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Abstract

We describe a dataset of several thousand calibrated, time-stamped, geo-referenced, high
dynamic range color images, acquired under uncontrolled, variable illumination conditions in
an outdoor region spanning several hundred meters. The image data is grouped into several
regions which have little mutual inter-visibility. For each group, the calibration data is globally
consistent on average to roughly five centimeters and 0.1◦, or about four pixels of epipolar
registration. All image, feature and calibration data is available for interactive inspection and
downloading at http://city.lcs.mit.edu/data.

Calibrated imagery is of fundamental interest in a variety of applications. We have made
this data available in the belief that researchers in computer graphics, computer vision, pho-
togrammetry and digital cartography will find it of value as a test set for their own image
registration algorithms, as a calibrated image set for applications such as image-based ren-
dering, metric 3D reconstruction, and appearance recovery, and as input for existing GIS
applications.

1 Introduction

This paper describes data produced by a system for calibrated, terrestrial image acquisition in
urban areas. The system includes a novel sensor, and a suite of scalable geometric algorithms, which
produce accurately calibrated, geo-referenced terrestrial (near-ground) imagery of urban scenes with
no human intervention or interaction required. The system is end-to-end, in the sense that it acquires
uncalibrated images as input, and produces geo-referenced CAD models as output, with no human
interaction other than the deployment of the sensor. Detailed descriptions of the system’s design
rationale, components, and algorithms appear elsewhere [Tel97, Tel98, CMT98, BdT99, AT00,
AT01, AT02]. This paper describes an extensive collection of calibrated image data produced
by the system [TAB+01], which we have placed on-line for interactive viewing and download at
http://city.lcs.mit.edu/data. To our knowledge, this dataset represents the largest collection
of calibrated terrestrial imagery in existence.
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We envision at least three ways in which the data may be useful to others. First, the uncal-
ibrated imagery (i.e., data from early stages of our processing pipeline) can be used as test data
by researchers developing large-scale image calibration and registration algorithms. Second, the
registered imagery (i.e., data from the end of the process) can be used “as is” for a variety of
applications including image-based rendering and 3D reconstruction. In either context, the scale
and extent of the data we present significantly exceeds that of any existing real data set; thus its
availability should pose an interesting collection of challenges. Finally, we note that since the data
is expressed in a geo-referenced (Earth) coordinate system, it can be readily incorporated into a
variety of existing GIS and digital cartography applications (e.g. OpenGIS [Ope], TerraServer [Ter],
and the National Spatial Data Infrastructure [NSD]).

The paper is organized as follows. Section 2 describes the acquisition and processing stages in our
system. Section 3 describes a collection of objective performance (accuracy, consistency) measures
for our methods, and the results of applying these measures to our data. Section 4 describes the
web interface to the dataset. Section 5 describes existing acquisition methods for geo-referenced
imagery. Section 6 summarizes the contributions of the paper, and an Appendix details the data
formats and conventions used for representing image, calibration, and feature data.

2 Calibration Stages

The sensor is deployed in acquisition “sessions.” After data upload, a series of calibration and
processing stages revises image data or metadata as follows:

1. Off-line (semi-automated) intrinsic camera calibration;

2. Off-line (semi-automated) photometric camera calibration;

3. Off-line design of “tiling” for omni-directional image mosaics;

4. Acquisition of HDR imagery, with approximate geo-referenced pose for each image;

5. Data upload, spatial indexing, and generation of node adjacency graph;

6. Radial distortion correction;

7. Image pyramid generation;

8. Mosaic generation and refined intrinsic calibration;

9. Sub-pixel edge and point feature detection;

10. Rotational registration (registration to scene vanishing points);

11. Translational registration (up to absolute scale, offset, and rotation); and

12. Final registration to geo-referenced (i.e., Earth-relative) coordinates.
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2.1 Off-Line Intrinsic Calibration

Variations in lens attachment, temperature, etc. can perturb intrinsic parameters. At the start
of each acquisition session, the sensor acquires several images of a calibration pattern in order to
recover initial estimates of the camera intrinsics and the radial lens distortion parameters. We

Figure 1: The pattern used for initial intrinsic calibration.

use a calibration pattern constructed in such a way that 221 calibration points can be detected
automatically and localized to sub-pixel accuracy (Figure 1). The coordinates of the calibration
marks are then processed with a public-domain implementation of Zhang’s calibration algorithm
[Zha98], which numerically optimizes the camera’s intrinsic parameters: focal length, aspect ratio,
skew, principal point, and the first- and second-order radial distortion parameters. Later, our
algorithms use the intrinsic parameters to remove radial distortion through resampling (Figure 2).

