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Abstract
We describe a curriculum for a two-semester course sequencein hardware-software develop-
ment, taking students through a complete development cycleof the various capabilities for an
autonomous mobile robot. The experience of these courses has led to insights in teaching large-
scale system development, especially with respect to software-intensive courses.
Keywords: Lab-based courses, robotics, software

1. Introduction

In 2005, five faculty from three engineering departments at MIT launched a year-long sequence,
Robotics: Science and Systems (R:SS) I and II. In the first semester, we introduced students to the
general topics of robotics, including control, state estimation, planning, localization and manipu-
lation. R:SS I introduced each topic in a week-long lab, and then asked the students in small teams
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to integrate the various capabilities they had developed into a unified system, performing a mini
“course challenge”. In this manner, we took the students through a complete cycle of developing
all the various capabilities necessary for an autonomous mobile robot. In the second semester, the
students chose one capability of the robot and studied this capability in more depth. The stated ob-
jective at the end of the second semester was to have the students as a group (rather than individual
teams) develop a single “Grand Challenge” system capable of performing some real-world task.
The task we chose involved developing a robot that could movearound campus, collect objects
and build a small structure in the hangar.

We spent considerable time teaching sound principles of software design, development and testing
at regular intervals in the course, in order to facilitate the integration of different capabilities. How-
ever, the experience of teaching these courses has led to certain key insights in teaching large-scale
systems development, especially with respect to mixed hardware- and software-intensive courses.
We have just begun our third offering of the course sequence,and in this paper we describe the
course structure and our implementation decisions. Additionally, we discuss three main insights
in teaching a robotics systems class to undergraduate students. The first lesson we learned is the
importance of structure. We progressively allowed the students considerable freedom in their final
Grand Challenge project, and we learned that specific forms ofguidance were essential to suc-
cess. Secondly, we re-learned a lesson about spiral projectmanagement, that we believe is worth
reinforcing. Finally, we report lessons on integrating a strong communication component into the
course, and the lessons we learned in doing this.

2. Course Organization

An overriding theme of the course sequence is the model of spiral development, with which we
take the students through the development cycle of capabilities for an autonomous vehicle multiple
times. For example, the pedagogical goal of the first semester is to introduce the students to a broad
spectrum of the technical and systems challenges in mobile autonomous systems, leading to a very
structured development of a vehicle with moderate capabilities for the initial course challenge. The
pedagogical goal of the second semester is to allow the students to explore a single technical area
in some depth, and to introduce them to the technical and managerial challenges of developing a
single capability in the context of a larger system. The combination of the different capabilities
lead to the Grand Challenge vehicle.

While the course contains hardware design issues that naturally follow from a robotics program, the
majority of the conceive-design-implement-operate process is focussed on software development
issues. In the first semester of the course, the software development is very structured and focussed
within teams, which has led to successful deployments of limited capability systems. In the second
semester, the entire class form a single team with a substantial amount of freedom to develop new
robotic capabilities in conjunction with a research faculty advisor.
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3. R:SS I

The first semester, Robotics: Science and Systems I, is designed to introduce the students to differ-
ent autonomous capabilities and the basic principles that underlie different algorithms. In general,
we expose students to the state of the art in the different areas, such as estimation, planning and
control. The course has a formal set of learning objectives,but we generally expect at the end of
the course, that

1. the students will be familiar with basic implementationsof kinematics, control theory, state
estimation and planning to implement controllers, estimators and planners that satisfy the
requirements of specified task;

2. can specify the requirements for an integrated hardware and software design and implemen-
tation of an autonomous system performing a specified task;

3. can implement the necessary hardware and software components in an integrated system and
operate the system for an extended and specified time.

