. signal strength
likelihood. The rationale behind using AP presence/absence
is that more frequently observed access points may be more
informative for distinguishing locations. Alternatively, pres-
ence/absence can be used as the exclusive factor, providing
coarser precision at a lower information cost, as no RSSI
values are used; this may be beneficial when the (binary) signal
maps for physically large areas are stored on low-memory
mobile devices.

However, different devices not only detect WiFi signal
strengths differently, as we saw in Section IV, but also differ
in the sets of APs that they observe. One device may detect
a nearby AP consistently, while another may not detect it
at all (Figures 6 and 7). This occurs because of differences
in frequency band (2.4 GHz and/or 5 GHz), radio/antenna
sensitivity, firmware/driver implementations, and other factors.

Consequently, localization performance can degrade if the
detection probability for each access point is used as a feature
for localization. To illustrate this problem, we consider three
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Fig. 8. Comparison of localization error using three feature types: AP
Detection, Signal Strength, and Both. Because different devices observe
partially disjoint sets of APs, it is better not to include AP presence/absence
in cross-device localization. Degradation in localization error due to use of
the detection rate feature is most prominent between different device types.

different types of Bayesian localization algorithms according
to the degree of detection information used in the localization
process (Section II-B): the localization rule in Equation 3 is
least dependent on the presence/absence information, while
Equation 6 uses the detection rate exclusively.

We compare the performance of each Bayesian localization
feature choice in Figure 8. The algorithm that is exclusively
detection-based exhibits the worst performance; the gap be-
tween the same type of device (N810) and the different
types of devices is also the largest. The signal-strength-based
algorithm performs best among the three, as it does not rely
explicitly on presence/absence information. The localization
algorithm that uses both signal strength and presence/absence
information shows comparable localization accuracy for same-
type-of-device localization, but accuracy is significantly de-
graded for cross-device localization.

B. Effect of Dissimilarity in AP Detection on Localization

In order to better understand the effect of AP detection
on the performance of each localization algorithm, we con-
sider Kullback-Leibler divergence (KLD) [22], an information-
theoretic measure that captures the asymmetric dissimilarity
between two probability distributions. As in Section II-B2,
we model the presence/absence of each access point as a
Bernoulli process. For access point i, 1 ≤ i ≤ k, let JSi
and JTi denote the binary random variables associated with
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Fig. 9. Relation between KLD and localization error for three localization
algorithms. Each point represents detection dissimilarity captured by KLD and
localization error between a pair of devices. When two devices differ more in
WAP detection, localization based on detection degrades more significantly.
Cross-device localization using devices of the same type (N810 pair) does
not show such degradation.

the Bernoulli processes for test device S and training device
T respectively. Then, given location l, the Kullback-Leibler
divergence of JSi over JTi for access point i is given by:

DKL(JSi ||JTi ; l) =
∑

x∈{0,1}

pSJi|L(x|l) log
pSJi|L(x|l)
pTJi|L(x|l)

. (9)

where pSJi|L(x|l) (or pTJi|L(x|l)) is the probability that access
point i is detected by device S (or T ) in location l for each
WiFi measurement.

To compute the overall divergence of device S over device
T , Equation 9 is summed over all k access points and all
locations in the data:

DKL(S||T ) =
∑
l∈L

∑
1≤i≤k

∑
x∈{0,1}

pSJi|L(x|l) log
pSJi|L(x|l)
pTJi|L(x|l)

.

(10)
The Kullback-Leibler divergence of S over T can be con-

sidered a measure of how much extra information is required
to encode the detection process for device S when using the
detection process for device T . Thus, it naturally captures
the “divergence” of testing device S when training data from
device T is used.

We compared KLD from each training-test pair of devices
with the location error between them. Figure 9 shows the
correlation between KLD and the localization error for each
localization algorithm. The effect of device difference captured
by KLD is more correlated with detection-based and hybrid
localization errors, than with errors observed using a signal-
strength-based localization algorithm.

C. Feature Design of Localization Algorithms for Heteroge-
neous Devices

The previous two sections (§V-A,§V-B)) showed that AP
visibility varies considerably across heterogeneous devices,
and that dissimilarity in AP detection adversely affects cross-
localization. In general, we found that using only the sig-
nal strength feature, without incorporating negative evidence,



showed the best localization performance for heterogeneous
devices.

