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Abstract—Many functional elements of human homes and
workplaces consist of rigid components which are connected
through one or more sliding or rotating linkages. Examples
include doors and drawers of cabinets and appliances; laptops;
and swivel office chairs. A robotic mobile manipulator would
benefit from the ability to acquire kinematic models of such
objects from observation. This paper describes a method by
which a robot can acquire an object model by capturing depth
imagery of the object as a human moves it through its range of
motion. We envision that in future, a machine newly introduced
to an environment could be shown by its human user the
articulated objects particular to that environment, inferring from
these “visual demonstrations” enough information to actuate each
object independently of the user.

Our method employs sparse (markerless) feature tracking,
motion segmentation, component pose estimation, and articu-
lation learning; it does not require prior object models. Using
the method, a robot can observe an object being exercised, infer
a kinematic model incorporating rigid, prismatic and revolute
joints, then use the model to predict the object’s motion from
a novel vantage point. We evaluate the method’s performance,
and compare it to that of a previously published technique, for
a variety of household objects.

I. INTRODUCTION

A long-standing challenge in robotics is to endow robots
with the ability to interact effectively with the diversity of
objects common in human-made environments. Existing ap-
proaches to manipulation often assume that objects are simple
and drawn from a small set. The models are then either pre-
defined or learned from training, for example requiring fiducial
markers on object parts, or prior assumptions about object
structure. Such requirements may not scale well as the number
and variety of objects increases. This paper describes a method
with which robots can learn kinematic models for articulated
objects in situ, simply by observing a user manipulate the
object. Our method learns open kinematic chains that involve
rigid linkages, and prismatic and revolute motions, between
parts.

There are three primary contributions of our approach that
make it effective for articulation learning. First, we propose
a feature tracking algorithm designed to perceive articulated
motions in unstructured environments, avoiding the need to
embed fiducial markers in the scene. Second, we describe a
motion segmentation algorithm that uses kernel-based clus-
tering to group feature trajectories arising from each object
part. A subsequent optimization step recovers the 6-DOF pose

Fig. 1: The proposed framework reliably learns the underlying
kinematic model of multiple articulated objects from user-
provided visual demonstrations, and subsequently predicts
their motions at future encounters.

of each object part. Third, the method enables use of the
learned articulation model to predict the object’s motion when
it is observed from a novel vantage point. Figure 1 illustrates
a scenario where our method learns kinematic models for
a refrigerator and microwave from separate user-provided
demonstrations, then predicts the motion of each object in
a subsequent encounter. We present experimental results that
demonstrate the use of our method to learn kinematic models
for a variety of everyday objects, and compare our method’s
performance to that of the current state of the art.

II. RELATED WORK

Providing robots with the ability to learn models of ar-
ticulated objects requires a range of perceptual skills such
as object tracking, motion segmentation, pose estimation,
and model learning. It is desirable for robots to learn these
models from demonstrations provided by ordinary users. This
necessitates the ability to deal with unstructured environments
and estimate object motion without requiring tracking markers.
Traditional tracking algorithms such as KLT [2], or those
based on SIFT [15] depend on sufficient object texture and
may be susceptible to drift when employed over an object’s
full range of motion. Alternatives such as large-displacement
optical flow [4] or particle video methods [19] tend to be more
accurate but require substantially more computation.



Fig. 2: Articulation learning architecture.

Articulated motion understanding generally requires a com-
bination of motion tracking and segmentation. Existing motion
segmentation algorithms use feature based trackers to construct
spatio-temporal trajectories from sensor data, and cluster these
trajectories based on rigid-body motion constraints. Recent
work by Brox and Malik [3] in segmenting feature trajectories
has shown promise in analyzing and labeling motion profiles
of objects in video sequences in an unsupervised manner.
Recent work by Elhamifar and Vidal [5] has proven effective
at labeling object points based purely on motion visible in a
sequence of standard camera images. Our framework employs
similar techniques, and introduce a segmentation approach for
features extracted from RGB-D data.