2.2 Off-Line Radiometric Calibration

The amount of light entering the camera varies as the square of the aperture diameter. We store
the camera aperture value during acquisition, and later adjust the acquired pixel values to account
for aperture variation across nodes (Figure 3). This allows comparison and combination of image
pixels acquired with different apertures (i.e., under different lighting conditions).

Absolute radiometric calibration need be done only once for a particular camera CCD. For
calibration we expose the camera to a bright indoor light source (not the sun) and acquire a high-
dynamic-range (HDR) image [DM97], then set an absolute radiance scale such that the brightest
pixel values map to 1.0 (i.e., zero on a log scale). Dark image calibration is not necessary since
the magnitude of heat noise at our longest exposure time (1/10th second) is insignificant. A pixel
value of zero is under-saturated and does not have a valid radiance value; such pixels are ignored
in further processing. In practice only very few such pixels are present in our data, since all images
are acquired during the day under adequate lighting.
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Figure 2: Left: Raw image. Right: Radial distortion removed. Center: Difference image.

Figure 3: Left: Raw log-radiance images, each with distinct radiance ranges. Center: Images using
a common radiance range. Right: the same images, rendered with a different radiance scale.

Figure 4: Left: A tiling of 20 images. Right: After mosaic generation.

2.3 Mosaic Design

Once reasonably accurate camera calibration is available, we have enough information to design the
mosaic, or tiling pattern, which will cover a portion of the sphere during omni-directional image
acquisition (Figure 4). Designing the tiling pattern requires only a rough FOV estimate [CT00].
Starting with this estimate we choose an overlap percentage, usually about 15%, and generate a
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series of azimuthal and altitudinal camera rotations that tile the sphere while preserving the desired
degree of overlap. The tiling generation program also produces the adjacency edges for the tiling,
that is, the set of image pairs with significant overlap.

2.4 High-Dynamic-Range Image Capture

The camera is mounted with its fixed optical center centered at the center of rotation of an electro-
mechanically actuated pan-tilt head [DeC98]. At each head position, the camera captures one tile of
the image mosaic at several exposures, averaging multiple frames at each exposure time to reduce
image noise. The averaged images are then combined to produce a high-dynamic-range (HDR)
image [DM97]. This enables pixels that were saturated in one frame to be replaced by pixels arising
from a shorter exposure time.

Conventional 8-bit linear pixel encodings are not sufficient to store HDR imagery. Hence the
images are initially stored using a 16-bit logarithmic encoding for each RGB value. Later in the
pipeline, the images are converted to SGI-format .rgb files, with each pixel value storing a log-
radiance value from the HDR imagery. This format enables processing and viewing by conventional
tools. Since the original 16-bit image is preserved, images can also be converted to other formats
for richer representation of dynamic range, such as LogLuv format [Lar98].

The sensor annotates each acquired HDR image with a camera descriptor, date- and time-
stamp, camera intrinsics and estimated Earth-relative position and orientation [BdT99, DeC98].
The sensor’s raw pose estimates are typically accurate to a few meters of position and a few degrees
of orientation, but can be worse if GPS conditions are particularly poor during acquisition, for
example due to satellite obscuration, multi-path reception or electromagnetic interference.

2.5 Data Upload, Spatial Indexing, and Adjacency Graph

After each acquisition session, the sensor rig is returned to the lab and reconnected to the local
network. Its acquired data is then uploaded to the project’s computational servers. Upon upload,
each node is inserted into an abstract spatial index [PS85] keyed on absolute camera position (which
may be revised by subsequent extrinsic calibration stages). This enables efficient computation of
the dataset “adjacency graph”, a list of each node’s k nearest neighbors (we typically use k ≤ 6),
as well as inverse-range queries (e.g., “which nodes fall within the specified region?”).