The course is structured such that there are two 50-minute lectures and two 120-minute lab sessions
per week. The lectures generally cover the following topics:

• Actuation
• Control
• Locomotion
• Sensing and Perception
• Camera Models
• Software Engineering
• Control Architectures

• Localization
• Map Construction
• Planning
• Grasping and Manipulation
• High-level Vision
• Simultaneous Localization

and Mapping

3.1. Structured Laboratories

There are a series of milestones, in the form of labs, that thestudents must meet, but the principal
outcome of the class is in the form of the “Course challenge”, in which students must build upon the
skills of the preceding labs to develop a complete working autonomous system. We divide the class
into groups of 3-4 students, and the each group works in parallel. After each lab is complete, the
student teams brief the lecturers in 10 minute presentations, to demonstrate their implementation
and any additional analysis they have performed.
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1. Schematics: Layout and Components

The first lab is designed to familiarize the students with their hardware kits, and learn some
basic hardware debugging skills. Students are required to learn basic division of capabilities
between hardware and software, to learn to read and understand circuit schematics, and
practice the use of basic hardware skills such as soldering and multimeter use. We issue a
basic kit of robot components including a partially-populated microprocessor board shown
in figure 1, and the students must complete and test their board.

Figure 1: The robot components issued in the first laboratoryto begin the hardware and software
design, implementation and testing.

2. Motor Characterization and Control

The second lab is designed to familiarize the students with their software development prac-
tice. We introduce the software development environment and require the students to practice
the use of software management tools such as version controlsystems. We pose this instruc-
tion in the context of the mixed hardware-software system byasking for a software-based
characterization of the motor subsystem. Students are issued with the additional components
shown in figure 2 including the drive motors, and required to complete the motor circuitry,
implement a controller in software and evaluate their controller.

Figure 2: The robot components issued in the second laboratory to begin the implementation of
motor characterization and closed-loop control.
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3. Robot Chassis and Driving

The third lab is the first lab designed to test the students in their understand basic navigation
concepts. At this point, the students assemble their hardware kits into a basic robot chassis,
and control their robot using simple feedback loops on the wheel odometers, essentially
navigating using dead-reckoning. The students are issued with components to allow them to
build the complete frame shown in figure 3. The robot is a basicdifferential-drive system,
with the drive wheels at the front and simple caster wheels atthe rear.

Figure 3: The robot components issued in the third laboratory to begin the implementation of basic
mobility.

4. Light Sensors and Braitenberg Behaviors

The fourth lab allows us to introduce sensing to the students, and implement feedback con-
trol loops around some environmental stimulus. We issue thestudents with light sensors, and
require them to implement simple “Braitenberg” type light-following behaviours. One im-
portant lesson from this simple sensing modality is that thebehaviour of the sensor changes
substantially from night to day, and so the students quicklydiscover the need to recalibrate
their systems regularly.

5. Software Engineering and Visual Servoing

The fifth lab introduces some major changes to the robot. Until now, computation was
largely performed off-board the robot with a serial cable tocommunicate with the on-board
microprocessor. In this lab, we first issue the students witha laptop. However, we also
provide the students with a camera (shown in figure 4, left) for more sophisticated sensing.

Image processing is an intensive task, so we also introduce alarge software framework
called Carmen. Carmen is a publicly-available open-source robot control suite that facili-
tates distributed, networking computation. This allows the students to seamlessly parallelize
operations between the on-board laptop and the off-board workstation. This software frame-
work allows us to introduce new software development practices for embedded systems that
the students may not have encountered previously.

The goal of this fifth lab is for the students to implement a simple reactive ball follower by
extracting recognizable colour features, and then using properties of the extracted features
(e.g., blob sizes, positions in the image, as shown in figure 4, right) to generate control
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Figure 4: The students are issued with the camera shown mounted on the crossbar (left panel) for
more sophisticated environmental sensing in the fifth lab. The camera is used to track a ball of a
specified colour (middle panel). The students extract features such as blob size and location (right
panel) in order to servo the robot to keep the ball in view and at a fixed stand-off distance.

commands to keep the ball centred in the image frame and at a specific distance away. The
students again encounter the problems of sensor calibration and learn about different colour
spaces.