Researchers have studied the problem of learning models
from visual demonstration. Yan and Pollefeys [24] and Huang
et al. [10] employ structure from motion techniques to segment
the articulated parts of an object, then estimate the prismatic
and rotational degrees of freedom between these parts. These
methods are sensitive to outliers in the feature matching step,
resulting in significant errors in pose and model estimates.
Closely related to our work, Katz et al. [13] consider the
problem of extracting segmentation and kinematic models
from interactive manipulation of an articulated object. They
take a deterministic approach, first assuming that each object
linkage is prismatic and proceed to fit a rotational degree-of-
freedom only if the residual is above a specified threshold.
Katz et al. learn from observations made in clean, clutter-
free environments and primarily consider objects in close
proximity to the RGB-D sensor. Recently, Katz et al. [14]
propose an improved learning method that has equally good
performance with reduced algorithmic complexity. However,
the method does not explicitly reason over the complexity of
the inferred kinematic models, and tends to over-fit to observed
motion. In contrast, our algorithm targets in situ learning in
unstructured environments with probabilistic techniques that
provide robustness to noise. Our method adopts the work of
Sturm et al. [22], which used a probabilistic approach to reason
over the likelihood of the observations while simultaneously

penalizing complexity in the kinematic model. Their work
differs from ours in two main respects: they required that
fiducial markers be placed on each object part in order to
provide nearly noise-free observations; and they assume that
the number of unique object parts is known a priori.

III. ARTICULATION LEARNING FROM VISUAL
DEMONSTRATION

This section introduces the algorithmic components of our
method. Figure 2 illustrates the steps involved.

Our approach consists of a training phase and a prediction
phase. The training phase proceeds as follows: (i) Given RGB-
D data, a feature tracker constructs long-range feature trajec-
tories in 3-D. (ii) Using a relative motion similarity metric,
clusters of rigidly moving feature trajectories are identified.
(iii) The 6-DOF motion of each cluster is then estimated
using 3-D pose optimization. (iv) Given a pose estimate for
each identified cluster, the most likely kinematic structure and
model parameters for the articulated object are determined.
Figure 3 illustrates the steps involved in the training phase
with inputs and outputs for each component.
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Fig. 3: The training phase.

Once the kinematic model of an articulated object is learned,
our system can predict the motion trajectory of the object
during future encounters. In the prediction phase: (i) Given
RGB-D data, the description of the objects in the scene,
Dquery, is extracted using SURF [1] descriptors. (ii) Given
a set of descriptors Dquery, the best-matching object and
its kinematic model, Ĝ, M̂ij , (ij) ∈ Ĝ are retrieved; and
(iii) From these correspondences and the kinematic model



parameters of the matching object, the object’s articulated
motion is predicted. Figure 4 illustrates the steps involved in
the prediction phase.
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Fig. 4: The prediction phase.

A. Spatio-Temporal Feature Tracking

The first step in articulation learning from visual demon-
stration involves visually observing and tracking features on
the object while it is being manipulated. We focus on unstruc-
tured environments without fiducial markers. Our algorithm
combines interest-point detectors and feature descriptors with
traditional optical flow methods to construct long-range feature
trajectories. We employ Good Features To Track (GFTT) [20]
to initialize up to 1500 salient features with a quality level of
0.04 or greater, across multiple image scales. Once the features
are detected, we populate a mask image that captures regions
where interest points are detected at each pyramid scale. We
use techniques from previous work on dense optical flow [7] to
predict each feature at the next timestep. Our implementation
also employs median filtering as suggested by Wang et al. [23]
to reduce false positives.

We bootstrap the detection and tracking steps with a feature
description step that extracts and learns the description of
the feature trajectory. At each image scale, we compute the
SURF descriptor [1] over features that were predicted from
the previous step, denoted as f̂ t, and compare them with
the description of the detected features at time t, denoted
as f t. Subsequently, detected features f t that are sufficiently
close to predicted features f̂ t and that successfully meet a
desired match score are added to the feature trajectory, while
the rest are pruned. To combat drift, we use the detection
mask as a guide to reinforce feature predictions with feature
detections. Additionally, we incorporate flow failure detection
techniques [12] to reduce drift in feature trajectories.