2.6 Correction of Radial Distortion

Using intrinsic parameters recovered earlier, the images are resampled to remove radial lens dis-
tortion (Figure 2), enabling downstream computations to use a simple pinhole camera model. The
images are clipped to have approximately the same size and central resolution as the original images.

2.7 Image Pyramid Generation

After the full-resolution images have been undistorted, they are filtered down to half-, quarter-,
and 3/32−resolution to form a four-level gaussian image pyramid [Ros84]. Full-resolution images
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are used for feature extraction (see below). Half- and quarter-resolution images are used for multi-
resolution mosaic generation, 3D reconstruction, and texture estimation [CT99, WTT+02]. The
thumbnail (3/32-resolution) images are used only for fast visualization.

2.8 Mosaic Generation

Our extrinsic calibration algorithms treat each node as a rigid, effectively wide field of view image,
drastically reducing the number of extrinsic DOFs to be recovered per node. However, the sensor’s
raw rotation estimates are not sufficiently accurate to combine the image tiles directly. Thus,
we use a correlation-based optimization algorithm [CT00] to estimate the rigid camera rotations
relating the tiles (cf. Figure 4). This mosaic generation stage takes the acquisition rig’s rotation
estimates as inputs, then recovers improved rotations for each level of the image pyramid, using
each level’s converged estimates as initialization for the mosaic of the next higher resolution. The
mosaic algorithm also refines the system’s estimates of the camera’s intrinsic parameters.

The “spherical images” produced by the mosaic stage are used only for visualization; whenever
an image sample or feature is needed by any batch processing stage, the system samples directly
from the raw, conventional images (using the per-image rotation estimates produced by mosaic
generation). This avoids resampling the source images, and the attendant loss of information that
would cause. For convenience, we also produce a six-sided cubical “environment map” of the
spherical field-of-view; this too is used only for visualization in our system but could be used by
others in different ways.

2.9 Sub-Pixel Edge and Point Feature Detection

Our registration algorithms do not use image pixels directly, but rather use edge and point features
(Figure 5). Linear (edge) features are extracted through a two step process: first, sub-pixel zero
crossing contours of the Laplacian of the Gaussian of the image are found. Then the edge contours
are recursively split and fitted onto straight line segments, which we adopt as edge features.

Point (corner) features are generated by intersecting edges that lie sufficiently close together in
image space, and form a large enough angle, to plausibly arise from a building, window, or other
real-world corner. Our system forms intersections from edge features that are separated by at most
2◦ in image space (or about 40 pixels, at our highest image resolution, 1 milliradian per pixel), and
that form an angle in image space of at least 5◦.

2.10 Rotational Registration

The rotational registration stage, described elsewhere [AT00, AT02], takes intrinsic calibration
information, edge features, and the node adjacency graph as inputs. It groups observed edge
features into scene-relative vanishing points (VPs). Each node is assumed to have viewed a set
of VPs that overlaps with or is identical to the set of VPs observed by its neighbors; nodes are
brought into rotational alignment by registering each to the set of commonly observed VPs in its
vicinity. This method brings the nodes into rotational alignment to within about 0.1◦, or roughly
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Figure 5: Edge (left) and point (right) features for two images in the dataset.

Manual Automatic

Figure 6: Epipolar registration resulting from manual bundle-adjustment [CT00] (bottom middle),
and from our automated algorithm [AT02] (bottom right).

two pixels at our sensor resolution. (That is, if the point at infinity corresponding to a single VP
direction is projected into multiple images, its image coordinates will be uncertain by about two
pixels.) Section 3 describes consistency metrics for rotational registration.
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2.11 Translational Registration

The translational registration stage, described elsewhere [AT01, AT02], takes intrinsic calibration
information, point features, rotation information from the previous stage, and the node adjacency
graph as inputs. It produces revised position estimates for every node, subject to pairwise baseline
directions determined for each node adjacency. (This stage also produces, as a side effect, a set
of probabilistic correspondences between point features across all pairs of adjacent nodes.) The
resulting pose assignment is valid up to an arbitrary Euclidean transformation (translation, rotation
and isotropic scaling). The quality of the epipolar geometry (Figure 6) can be assessed with a variety
of consistency metrics (Section 3).

