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1. INTRODUCTION
Physical location is an important attribute of a sensor’s
data stream in a large number of sensor network applica-
tions. In addition, geographic information, for instance in
the form of node coordinates in some common coordinate
system, is a useful primitive in routing protocols such as ge-
ographic routing, information dissemination protocols such
as directed diffusion using location attributes, and sensor
query processing systems.
We present a method to facilitate large-scale deployment
of location-aware sensor networks. We show that large net-
works of location-aware sensors can be made cooperatively
self-configuring, that is, that each sensor can run an algo-
rithm locally, interacting only with neighboring nodes, such
that after a number of iterations all sensors will have reached
a consensus about their coordinates in some coordinate sys-
tem. By doing this in an automated manner, large-scale
sensor networks can eliminate the cumbersome and unscal-
able process of manually configuring sensor nodes with their
location.
In non-urban outdoor settings, nodes may obtain location
information using an existing infrastructure such as GPS.
However, GPS receivers may be too expensive, too large,
too power-intensive for the desired application, or simply
unavailable. One solution to this problem is an alternative
location infrastructure such as Cricket that works in places
that GPS does not. Another solution to these problems is to
equip sensors with hardware capable of estimating distances
to nearby nodes, and to have the sensors themselves self-
configure into a consistent coordinate system.
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Cricket-like infrastructures and autonomously operating
sensor networks both need a solution to the following prob-
lem: Given a set of nodes with unknown position coordi-
nates, and a mechanism by which a node can estimate its
distance to a few nearby (neighbor) nodes, determine the po-
sition coordinates of every node via local node-to-node com-
munication. Our solution to this problem is fully decentral-
ized: all nodes start from a random initial coordinate assign-
ment and use only local distance estimates to converge to a
coordinate assignment that is consistent with the distance
estimates by exchanging only local information. The result-
ing coordinate assignment has translation and orientation
degrees of freedom, but is correctly scaled. A post-process
could incorporate absolute position information into three or
four nodes to remove the translation and orientation degrees
of freedom.

2. POSSIBLE APPROACHES
Anchor-based v. anchor-free algorithms. Some pre-
vious work on this problem assumes that a non-negligible
fraction of nodes in the network are anchor nodes that al-
ready know their location [1, 2, 4, 5]. In contrast, we pursued
an anchor-free approach for three reasons. First, establish-
ing anchors is a manual deployment task, and may be cum-
bersome. Second, the numerical stability of anchor-based
approaches is questionable, since they give more weight to
anchor position estimates, and errors in those estimates will
have undue effect on the global solution. Finally, anchor-
based approaches may not scale well, since to combat the
instability described above, a large number of anchors may
be required to configure an unbounded working area.
In contrast, anchor-free algorithms use local distance in-
formation to attempt to determine node coordinates when
no nodes have pre-configured positions. Of course, any such
coordinate system will not be unique and can be embed-
ded into another global coordinate space in infinitely many
ways, depending on global translation, rotation, and possi-
bly flipping. This limitation is fundamental to the problem
specification, and is not a limitation of the algorithm.

Incremental v. concurrent algorithms. These algo-
rithms usually start with a core of three or four nodes with
assigned coordinates. Then they repeatedly add appropriate
nodes to this set by calculating the node’s coordinates using
the measured distances to previous nodes with already com-
puted coordinates. These coordinate calculations are based
on either simple trigonometric equations or some local opti-
mization scheme.
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A drawback of incremental algorithms is that they prop-
agate measurement errors, resulting in poor overall coor-
dinate assignments. Some incremental approaches apply a
later global optimization phase to balance such error, but it
remains difficult to jump out of local minima introduced by
the local optimization in the incremental phase.

Concurrent algorithms. In these algorithms, all the
nodes calculate and refine their coordinate information in
parallel. Some of these algorithms use an iterative optimiza-
tion scheme that reduces the difference between measured
distances and the calculated distances based on current co-
ordinate estimates.

3. AFL: ANCHOR-FREE LOCALIZATION
Our contribution is an algorithm called AFL (Anchor-Free
Localization), a concurrent and anchor-free solution to the
above problem. We show that this combination has signifi-
cant advantages over several previous approaches. The AFL
algorithm consists of two phases. The first phase produces
a fold-free graph embedding which “looks similar” to the
original embedding. The second phase uses a mass-spring
based optimization to correct and balance localized errors.
The first phase of the algorithm proceeds by electing five
reference nodes. The algorithm first elects five reference
nodes. First it selects a node n1 at the periphary of the
graph. Next it selects node n2 which is maximum hop count
away from n1. Next, the node at a maximum hop count
away and at eqidistant, from both n1 and n2 is selcted as
n3. Node n4 is the node at maximum hopcount from n3 and
at equidistant from n1 and n2. Finally node n5 is selected
to be the one at eqidistant from all n1, n2, n3, and n4. All
these nodes are selected using a straightforward variant of
distributed leader election.
Then, for each node ni, use the hop-counts h1,i, h2,i, h3,i,

h4,i,and h5,i from the chosen reference nodes to approximate
the polar coordinates (ρi, θi). Here, R is the maximum radio
range.

ρi = h5,i × R

θi = tan−1

�
h1,i − h2,i

h3,i − h4,i

�

The second phase of the AFL algorithm performs a local
optimization of the current estimated coordinates of each
node in parallel. Using the current estimated position, each
node ni calculates the estimated distance d̂i,j to each neigh-
bor nj . It also knows the measured distance ri,j to each
neighbor nj .
Let v̂i,j represent the unit vector in the direction from p̂i

to p̂j . The error between the estimated and the measured

distances is represented by a force �Fi,j in the direction v̂i,j .
This force is defined as

�Fi,j = v̂i,j(d̂i,j − ri,j). (1)

The resultant force on the node i is given by

�Fi =
X
i,j

�Fi,j .

Each node i update its estimated coordinates by “moving”
in the direction of the resultant force. The new estimated
coordinates are selected such that it reduces the energy of
the node and the movement is less than |�Fi|/(2mi), where
mi is the number number of neighbors.
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Figure 1: Maximum error between any two uncon-
nected nodes as a fraction of the range.

We simulated the AFL algorithm on a 250-node graph and
we ran 50 simulations to obtain each point on the graph.
More extensive simulation results are described in [3].
Figure 1 shows themaximum error between any two nodes
after running the AFL algorithm on a 250-node graph. Each
point on the grap represents 50 simulations on different
graphs. When the graph undergoes some physical defor-
mation, this is identical to some points in the graph moving
with respect to other points. Hence the maximum error be-
tween any two points corresponds to the maximum deforma-
tion the graph has undergone. Figure 1 shows the superior
performance of AFL under ranging errors, since the maxi-
mum distance error between any two points is small most of
the time. In most cases the absolute position error is smaller
than the radio range, showing a degree of robustness to er-
ror that is significantly better than in previously published
schemes.
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