Like other feature-based methods [14] our method requires
visual texture. In typical video sequences, some features are
continuously tracked, while other features are lost due to
occlusion or lack of image saliency. To provide rich trajectory
information, we continuously add features to the scene as
needed. We maintain a constant number of feature trajectories
tracked, by adding newly detected features in regions that are
not yet occupied. From RGB-D depth information, image-
space feature trajectories can be easily extended to 3-D. As
a result, each feature key-point is represented by its normal-
ized image coordinates (u, v), position ~p ∈ R3 and surface
normal ~n, represented as (~p, ~n) ∈ R3 × SO(2). We denote
F = {F1, . . . , Fn} as the resulting set of feature trajectories
constructed, where Fi = {(~p1, ~n1), . . . , (~pt, ~nt)}. To combat
noise inherent in our consumer-grade RGB-D sensor, we post-
process the point cloud with a fast bilateral filter [18] with
parameters σs = 20 px, σr = 4 cm.

B. Motion Segmentation

To identify the kinematic relationships among parts in an
articulated object, we first distinguish the trajectory taken
by each part. In particular, we analyze the motions of the
object parts with respect to each other over time, and infer
whether or not pairs of object parts are rigidly attached. To
reason over candidate segmentations, we formulate a clustering
problem to identify the different motion subspaces in which
the object parts lie. After clustering, similar labels imply rigid
attachment, while dissimilar labels indicate non-rigid relative
motion between parts.

If two features in R3×SO(2) belong to the same rigid part,
the relative displacement and angle between the features will
be consistent over the common span of their trajectories. The
distribution over the relative change in displacement vectors
and angle subtended is modeled as a zero-mean Gaussian,
N (µ,Σ) = (0,Σ), where Σ is the expected noise covariance
for rigidly-connected feature pairs. The similarity of two
feature trajectories can then be defined as:

L(i, j) =
1

T

∑
t∈ti∩tj

exp

{
− γ

(
d(xti, x

t
j)− µdij

)2}
(1)

where ti and tj are the observed time instances of the feature
trajectories i, and j respectively, T = |ti ∩ tj |, and γ is
a parameter characterizing the relative motion of the two
trajectories. For a pair of 3-D key-point features ~pi, and ~pj ,
we estimate the mean relative displacement between a pair of
points moving rigidly together as:

µdij =
1

T

∑
t∈ti∩tj

d(~pi
t, ~pj

t) (2)

where d(~pi, ~pj) = ‖~pi − ~pj‖. For 3-D key-points, we use
γ = 1

2 cm in Eqn. 1. Figure 5 illustrates an example of rigid
and non-rigid motions of feature trajectory pairs, and their
corresponding distribution of relative displacements.

For a pair of surface normals ~ni and ~nj , we define the mean
distance as

µdij =
1

T

∑
t∈ti∩tj

d(~ni
t, ~nj

t), (3)

where d(~ni, ~nj) = 1 − ~ni · ~nj . In this case, we use
γ = 1

cos(15 ◦) in Eqn. 1.
Since the bandwidth parameter γ for a pair of feature trajec-

tories can be intuitively predicted from the expected variance
in relative motions of trajectories, we employ DBSCAN [6],
a density-based clustering algorithm, to find rigidly associated
feature trajectories. The resulting cluster assignments are de-
noted as C = {C1, . . . , Ck}, where cluster Ci consists of a
set of rigidly-moving feature trajectories.

C. Multi-Rigid-Body Pose Optimization

Given the cluster label assignment for each feature trajec-
tory, we subsequently determine the 6-DOF motion of each
cluster. We define Zti as the set of features belonging to cluster
Ci at time t. Additionally, we define X = X1, . . . , Xk as the
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Fig. 5: Histogram of observed distances between a pair of
trajectories accumulated over one demonstration. (Left) The
distribution of observed distances is centered at µ = 0.029 m
with σ = 0.001 m, indicating rigid-body motion. (Right)
Larger variation in observed distances, with σ = 0.018 m,
indicates non-rigid motion.

set of SE(3) poses estimated for each of k clusters considered,
and xti ∈ Xi as the SE(3) pose estimated for the ith cluster
at time t.