2.12 Geo-Referencing

The final processing stage registers the node set to the original GPS (i.e., absolute, geo-referenced)
position estimates, exercising the final rigid translation, scaling, and rotational degrees of freedom
for the entire dataset [AT01, AT02]. The resulting pose estimates are geo-referenced to an absolute
(Earth) coordinate system and are metrically meaningful. The coordinates are stored, in units of
meters, relative to a local tangent plane with its origin defined as the location of our GPS base
station.

The Cartesian ECEF (Earth Centered Earth Fixed) coordinate system is based on the WGS-
84 Geoid [HWLC97], the native geoid for GPS. The Euclidean transformation between Cartesian
ECEF coordinates and the Cartesian LTP (Local Tangent Plane) coordinates is well-defined. We
reexpress global coordinates with respect to the local tangent plane because LTP coordinates are
more convenient and more accurate in floating point computations: the LTP z axis is nearly aligned
with the local vertical, and LTP node coordinates have small magnitude.

3 Consistency Metrics

There is no ground truth for this dataset. We estimate that either manual surveying or semi-
automated bundle adjustment on the dataset would require tens or hundreds of person-hours.
Moreover, the dataset includes observations of many scene features that are impossible to localize
directly, and safely, due to their physical placement in the world – for example, building corners
high above ground. Therefore we have formulated a set of objective consistency metrics for the
dataset, each of which assesses the degree to which separate observations are mutually consistent.
Our consistency metrics take into account both local and global properties of the dataset.

The remainder of this section describes the result of applying a variety of consistency metrics to
three calibrated image sets acquired at three regions on campus with limited intervisibility [AT02].
The datasets include between 1,000 and 4,000 images, spanning areas ranging from 100×100 meters
to 300 × 400 meters, with camera altitude varying by only a few meters.

In addition to the automatically evaluated metrics defined below, the web interface to the
data (Section 4) provides interactive tools for qualitative inspection of raw images, mosaic quality,
extracted features, epipolar geometry, etc.
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3.1 Local Consistency Metrics

We evaluated two local consistency metrics for each mosaic, that is, for each collection of images
acquired at a single optical center. The local consistency metrics are defined as follows:

• Mosaic pairwise cross-correlations. For each node, we computed the sum, over all ad-
jacent images within the mosaic [CT00], of the pixel inverse cross-correlation normalized by
the number of overlapping pixels and the pixel dynamic range. A perfectly registered mosaic,
assuming constant illumination and no resampling errors, would exhibit an inverse cross-
correlation of 0.0, the minimum. A mosaic in which black pixels everywhere overlap white
pixels would exhibit an inverse cross-correlation of 1.0, the maximum. The cross-correlation
of each mosaic process at termination, typically between 0.005 to 0.05, is stored as a RESIDUE

value in the pose descriptor file associated with the node (Section A.3).

• Node VP spreads. When acquired in an urban area, each node typically observes one
or more vanishing points, or families of parallel lines in the scene. For truly parallel world
lines, perfectly calibrated mosaics, and error-free edge features, the vanishing point could
be estimated with no error. In reality, all of these elements exhibit noise, so we represent
vanishing points as projective probability densities [Bin74, AT00]. We evaluated the width
of the density, in degrees, at 95% confidence – that is, the size of the symmetric region
of the density which includes 95% of its probability. In our data, each node observed 3-4
VPs on average; vanishing points within each node were estimated to within about 0.1◦ (2
milliradians).

3.2 Global Consistency Metrics

Our global consistency metrics are those that apply to collections of nodes at different positions in
space, and to the scene quantities (vanishing points and point features) to which the mosaics are
registered. We use these global consistency metrics:

• Scene VP spreads. When multiple mosaics observe a single vanishing point, the degree to
which they agree on the absolute direction of the VP is a measure of consistency. For each
globally observed VP, we determined the number of nodes that observed it, and the width of
the consensus VP direction (using the 95% confidence bound described above). Typical global
VP variances were 1-2 milliradians (0.05 − 0.1◦) on average, and 2-4 milliradians (0.1 − 0.2◦)
worst case, or about 1-4 pixels of misalignment at our highest image resolution [AT00].