6. Local Navigation and Environmental Modelling

The sixth lab introduces the students both to additional sensors and to the concepts of a
persistent environmental map. The students are issued withbump sensors and also sonar
range sensors. The requirements is for the robot to detect anobstacle using the bump sensors,
and then drive around the obstacle, building a map using the sonar sensors. An example map
is shown figure 5. The sonar data is useful for range sensing but extremely noisy, and the
students must learn more issues in dealing with real-world sensing.

Figure 5: An example map of a square obstacle learned from sonar data during the sixth lab. The
grey dots are the individual sonar returns (notice that substantial noise in the data), and the fitted
green lines are the sides of the square obstacle.Image courtesy of Silvia Baptista, Mark Vayngrib,
Kevin Wang, Tina Wright.
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7. Motion Planning and Global Navigation

The seventh lab introduces the students to motion planning and deliberate action. The stu-
dents are issued with a map of a maze environment and must implement a simple planner.
The students learn issues of representation (e.g., different ways of representing the search
problem) and must also consider computational efficiency inthe design and implementation
of their algorithms.

8. Grasping and Object Transport

The final lab introduces the students to a very different capability. They are issued with
components of a robot arm and gripper shown in figure 6, which they must assemble and
then control in order to grasp and pick up blocks. Additionally, the students are expected to
use the camera to identify blocks for grasping, and ensure that the robot’s gripper is within
range of the block. As a result, this lab requires the students integrate their solution to the
visual servoing lab from earlier in the semester with the grasping solution. By introducing
the students to the integration of different subsystems into a single capability, we lay the
ground work for the final month of the course.

Figure 6: (Left) The robot components issued in the eighth laboratory that constitute a robot arm
and gripper. The students mount the arm on the robot (right) to implement mobile manipulation
algorithms.

3.2. Course Challenge

The last month of the course is the “Course Challenge”, which todate has been to build a shelter
on Mars. The objective is for the robot to explore, gather materials and build a structure in a dy-
namic partially-known environment. The robot will be givena partially specified map of this space
containing obstacles and blocks. However, the environmentwill have dynamic obstacles whose
location and behavior will not be known to the robot. The robot will have to pick a construction
site (home, or at a given place, or by reasoning), identify asmany building blocks as possible,
bring them to construction site and build as much of a wall structure as possible at the site.
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Figure 7: The complete robot at the end of the last lab.

At this point in the semester, the students should have a complete robot, such as the one shown
in figure 7, with working implementations of all the necessary software subsystems to complete
the challenge. The task itself is very much abstracted from atrue robotic construction task, and
could be completed using relatively unintelligent behaviour. However, the students are expected to
leverage the skills and implementations from the precedinglabs in order to implement a robot that
operates in a deliberative manner. We have stressed the elegance of design and implementation as
much as completion of the specific task.

We also encourage the students to think about the integratedhardware-software design problem.
Although the course is software-intensive, some aspects ofthe course challenge can be simplified
or addressed more easily through innovative hardware. In order to limit the amount of time that
can be sunk into unstructured hardware modifications, we restrict the students to modifications that
cost no more than $50. However, some innovative designs haveemerged, including a beautiful
hardware assembly that uses the shape of the building blocksto automatically form a structure as
each block is collected. Some example hardware modifications are shown in figure 8

4. R:SS II

The second semester course, Robotics: Science and Systems II, is designed to allow the students to
explore a topic in mobile autonomy in more depth. Building on the first semester, that students have
built a relatively small robot that explores, gathers and builds a structure in a dynamic partially-
known environment. This implementation requires understanding of the overall issues of robot
control, visual servoing, motion planning, position estimation and manipulation in the laboratory
setting, in a moderately controlled environment.

In the second semester, the class as a group scales this task up to something that approximates a
real-world challenge task that we term a “Grand Challenge” problem, in the style of the DARPA

8



Figure 8: Some example hardware modifications that the students make to the basic frame we
provide. On the left, the robot has a collection and release mechanism that automatically organizes
the robots into a structure. In the middle, the robot has an entirely different collecion and release
mechanism. On the right, the robot has a simple “dumping” mechanism, requiring the robot to
place blocks together once collected. However, the robot frame has been replaced with a circle,
allowing easier motion planning.