For each cluster Ci, we consider the synchronized sensor
observations of position and surface normals for each of its
trajectories, and use the arbitrary pose x0i as the reference
frame for the remaining pose estimates of the ith cluster.
Subsequently, we compute the relative transformation ∆t−1,t

i

between successive time steps t − 1 and t for the ith cluster
using the known correspondences between Zt−1i and Zti .
Since this step can lead to drift, we add an additional sparse
set of relative pose constraints every 10 frames, denoted
as ∆t−10,t

i . Our implementation employs a correspondence
rejection step that eliminates outliers falling outside the inlier
distance threshold of 1 cm, as in RANSAC [8], making the
pose estimation routine more robust to sensor noise.

We augment the estimation step with an optimization phase
to provide smooth and continuous pose estimates for each
cluster by incorporating a motion model. We use the 3-D
pose optimizer iSAM [11] to incorporate the relative pose
constraints within a factor graph, with node factors derived
directly from the pose estimates. A constant-velocity edge fac-
tor term is also added to provide continuity in the articulated
motion.

D. Articulation Learning

Once the 6-DOF pose estimates of the individual object
parts are computed, the kinematic model of the full articulated
object is determined using tools developed in Sturm et al. [22].
Given multiple 6-DOF pose observations of object parts, the
problem is to estimate the most likely kinematic configuration
for the articulated object. Formally, given the observed poses
Dz , we estimate the kinematic graph configuration Ĝ that
maximizes the posterior probability

Ĝ = arg max
G

p(G | Dz) (4)

We employ notation similar to that of Sturm et al. [22] to
denote the relative transformation between two object parts i
and j as ∆ij = xi 	 xj , using standard motion composition
operator notation [21]. The kinematic model between part i
and j is then defined as Mij , with its associated parameter
vector θij ∈ Rpij , where pij are the number of parameters

associated with the description of the link. We construct a
graph G = (VG, EG) consisting of a set of vertices VG =
1, . . . , k that denote the object parts involved in the articulated
object, and a set of undirected edges EG ⊂ VG×VG describing
the kinematic linkage between two object parts.

As in Sturm et al. [22], we simplify the problem to recognize
only kinematic trees of high posterior probability, in order to
reformulate the problem as equation 8 below:

Ĝ = arg max
G

p(G | Dz) (5)

= arg max
G

p({(Mij , θij) | (ij) ∈ EG} | Dz) (6)

= arg max
G

∏
(ij)∈EG

p(Mij , θij | Dz) (7)

= arg max
EG

∑
(ij)∈EG

log p(M̂ij , θ̂ij | Dz) (8)

where Dz = (∆1
ij , . . . ,∆

t
ij) ∀ (ij) ∈ EG is the sequence of

observed relative transformations between parts i and j.
Since we are particularly interested in household objects,

we focus on kinematic models involving rigid, prismatic, and
revolute linkages. We then estimate the parameters θ ∈ Rp that
maximize the data likelihood of the object pose observations
given the kinematic model:

θ̂ = arg max
θ

p(Dz | M, θ) (9)

Once we fit each candidate kinematic model to the given
observation sequence, we select the kinematic model that
best explains the data. Specifically, we compute the posterior
probability of each kinematic model, given the data, as:

p(M | Dz) =

∫
p(Dz | M, θ) p(θ | M) p(M)

p(Dz)
dθ (10)

Due to the evaluation complexity of this posterior term, the
BIC score is computed instead as the approximation:

BIC(M) = −2 log p(Dz | M, θ̂) + p log n, (11)

where p is the number of parameters involved in the kinematic
model, n is the number of observations in the data set, and θ̂
is the maximum likelihood parameter vector. This implies that
the model that best explains the observations would correspond
to that with the least BIC score.