• Node position spreads. We computed uncertainty estimates for the recovered node po-
sitions by evaluating the average and maximum sizes at which 95% confidence bounds are
reached for the recovered Gaussian densities. Node positions were estimated to 5-6 centime-
ters on average, and 8-11 centimeters worst case [AT02].

• Epipolar residuals. Our translation registration algorithm produces soft (probabilistic)
correspondences between observed scene points. For each soft point match with probability
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greater than a threshold (we use p ≥ 0.8), we evaluated the mean, maximum, and variance
of the distance in image space between the 2D point feature and the epipolar line of its
correspondent feature [AT02]. Epipolar alignment was consistent on average to within 1-4
pixels, with worst-case deviation 5-6 pixels and standard deviation about 2 pixels.

• Pairwise 3D Point feature residuals. We assessed end-to-end 3D feature consistency
using the thresholded match probabilities, by extruding the implicated point features to 3D
rays, and evaluating the average and maximum 3-D distance (in centimeters) between rays
extruded from adjacent nodes. The mean and maximum residuals were 10-15 and 13-20
centimeters, respectively, with a standard deviation of 3-6 centimeters [AT02].

4 Web Interface

An interactive interface to the dataset is available at http://city.lcs.mit.edu/data. The inter-
face depicts acquired nodes overlaid on a geo-referenced map (Figure 7). Each node is color-coded

Figure 7: The web interface to geo-referenced nodes (points), adjacencies (edges) and map.

by the type of calibration metadata available for the node (some nodes have no revised position
estimates, so are posted only with orientation estimates). The user may select any individual node
for examination, producing a node inspection page in which the full node mosaic and the node’s con-
stituent (log-radiance) images are displayed (Figure 8). This page also displays the omni-directional
image mosaic for the node, which can be panned and zoomed interactively, exposure-adjusted, and
overlaid with extracted features and other information. Each node page includes links to the node’s
raw image data, ASCII intrinsic and extrinsic calibration data, and consistency information. Near
the mosaic viewer is a “mini-map” of node context, showing the node’s neighbors in the adjacency
graph. Selecting a node from the mini-map brings up the inspection view for the indicated node.

Selecting an edge from the mini-map brings up an epipolar geometry view for the implicated
node pair (Figure 9). This view depicts each node position as a small cross in the counterpart node.
The user can indicate a point in either node, and see the point’s epipolar line (ruled with metric
tick marks) displayed in the adjacent node.
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Figure 8: The web interface to one node, with a cylindrical mosaic (left), an interactive perspective
view of the spherical mosaic (right), and a “mini-map” of the node’s context (center).

Figure 9: The web interface to the epipolar geometry of a pair of nodes.
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5 Existing Datasets and Related Work

This section briefly reviews existing systems and methods for acquiring geo-referenced image datasets.

5.1 Satellite-Based (Robotic) Acquisition

A number of robotic mapping systems (e.g., [NAS]) incorporate satellites which continuously acquire
high-altitude imagery of Earth. These systems provide a wealth of data about regions with limited
vertical relief (oceans, much natural terrain, etc.). Since detailed information is maintained about
each satellite’s orbital parameters, the images acquired can be geo-referenced fairly accurately by
the sensor itself; one data interchange site for publically available imagery [Geo] states registration
to within about twelve meters on the surface of the Earth. Commercial systems, and presumably
classified systems, provide even higher accuracy.

These systems are less useful for imaging high-relief regions such as cities. Here, a satellite
at a great distance from the scene can acquire only near-nadir views (in which case near-vertical
surfaces are imaged very obliquely) or near-horizon views (in which case most near-vertical surfaces
are largely occluded). For urban environments, a near-ground sensor is necessary to acquire unoc-
cluded, nearly fronto-parallel views of these surface. Autonomous low-altitude flying vehicles (e.g.
[SDF+98]) exist, but have not yet been demonstrated to acquire accurately geo-referenced imagery.