Grand Challenge. By scaling the problem up to real-world size,we ask the students to address the
challenges of unstructured, outdoor environments, unknown world models, real-world navigation
and locomotion, and real-world manipulation. These are alllargely open research topics in the
literature, and our goal is to get the class working at the cutting edge of robotics research, and
hopefully generate publishable contributions to the stateof the art. As in R:SS I, the course has a
formal set of learning objectives, but we generally expect at the end of the course, that

1. the students will be able to critically evaluate different choices of subsystem designs and
implementations;

2. the students will use their knowledge of autonomous control, planning or estimation to de-
sign and implement a new capability for an autonomous system;

3. and will integrate their new implementation into the complete system.

In addition to the research challenges in autonomy, the class must address the engineering chal-
lenges of developing in collaborating teams, developing across multiple platforms, and developing
software that is reliable enough for others to use. The problem is too large to be tackled by small
teams of 3-4 students; the class as a whole works on a single system. We provide a much larger,
pre-built robot base with substantially more capabilities(i.e., larger arm, laser range finders, GPS,
etc.).

4.1. Grand Challenge

The specific “Grand Challenge” problem is a large-scale remote autonomous construction problem.
The robot should, over a long period of time, collect building components located on campus,
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return them to the hangar, and and assemble as large a structure as possible in the hangar. The
robot must have capabilities to do the following:

• navigate in a totally unknown environment
• locate good construction objects
• identify the location of the construction site
• retrieve, carry the objects to and place the components at the construction site
• create a structure at the construction site.

4.2. Lectures and Labs

Our approach in the R:SS II is to allow the students to self-organize. We impose little structure
on the labs. We provide one lecture per week in a topic of the students choosing (although we
provide an initial set of lectures to begin the semester), with the expectation that the student will
request more instruction in different areas. During lab sessions, the students working on individual
subsystems meet one-on-one with a faculty advisor. At the end of each week we hold design
reviews, where a student from each subsystem group presentsto the class the current state of the
system and expected plans for the next week.

The class immediately is faced with not only a design problembut also an organization problem,
and and must produce an architecture, design and engineering plan for their autonomous system
within the first month of the course. The only additional structure we impose is a series of deliv-
erables throughout the semester tied to capabilities of therobot, such as demonstrating navigation,
demonstrating mobile manipulation, demonstrating exploration, etc.. Between the required deliv-
erables, we encourage the students to set their own deadlines but do not require this.

5. Overall Lessons Learned

5.1. Successes

The major success of the course has been the student performance. Despite the fairly demanding
pace of the first semester labs, we have a very high success rate in student teams completing all
parts of the lab. We have never had more than one team in a semester (out of 6-8 teams per
semester) not start the course challenge with a complete andworking solution to each subsystem.
This has been satisfying, because many of our students have had limited programming experience
or limited experience with embedded systems. As a result, wehad initial concerns about the ability
of the students to understand and implement many of the concepts. Additionally, student feedback
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indicates a general satisfaction with the coverage of the material. The students feel that they are
getting a broad exposure to a range of issues without being overwhelmed.

We also feel that our efforts in team management and team balance issues have been a success.
We draw students from three main departments: Electrical Engineering and Computer Science
(EECS), Aeronautics and Astronautics (Aero/Astro) and Mechanical Engineering (MechE). At
the beginning of each semester, we ask the students to complete questionnaires outlining their
background and skill set. We then create teams by combining students with complementary back-
grounds, for example, pairing a computer scientist strong in programming with a mechanical en-
gineering and Aero/Astro student who are strong in control and systems engineering. In R:SS I,
we also encourage students to work in areas that our outside their comfort zone, such as asking
the non-computer-scientists to take on the bulk of the implementation initially, while encouraging
the natural programmers to pick up the soldering iron. This has generally worked extremely well,
and we have had a surprisingly small number of dysfunctionalstudent teams. In the one case of
a dysfunctional team, we have acted to re-organize the teamsand this appeared to solve the team-
ing issues quickly. Additionally, the students report thatthey liked “the freedom”, and the “actual
engineering [practices] that were involved” [1]. However,as we discuss below, the teaching of
organization and engineering practices in the R:SS II class will be improved.