The kinematic structure selection problem is subsequently
reduced to computing the minimum spanning tree of the graph
with edges defined by costij = − log p(Mij , θij | Dzij ).
The resulting minimum spanning kinematic tree weighted
by BIC scores is the most likely kinematic model for the
articulated object given the pose observations. For a more
detailed description, we refer the reader to Sturm et al.
[22]. Figure 6 shows a few examples of kinematic structures
extracted given pose estimates as described in the previous
section. Our limitation of linkage types to rigid, prismatic,
and rotational does exclude various household objects such as
lamps, garage doors, toys etc. with more complex kinematics.



(a) Rotational DOF of a laptop (b) Prismatic DOF of a drawer

Fig. 6: Examples of correctly estimated kinematic structure
from 6-DOF pose estimates of feature trajectories.

E. Learning to Predict Articulated Motion

Our daily environment is filled with articulated objects with
which we repeatedly interact. A robot in our environment can
identify instances of articulated objects that it has observed in
the past, then use a learned model to predict the motion of an
object when it is used.

(a) Extracted MSER (b) Estimated Motion Manifold

Fig. 7: The motion manifold of an articulated object, extracted
via MSERs.

Once the kinematic model of an articulated object is
learned, the kinematic structure Ĝ and its model parameters
M̂ij , (ij) ∈ Ĝ are stored in a database, along with its
appearance model. The feature descriptors extracted (described
in Section III-A) for each cluster Ci of the articulated object
are also retained for object recognition in future encounters.
Demonstrations involving the same instance of the articu-
lated object are represented in a single arbitrarily selected
reference frame, and kept consistent across encounters by
registering newer demonstrations into the initial object frame.
Each of these attributes is stored in the bag-of-words driven
database [9] for convenient querying in the future. Thus, on
encountering the same object instance in the future, the robot
can match the descriptors extracted from the current scene
with those extracted from object instances it learned in the
past. It then recovers the original demonstration reference
frame along with the relevant kinematic structure of the
articulated object for prediction purposes. We identify the

surface of the manipulated object by extracting Maximally
Stable Extremal Regions (MSER) [16] (Figure 7) for each
object part undergoing motion. We use this surface to visualize
the motion manifold of the articulated object.

IV. EXPERIMENTS AND ANALYSIS

Our experimental setup consists of a single sensor providing
RGB-D depth imagery. Each visual demonstration involved a
human manipulating an articulated object and its parts at a
normal pace, while avoiding obscuration of the object from the
robot’s perspective. Demonstrations were performed for mul-
tiple robot viewpoints, to capture variability in depth imagery.
We performed 43 demonstration sessions by manipulating a
variety of household objects: refrigerators, doors, drawers,
laptops, chair etc. Each demonstration was recorded for about
30-60 seconds. April tags [17] were used to recover ground
truth estimates of each articulated object’s motion, which we
adopted as a baseline for evaluation. In order to avoid any
influence on our method of observations arising from fiducial
markers, the RGB-D input was pre-processed to mask out
regions containing the tags.

We then compared the pose estimation, model selection
and estimation performance of our method to that of an al-
ternative state-of-the-art method (re-implemented by us based
on [14]), and to traditional methods using fiducial markers.
We incorporated several improvements [12], [18] to Katz’s
algorithm, as previously described in Section III-A, to enable
fair comparison with our proposed method.

A. Qualitative and Overall Performance

Figure 8 shows the method in operation for household
objects including a laptop, a microwave, a refrigerator and a
drawer. Tables I and II compare the performance of our method
in estimating the kinematic model parameters for several
articulated objects observed from a variety of viewpoints. Our
method recovered a correct model for more objects, and for
almost every object tested recovered model parameters more
accurately, than Katz’s method.