5.2 Interactive (Semi-Automated) Methods

Another route to acquiring near-ground, geo-referenced imagery is through manual interaction.
A variety of semi-automated methods have been proposed for recovering exterior parameters for
small image sets, in applications for photogrammetry [Wol74, Sla80, Gre97], digital mapping, and
computer graphics scene modeling [BB95, DTM96, SHS98]. These systems combine automated
or semi-automated feature detection with semi-automated bundle adjustment, in which a human
operator indicates or selects corresponding point features across multiple images. Sometimes, geo-
referenced points (e.g., painted crosses) are placed in the scene before the sensor is deployed. In
this case, the human user can geo-reference the imagery by associating features visible in the image
to known features in an existing geo-referenced feature set.

Semi-automated methods are fundamentally limited in a number of respects. First, these meth-
ods are scale-limited; the number of person-hours required to process a dataset of more than a
few hundred images would be prohibitive in most situations. Human operators typically rely on
every pair of images overlapping in some fashion, so that common elements can be indicated; in
extended datasets, most image pairs are completely unrelated due to occlusion. Second, interac-
tive methods are vulnerable to human failings: errors and short-cuts. Humans may make errors
by indicating incorrect matches in ambiguous situations (for example in the presence of occlusion
and visual clutter). Also, we have observed that human operators tend to specify only as many
constraints as are required for nominal convergence of the underlying optimization. These practices
generate insufficient or erroneous constraints, and unstable bundle adjustment solutions. Finally,
we note that semi-automated methods do not scale with underlying technology (i.e., CPU speed),
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but rather have the human operator, whose throughput is essentially fixed, as their bottleneck.
Thus, the throughput of a semi-automated system will improve little over time.

5.3 Summary

The state of existing work can be summarized as follows. Although there are other sensor platforms
that produce geo-referenced imagery, they produce data that is not suitable for close-range urban
mapping. Similarly, although interactive bundle adjustment techniques for image registration exist,
they do not scale well to the huge image datasets needed for modeling extended areas. Prior to
the acquisition system used to collect the datasets described in this paper, no scalable, automated
system had been demonstrated to acquire close-range, accurately geo-referenced imagery of urban
areas.

6 Conclusion

We described an intrinsically and extrinsically calibrated terrestrial image dataset acquired within
an extended region on the MIT campus. The dataset is available on-line in a format that supports
interactive browsing and download.

The acquisition system that produced this dataset operates under the assumption that its sensor
has been deployed in an urban area, one exhibiting at least two vanishing points in every omni-
directional observation, and point features that are persistently visible under camera motions of a
few meters. The dataset contains many images, acquired over a large area. The exterior calibration
information associated with the images is self-consistent to a few centimeters of position and a
fraction of a degree of orientation. Due to its scale and extent, achieving comparable datasets using
current semi-automated methods would require substantial manual effort. Our automated system,
in contrast, enables accurate, large-scale image registration.

We have made this data available to the research community in the hope that it will be use-
ful to researchers and developers of large-scale image self-calibration and registration algorithms,
image-based rendering and metric 3D reconstruction from calibrated image datasets, and digital
cartography and GIS applications.

A Data Conventions and Formats

This appendix describes image, calibration (intrinsic and extrinsic), and feature data at each stage
of system processing. We also describe the format of a number of data files used within the system
to represent these elements, and the organization of these files in the on-line repository.

A.1 Coordinate Information

A coordinate information file resides at the top of the data hierarchy. It specifies an external
coordinate system for reference, and the dataset’s origin and coordinate axes expressed in this
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coordinate system. Here, for example, is the coordinate information file for one of our datasets:

