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Abstract

This paper describes a new model for understanding natural
language commands given to autonomous systems that per-
form navigation and mobile manipulation in semi-structured
environments. Previous approaches have used models with
fixed structure to infer the likelihood of a sequence of ac-
tions given the environment and the command. In contrast,
our framework, called Generalized Grounding Graphs (G3),
dynamically instantiates a probabilistic graphical model for a
particular natural language command according to the com-
mand’s hierarchical and compositional semantic structure.
Our system performs inference in the model to successfully
find and execute plans corresponding to natural language
commands such as “Put the tire pallet on the truck.” The
model is trained using a corpus of commands collected us-
ing crowdsourcing. We pair each command with robot ac-
tions and use the corpus to learn the parameters of the model.
We evaluate the robot’s performance by inferring plans from
natural language commands, executing each plan in a realistic
robot simulator, and asking users to evaluate the system’s per-
formance. We demonstrate that our system can successfully
follow many natural language commands from the corpus.

1 Introduction

To be useful teammates to human partners, robots must be
able to robustly follow spoken instructions. For example,
a human supervisor might tell an autonomous forklift, “Put
the tire pallet on the truck,” or the occupant of a wheelchair
equipped with a robotic arm might say, “Get me the book
from the coffee table.” Such commands are challenging be-
cause they involve events (“Put”), objects (“the tire pallet”),
and places (“on the truck”), each of which must be grounded
to aspects of the world and which may be composed in many
different ways. Figure 1 shows some of the wide variety of
human-generated commands that our system is able to fol-
low for the robotic forklift domain.
We frame the problem of following instructions as infer-

ring the most likely robot state sequence from a natural lan-
guage command. Previous approaches (Kollar et al., 2010;
Shimizu and Haas, 2009) assume that natural language com-
mands have a fixed and flat structure that can be exploited
when inferring actions for the robot. However, this kind of
fixed and flat sequential structure does not allow for variable

1The first three authors contributed equally to this paper.

(a) Robotic forklift

Commands from the corpus

- Go to the first crate on the left
and pick it up.

- Pick up the pallet of boxes in the
middle and place them on the
trailer to the left.

- Go forward and drop the pallets to
the right of the first set of
tires.

- Pick up the tire pallet off the
truck and set it down

(b) Sample commands

Figure 1: A target robotic platform for mobile manipulation
and navigation (Teller et al., 2010), and sample commands
from the domain, created by untrained human annotators.
Our system can successfully follow these commands.

arguments or nested clauses. At training time, when using
a flat structure, the system sees the entire phrase “the pallet
beside the truck” and has no way to separate the meanings of
relations like “beside” from objects such as “the truck.” Fur-
thermore, a flat structure ignores the argument structure of
verbs. For example, the command “put the box on the pallet
beside the truck,” has two arguments (“the box” and “on the
pallet beside the truck”), both of which are necessary to learn
an accurate meaning for the verb “put.” In order to infer the
meaning of unconstrained natural language commands, it is
critical for the model to exploit these compositional and hi-
erarchical linguistic structures at both learning and inference
time.

To address these issues, we introduce a new model called
Generalized Grounding Graphs (G3). A grounding graph is
a probabilistic graphical model that is instantiated dynami-
cally according to the compositional and hierarchical struc-
ture of a natural language command. Given a natural lan-
guage command, the structure of the grounding graphmodel
is induced using Spatial Description Clauses (SDCs), a se-
mantic structure introduced by Kollar et al. (2010). Each
SDC represents a linguistic constituent from the command
that can be mapped to an aspect of the world or grounding,
such as an object, place, path or event. In the G3 frame-



work, the structure of each individual SDC and the random
variables, nodes, and edges in the overall grounding graph
depend on the specific words in the text.
The model is trained on a corpus of natural language com-

mands paired with groundings for each part of the com-
mand, enabling the system to automatically learn meanings
for words in the corpus, including complex verbs such as
“put” and “take.” We evaluate the system in the specific
domain of natural language commands given to a robotic
forklift, although our approach generalizes to any domain
where linguistic constituents can be associated with specific
actions and environmental features. Videos of example com-
mands paired with inferred action sequences can be seen at
http://spatial.csail.mit.edu/grounding.

2 Related Work

Beginning with SHRDLU (Winograd, 1970), many systems
have exploited the compositional structure of language to
statically generate a plan corresponding to a natural lan-
guage command (Dzifcak et al., 2009; Hsiao et al., 2008;
MacMahon, Stankiewicz, and Kuipers, 2006; Skubic et al.,
2004). Our work moves beyond this framework by defining
a probabilistic graphical model according to the structure of
the natural language command, inducing a distribution over
plans and groundings. This approach enables the system to
learn models for the meanings of words in the command and
efficiently perform inference overmany plans to find the best
sequence of actions and groundings corresponding to each
part of the command.