B. Pose Estimation Accuracy

For each visual demonstration, we compared the segmen-
tation and SE(3) pose of each object part estimated by our
method with those produced by Katz. We also obtained pose
estimates for each object part by tracking attached fiducial
markers. Synchronization across pose observations was en-
sured by evaluating only poses in the set intersection of the
timestamps of each pose sequence. For each overlapping time
step, we compared the relative pose of the estimated object
segment obtained from both algorithms with that obtained
via fiducial markers (Figure 9). For consistency in evaluation,
the SE(3) poses of individual object parts were initialized
identically for both algorithms.

Figure 10 compares the absolute SE(3) poses estimated
by the three methods described above, given observations of a
chair being moved on the ground plane. Figure 10(a) illustrates
a scenario in which both algorithms, ours and Katz’s, perform



Fig. 8: Articulation learning and motion prediction for various objects.

reliably. Katz’s method is within 2.0 cm and 2.6 ◦, on average,
of the ground truth pose produced with fiducial markers. Our
method achieves comparable average accuracy of 1.7 cm and
2.1 ◦. Using data from another demonstration, Katz’s method
failed to track the object motion robustly, resulting in drift and
incorrect motion estimates (Figure 10(b)). Such failures can be
attributed to: (i) the KLT tracker that is known to cause drift
during feature tracking; (ii) SVD least squares minimization in
the relative pose estimation stage, without appropriate outlier
rejection.

For a variety of articulated objects (Table I), our method
achieves average accuracies of 2.4 cm and 4.7 ◦ with respect
to ground truth estimated from noisy Kinect RGB-D data. In
comparison, Katz’s method [14] achieved average accuracies
of 3.7 cm and 10.1 ◦ for the same objects. Our method
achieved an average error of less than 10 cm and 25 ◦ in 37
of 43 demonstrations, vs. 23 of 43 for Katz.

Fig. 9: Pose estimation accuracy of our method, compared to
that achieved using fiducial markers.

C. Model Estimation Accuracy

Once the SE(3) poses of the object parts are estimated,
we compare the kinematic structure and model parameters
of the articulated object estimated by our method with those
produced by Katz. As in our other experiments, we use the
kinematic structure and model parameters identified from fidu-
cial marker-based solutions as a baseline. Table II summarizes
the model estimation and parameter estimation performance
achieved with our method and Katz’s. The model fit error is
defined as the average spatial and orientation error between the
SE(3) observations and the estimated articulation manifold
(i.e. prismatic or rotational manifold). For the dataset of
articulated objects evaluated (Table II), our method achieved
an average model fit error of 1.7 cm spatially, and 5.0 ◦

in orientation, an improvement over Katz’s method (average
model fit errors of 2.0 cm and 5.8 ◦ respectively). Of 43
demonstrations evaluated, our method determined the correct
kinematic structure and accurate parameters in 30 cases,
whereas Katz did so in only 15 cases.

We also compared the model parameters estimated by our
method and Katz’s method with ground truth from markers, by
transforming poses estimated by both methods into the fiducial
marker’s reference frame based on the initial configuration
of the articulated object. This allows us to directly compare
model parameters estimated through our proposed framework,
the current state-of-the-art and marker-based solutions. For
multi-DOF objects, the model parameter error averaged across
each corresponding object part is reported. In each demonstra-
tion, the model parameters estimated via our method are closer
to the marker-based solution than those obtained by Katz.
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(a) Accurate estimation by current state-of-the-art and our framework
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(b) Failed estimation by current state-of-the-art

Fig. 10: Comparison of SE(3) pose for a chair estimated via fiducial markers (Tag), current state-of-the-art (Katz) and our
framework (Ours). (a) The figures show the strong performance of our framework, as compared to marker-based solutions and
current state-of-the-art algorithms, to robustly track and estimate the SE(3) pose of a chair being manipulated on multiple
occasions. (b) Current state-of-the-art, however, fails to robustly estimate the SE(3) pose on certain trials.