CITY_LOCAL_TANGENT_PLANE

DATUM WGS84

LTP_LATITUDE_DEG 42.363371136

LTP_LONGITUDE_DEG -71.090968114

LTP_ALTITUDE_M 46.41

LTP_TO_ECEF_XFORM_ROW1 -0.67383016 -0.535169569 0.509457014 3255071.19

LTP_TO_ECEF_XFORM_ROW2 0.738886267 -0.488049937 0.464601273 2968474.63

LTP_TO_ECEF_XFORM_ROW3 0 0.689493141 0.724292212 4596736.62

LTP_TO_ECEF_XFORM_ROW4 0 0 0 1

The DATUM element specifies the WGS84 ECEF (Earth-centered, Earth-fixed) datum [HWLC97]
as an external reference. The first three LTP fields specify the latitude, longitude, and altitude of our
coordinate system origin (in this case, a GPS base station on the roof of our building) with respect to
the base datum, in degrees and meters respectively. Finally, the four fields LTP TO ECEF XFORM ROWi
specify the rows of a 4 × 4 matrix that converts a column vector (x, y, z, 1)T , expressed in LTP
coordinates, to ECEF coordinates.

In ECEF coordinates (which are right-handed), the origin is at the center of the reference
ellipsoid; the positive x axis pierces the equator and the prime meridian; the positive z axis pierces
the North pole; and the positive y axis is orthogonal to the x and z axes. In LTP coordinates (also
right-handed), the origin is specified in ECEF coordinates, and ẑ points away from the center of the
WGS84 ellipsoid (in Cambridge, this direction deviates roughly 1.7 milliradians from the gravity
vector). Finally, LTP x̂ and ŷ are the projections of due East and due North directions, respectively,
into the “local level plane” normal to ẑ.

A.2 Image Descriptor Files

The image data is uploaded to the laboratory servers in a directory named according to the date
and time of the start of the acquisition run, and in a file named according to the date, time and
approximate position of the image shuttering. All images are stored in a lossless RGB format. With
each acquired image, the sensor associates an image descriptor file and a pose descriptor file. At
the time of shuttering, an image descriptor file is produced by the sensor process that controls the
pan-tilt head and shutters the camera. This file captures all shuttering-specific information (except
the camera’s intrinsic and extrinsic parameters), including:

• A header field CITY INFO;

• Digital camera identifier (make and model);

• Date and time (GMT) of image acquisition;

• The source of the image (sensor or program);

• The image type (radiance) and pixel type (log-radiance);
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• Image width and height in pixels, and number of color channels (3);

• Exposure bracketing and photometric calibration information; and

• The lens focal length and aperture setting used.

Here is an example image descriptor file produced by our sensor:

CITY_INFO

GMT_YEAR 2000

GMT_MONTH 4

GMT_DAY 25

GMT_HOUR 20

GMT_MINUTE 2

GMT_SECOND 14

IMAGE_TYPE radiance-image

IMAGE_WIDTH 1300

IMAGE_HEIGHT 1030

DEPTH 3

PIXEL_TYPE log-radiance-map

NUM_AVERAGED 3

NUM_EXPOSURES 5

EXPOSURE_TIMES 9.70E-5 1.27E-2 2.53E-2 5.06E-2 1.01E-1

MAX_RADIANCE 3.6183085441589355

MIN_RADIANCE -0.7229903340339661

CAMERA_TYPE Wintriss-1300ASC

APERTURE 16.0

LENS 8.5mm

GAMMA1 -0.1875479966402054

GAMMA2 0.2141740024089813

CAMERA_SPECIFIC

The image files store only eight bits per color channel. We convert the color channel value, stored
in the image file, into a radiance value proportional to the flux of light coming into the camera as:

r ∝ exp [((p/255 ∗ (RADMAX − RADMIN)) + RADMIN) − 2 ln (f)] ,

effectively scaling radiance by the reciprocal of the aperture squared.
Raw values of 0 and 255 are used as sentinels to mark undersaturated and saturated pixels,

respectively. There are few such pixels in the data; they occur only when the camera observes very
dark areas, or very bright specular reflections, or the sun itself.

A.3 Camera Pose Descriptor Files

For each image, a camera pose descriptor file is logged by a separate process that controls the
sensor navigation system. This file captures what is known of the camera’s intrinsic and extrinsic
parameters at the time of each image acquisition. This file includes fields describing:
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• Digital camera identifier (make and model);

• The source of the image (sensor or program);

• Image width, height (in pixels);

• Camera focal length (in pixels);

• Camera principal point cx, cy;

• Camera skew (assumed zero);

• Camera LTP position (x, y, z);

• Camera orientation (q0, q1, q2, q3).