As shown in Figure 8, the detection rate feature augmented
in Equation 7 does not give much extra information for
distinguishing locations over signal strength, even between
same-type devices (the N810s). Similarly, the localization
algorithm based solely on the signal strength feature is also
affected by dissimilarity of AP detection (§ V-B). This is
because the use of m-estimate smoothing applied to the class-
conditional probability (§II-B1) for each AP implicitly encodes
the detection information of that AP. For example, if there
is no observation in the training data for a certain AP in a
certain location, but the AP is detected during localization,
the corresponding class-conditional probability is initialized
as a uniform distribution, which encodes the least amount of
information possible from that new observation. Consequently,
the signal-strength-based localization algorithm will assign a
minimal score to that location according to Equation 5, in
which N = 0. However, as more readings are observed,
the probability distribution will converge to the empirical
maximum-likelihood estimate.

Therefore, the localization algorithm using only signal
strengths as features is also weakly affected by dissimilarity
in AP detection. Given location l, if the test device observes
a new access point i which was not observed by the training
device in the same location, Equation 3 assigns a minimal
score determined from the m-estimator for class-conditional
probability to location l for feature i. If the same access point
i is present in another location l′ instead, this may bias the
localization decision to l′ over l.

However, the effect of dissimilarity in AP detection is less
significant than with algorithms that explicitly use detection
rate, because negative evidence — failure to observe access
point i — will not be directly incorporated into the localization
score in Equation 3. In this sense, incorporation of evidence
is asymmetric, and the effect of a mismatch in AP detection is
less severe than in the algorithms that incorporate AP absence
information directly (Equation 6 and 7).

Even for algorithms that do not explicitly use detection rate,
we expect that the presence or absence of a certain access point
will implicitly affect localization results. For example, many
instance-based classification algorithms, such as k-nearest-
neighbor or support vector machines, require choosing a value
for each missing entry in each instance. A typical value used
for WiFi localization is -100 dBm, encoding prior information
that non-detected APs are expected to be far away, and that
if they were detected it would be with low signal strength.
However, this effect is symmetric in contrast to the signal-
strength-based Bayesian algorithm presented in this paper.

VI. RELATED WORK

Relatively few researchers have addressed the problem
of using heterogeneous devices for localization. For GSM
localization, Chen et al. tested cross-device localization using
three different devices, showing that the heterogeneity of
training and test devices considerably degrades the accuracy

of their fingerprinting method [23]. Kaemarungsi compared
RSSI values from different devices, but did not evaluate their
effect on localization [24].

Researchers have proposed several methods for compensat-
ing for differences in signal strengths or RSSI values. Linear
transformation from one device to another has been computed
either manually or on-line using an expectation-maximization
algorithm [8], [19], [25]. Dong et al. suggested using the
difference between signal strengths across access points, rather
than the absolute signal strength vector, as a localization
feature [26]. While the difference between signal strength
values is a major factor in localization using heterogeneous
devices, we showed that the algorithm must be designed to
compensate for the different shape and dispersion of signal
strength values among devices.

Detection rate, or response rate, of access points has also
been used for RF localization. Bargh and Groote used the
inquiry response rate of Bluetooth devices for indoor local-
ization, as signal strength for Bluetooth devices is not readily
available without connection establishment [20]. In contrast,
802.11 devices can scan access points without establishing
connections. For WiFi localization, Cheng et al. considered
response rate as an alternative set of features for localization
and showed that its performance is comparable to that of signal
strength based localization [21]. Our results show that while
it is possible to use response rate as a feature, doing so will
not increase the accuracy of cross-device localization.

VII. CONCLUSION

This paper analyzed device diversity and its effect on
localization. We reported simultaneous collection of data from
six 802.11 devices in 18 indoor locations. While there is a clear
linear correlation of signal strengths across devices, linear
transformation alone is not enough for cross-localization: we
find that local variations are on the same order of magnitude
as the compensation provided by linear transformation. In-
stead, wide smoothing can accommodate the different shapes
of signal strength distributions across devices, and proves
effective for cross-localization. We also found that access
point detection rates vary widely across client devices. As
a result, incorporating access point presence and absence —
in particular, relying solely on this factor to reduce storage
costs and simplify positioning — provides poor localization
performance when fingerprints are shared across different
devices. To better understand this issue, we used Kullback-
Leibler divergence to capture device differences with respect
to AP detection, and showed that a correlation exists between
detection similarity and localization accuracy.
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