Dataset

D
O

F Katz et al. Ours
Average Error Success

Rate
Average Error Success

RatePos. Orient. Pos. Orient.
Door 1 6.0 cm 6.8 ◦ 6/7 5.0 cm 5.5 ◦ 7/7
Drawer 1 6.1 cm 18.0 ◦ 3/7 3.7 cm 3.0 ◦ 6/7
Fridge 1 2.2 cm 8.1 ◦ 4/8 1.0 cm 2.9 ◦ 6/8
Laptop 1 0.4 cm 2.3 ◦ 2/5 0.3 cm 6.4 ◦ 4/5
Microwave 1 4.3 cm 14.2 ◦ 2/4 1.9 cm 6.9 ◦ 4/4
Printer 1 0.7 cm 2.5 ◦ 1/2 0.5 cm 2.3 ◦ 2/2
Screen 1 2.6 cm 24.9 ◦ 1/2 3.4 cm 3.5 ◦ 1/2
Chair 2 3.6 cm 13.2 ◦ 2/3 2.3 cm 4.5 ◦ 3/3
Monitor 2 0.8 cm 7.2 ◦ 1/2 1.8 cm 2.3 ◦ 2/2
Bicycle 3 1.7 cm 10.4 ◦ 1/3 1.1 cm 9.8 ◦ 2/3
Overall 3.7 cm 10.1 ◦ 23/43 2.4 cm 4.7 ◦ 37/43

TABLE I: Comparison of SE(3) pose estimates
between our framework and current state-of-the-art
(Katz) with marker-based pose estimates considered
as ground truth.

Dataset

D
O

F Katz et al. Ours
Model Fit Error Param.

Est. Error
Success

Rate
Model Fit Error Param.

Est. Error
Success

RatePos. Orient. Pos. Orient.
Door 1 1.9 cm 6.7 ◦ 1.9 ◦ 4/7 0.4 cm 4.7 ◦ 1.8 ◦ 5/7
Drawer 1 2.0 cm 7.3 ◦ 2.5 ◦ 2/7 1.7 cm 3.1 ◦ 2.0 ◦ 6/7
Fridge 1 0.5 cm 6.5 ◦ 5.6 ◦ 4/8 0.4 cm 5.8 ◦ 3.5 ◦ 5/8
Laptop 1 - - - 0/5 0.2 cm 6.4 ◦ 6.1 ◦ 4/5
Microwave 1 7.0 cm 1.2 ◦ 0.2 ◦ 2/4 6.5 cm 4.1 ◦ 0.3 ◦ 3/4
Printer 1 0.9 cm 0.8 ◦ 1.5 ◦ 1/2 2.1 cm 0.2 ◦ 1.4 ◦ 1/2
Screen 1 - - - 0/2 0.9 cm 0.7 ◦ 3.2 ◦ 1/2
Chair 2 0.3 cm 11.2 ◦ 9.8 ◦ 1/3 3.9 cm 7.9 ◦ 4.8 ◦ 2/3
Monitor 2 - - - 0/2 2.9 cm 6.4 ◦ 5.7 ◦ 1/2
Bicycle 3 0.9 cm 5.1 ◦ 4.2 ◦ 1/3 0.7 cm 8.5 ◦ 7.3 ◦ 2/3
Overall 2.0 cm 5.8 ◦ 3.4 ◦ 15/43 1.7 cm 5.0 ◦ 3.3 ◦ 30/43

TABLE II: Comparison of kinematic model estimation and parameter
estimation capability between our framework and current state-of-the-
art (Katz) with marker-based model estimation considered as ground
truth.

V. CONCLUSION

We introduced a framework that enables robots to learn
kinematic models for everyday objects from RGB-D data
acquired during user-provided demonstrations. We combined
sparse feature tracking, motion segmentation, object pose
estimation and articulation learning to learn the underlying
kinematic structure of the observed object. We demonstrated
the qualitative and quantitative performance of our method; it
recovers the correct structure more often, and more accurately,
than its predecessor in the literature, and achieves accuracy
similar to that of a marker-based solution. Our framework also
enables the robot to predict the motion of articulated objects
it has previously learned. Even given our method’s limitation
to recovering open kinematic chains involving only rigid,
prismatic or revolute linkages, its prediction capability may
be useful in future robotic encounters requiring manipulation.
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