Here is an example pose descriptor file produced by our sensor:

CITY_CAMERA Wintriss-1300ASC

SOURCE ARGUS

WIDTH 1299

HEIGHT 1027

FOCAL_X 1192.14

FOCAL_Y 1197.48

SKEW 0

CENTER_X 627.627

CENTER_Y 487.751

TRANSLATION 265.491 -371.936 -42.213

ROTATION 0.0418 0.064 -0.696 0.714

The translation field represents the position of the camera’s optical center, expressed in LTP
coordinates. We represent the rotation field as a quaternion that, when converted to matrix form
[Sho85], expresses the rotation that takes coordinates expressed in world (LTP) coordinates into the
camera coordinate system. In camera coordinates, the Z axis is aligned along the positive optical
axis of the camera (i.e., Z increases into the image), X goes from left to right when looking through
the camera, and Y increases downward on the image.

Each subsequent processing stage that modifies the rotation or translation fields appends tokens
to the file describing the result of processing. For example, upon successful termination, the mosaic
process writes two lines to each pose descriptor file:

MOSAIC_STATUS CONVERGENT

MOSAIC_RESIDUE 0.029940

where the status field reports convergence, and the residue field is as described in Section 3.1.
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A.4 Node Descriptor Files

At each sensor position, a collection of images is acquired about a common optical center. We
call this image collection a “node.” Each image is indexed, zero-relative, with respect to the “base
image,” i.e. the first image acquired in each node. Each node has a “node descriptor file,” containing
the number of images in the node, and the index of the base image. Here is a node descriptor file
produced by the sensor:

CITY_NODE

NUM_IMAGES 20

BASE_IMAGE 0

With each node is also associated a “mosaic adjacency graph” file listing, for each image index,
those images that have significant overlap with this one in the mosaic tiling. Here is an example
adjacency file for a 20-image tiling (comment lines begin with #):

# Automatically generated adjacency graph

# Number after central image, ordered by overlap area

0 : 1 7 15

1 : 0 2 14

2 : 1 3 13

[additional node adjacency descriptors omitted]

A.5 Feature Descriptor Files

The system uses edge features and intersection-based point features, both localized to sub-pixel
precision and stored in ASCII format. Here is an example edge feature descriptor file:

XRES YRES

NEDGES

BEGIN_EDGE 56

POINTS x1 276.035248 y1 133.566696 x2 197.981735 y2 136.868851

COV c11 0.00 c12 0.00 c13 0.00 c22 0.00 c23 0.00 c33 0.00

LEN 78.123329

MAG 15.086859

LINE a 0.042269 b 0.999106 c 145.114929

END_EDGE

[additional edge feature descriptors omitted]

Here is an example point feature descriptor file:

XRES YRES

NPOINTS

BEGIN INTERSECTION

EDGES 2

ID 650

IMAGE_X 112.5921173096
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IMAGE_Y 361.2429504395

EDGE_MAGNITUDE 42741.8007812500

LENGTH 43024.5351562500

ANGLE -1.5103152990

...

END INTERSECTION

[additional point feature descriptors omitted]

A.6 Vanishing Point Descriptor Files

The rotational registration stage detects the scene vanishing points (VP) observed by each node.
The results are stored in a VP descriptor file. The VP direction is expressed in node coordinates,
and the VP variance (i.e., width at 95% confidence) is expressed in degrees squared. NumPoints
refers to the number of image features combined to produce the VP direction estimate. Here is an
example VP descriptor file for a single node.

Num 4

VP -0.994017225652078 -0.041513024196319 0.101026847565489

Variance 0.000172442672632687

NumPoints 54

[additional node VP descriptors omitted]

After rotational registration of all nodes to a common coordinate system, a vanishing point
descriptor file is produced for the entire dataset. This file describes the union of all vanishing
points observed by all nodes in the dataset. Here is an example global VP descriptor file, with VP
directions expressed in LTP coordinates, and variances in degrees squared:

Num 8

VP 0.880051924246545 0.474578089570595 0.0168596420328816

Variance 2.61946183099412E-05

[additional global VP descriptors omitted]
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