Finally, we emphasize that there are rarely right answers tothe design questions. To reinforce this
point, the students are required to debate different designdecisions, such as deliberative planning
compared to reactive planning. Our experience has been thatthe students generally begin the
debate sequence unsure of the point of the exercise, but quickly learn that the literature typically
contains multiple, opposing views on most issues and that engineering decisions are often the
subject for discussion. We have been very pleased at some of the student discussions that have
resulted from the debates.

However, not every aspect of the course has been a complete success. In the following sections we
list some specific lessons that we have learned in developingthis course.

The importance of structure Firstly, while we provide the students with substantial instruction
in systems development practices, we have imposed relatively little structure on the process itself,
allowing the students to choose how to organize themselves.Concerns that the students would not
understand the trade-off between organizational freedom and risk of failure have not been real-
ized; post-hoc evaluation suggests that the students appreciate the substantial amount of freedom
to manage the system development themselves. However, Tom Clay & Associaties provided an
independent evaluation of the first instance of R:SS II. The Clay report [1] listed the following
student concerns regarding the teaming freedom:

• “They worked ineffectively with teams.”
• “They worked ineffectively across teams.”
• “They did not develop sufficient or timely processes.”

11



• “They assigned or took on responsibilities in ways that did not support individu-
als’ learning.”

In order to address these concerns, we have invited additional faculty with experience in working
with large teams to lecture on engineering management practices.

The spiral development process We pursued a spiral development evaluation process throughout
the course. However, both faculty and students re-learned the lesson that spiral development is
essential across the entire system, not only within specificcapabilities. Milestones were set on
a per-capability basis, rather than on a complete-system performance basis, allowing teams to
progress at different rates. A key insight (that has been learned elsewhere in the past) is that
for software projects, no development within a capability should be permitted until the complete
system is at the same readiness level.

The Clay report contained the suggestion of continuing the structure of R:SS I into R:SS II, that
is structuring the course around a series of goals, instead of around a single “Grand Challenge”
end-goal. This would encourage the spiral development model, and would also allow the students
to fall short of the end goals without feeling like they had failed.

The students also felt (as reported in the final debriefing) that they were unable to get a sense
of ownership of the system as a whole: they suggested making sure the teams were much more
loosely organized, in order to allow them to get a sense of howto use all sub-components and
would lead to faster testing and integration. This loose organization is probably unwieldy give the
amount of development required, however, we have recognized the need to provide a strong sense
of ownership of different components while building a larger system.

The important of communication deliverables Finally, a major component of the systems engi-
neering management plan in early version of R:SS I required the students to present design reviews
to each other regularly. The general upward trend in the presentation grades indicated that students
were learning from seeing each other present. While the design reviews were not sufficient to catch
all development errors, we consider the reviews to be successful in that most design or implementa-
tion errors were identified by the students themselves, rather than faculty advisors. We believe the
in-class peer-to-peer design reviews were ultimately moreuseful than conventional presentations
to external faculty reviewers would have been.

We have, however, introduced the presentation component into R:SS I as well, and students now
brief the faculty after each lab is complete. This has greatly improved both the quality of the lab
analysis and also the student timeliness of completing the labs. We have also begun working with
the Writing Program to ensure that the communications deliverables are of high quality not only
technically but also from a writing and communication standpoint.

12



6. Conclusion

This paper presented the first two iterations of a two-semester sequence of courses that introduces
students from Aeronautics and Astronautics, Electrical Engineering and Computer Science, and
Mechanical Engineering to the process of conceiving, designing, implementing and operating a
mixed hardware-software system.
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