Others have used generative and discriminative models
for understanding route instructions, but did not use the hi-
erarchical nature of the language to understand mobile ma-
nipulation commands (Kollar et al., 2010; Matuszek, Fox,
and Koscher, 2010; Vogel and Jurafsky, 2010). Shimizu and
Haas (2009) use a flat, fixed action space to train a CRF that
followed route instructions. Our approach, in contrast, in-
terprets a grounding graph as a structured CRF, enabling the
system to learn over a rich compositional action space.
The structure of SDCs builds on the work of Jackendoff

(1983), Landau and Jackendoff (1993) and Talmy (2005),
providing a computational instantiation of their formalisms.
Katz (1988) devised ternary expressions to capture relations
between words in a sentence. The SDC representation adds
types for each clause, each of which induces a candidate
space of groundings, as well as the ability to represent mul-
tiple landmark objects, making it straightforward to directly
associate groundings with SDCs.

3 Approach

Our system takes as input a natural language command and
outputs a plan for the robot. In order to infer a correct
plan, it must find a mapping between parts of the natu-
ral language command and corresponding groundings (ob-
jects, paths, and places) in the world. We formalize this
mapping with a grounding graph, a probabilistic graphical
model with random variables corresponding to groundings
in the world. Each grounding is taken from a semantic map
of the environment, which consists of a metric map with the

location, shape and name of each object and place, along
with a topology that defines the environment’s connectivity.
At the top level, the system infers a grounding correspond-
ing to the entire command, which is then interpreted as a
plan for the robot to execute.
More formally, we define Γ to be the set of all ground-

ings γi for a given command. In order to allow for uncer-
tainty in candidate groundings, we introduce binary corre-
spondence variables Φ; each φi ∈ Φ is true if γi ∈ Γ is
correctly mapped to part of the natural language command,
and false otherwise. Then we want to maximize the condi-
tional distribution:

argmax
Γ

p(Φ = True|command,Γ) (1)

This optimization is different from conventional CRF infer-
ence, where the goal is to infer the most likely hidden labels
Φ. Although our setting is discriminative, we fix the corre-
spondence variablesΦ and search over features induced byΓ
to find the most likely grounding. By formulating the prob-
lem in this way, we are able to perform domain-independent
learning and inference.

3.1 Spatial Description Clauses

The factorization of the distribution in Equation 1 is defined
according to the grounding graph constructed for a natural
language command. To construct a probabilistic model ac-
cording to the linguistic structure of the command, we de-
compose a natural language command into a hierarchy of
Spatial Description Clauses or SDCs (Kollar et al., 2010).
Each SDC corresponds to a constituent of the linguistic in-
put and consists of a figure f , a relation r, and a variable
number of landmarks li. A general natural language com-
mand is represented as a tree of SDCs. SDCs for the com-
mand “Put the tire pallet on the truck” appear in Figure 2a,
and “Go to the pallet on the truck” in Figure 3a. Leaf SDCs
in the tree contain only text in the figure field, such as “the
tire pallet.” Internal SDCs have other fields populated, such
as “the tire pallet on the truck.” The figure and landmark
fields of internal SDCs are always themselves SDCs. The
text in fields of an SDC does not have to be contiguous. For
phrasal verbs such as “Put the tire pallet down,” the relation
field contains “Put down,” and the landmark field is “the tire
pallet.”
Kollar et al. (2010) introduced SDCs and used them to

define a probabilistic model that factors according to the se-
quential structure of language. Here we change the formal-
ism slightly to collapse the verb and spatial relation fields
into a single relation and exploit the hierarchical structure of
SDCs in the factorization of the model.
The system infers groundings in the world correspond-

ing to each SDC. To structure the search for groundings
and limit the size of the search space, we follow Jackend-
off (1983) and assign a type to each SDC:

• EVENT An action sequence that takes place (or should
take place) in the world (e.g. “Move the tire pallet”).

• OBJECT A thing in the world. This category includes
people and the robot as well as physical objects (e.g.
“Forklift,” “the tire pallet,” “the truck,” “the person”).



EV ENT1(r = Put,
l = OBJ2(f = the pallet),
l2 = PLACE3(r = on,

l = OBJ4(f = the truck)))
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Figure 2: (a) SDC tree for “Put the pallet on the truck.” (b)
Induced graphical model and factorization.

• PLACE A place in the world (e.g. “on the truck,” or “next
to the tire pallet”).

• PATH A path or path fragment through the world (e.g.
“past the truck,” or “toward receiving”).

Each EVENT and PATH SDC contains a relation with
one or more core arguments. Since almost all relations (e.g.
verbs) take two or fewer core arguments, we use at most
two landmark fields l1 and l2 for the rest of the paper. We
have built an automatic SDC extractor that uses the Stan-
ford dependencies, which are extracted using the Stanford
Parser (de Marneffe, MacCartney, and Manning, 2006).

3.2 Generalized Grounding Graphs

We present an algorithm for constructing a grounding graph
according to the linguistic structure defined by a tree of
SDCs. The induced grounding graph for a given command
is a bipartite factor graph corresponding to a factorization of
the distribution from Equation 1 with factorsΨi and normal-
ization constant Z:

p(Φ|commands,Γ) =p(Φ|SDCs,Γ) (2)

=
1

Z

∏

i

Ψi(φi, SDCi,Γ) (3)

The graph has two types of nodes: random variables and
factors. First we define the following random variables:

• φi True if the grounding γi corresponds to ith SDC, and
false otherwise.

EV ENT1(r = Go

l = PATH2(r = to,
l = OBJ3(f = OBJ4(f = the pallet),

r = on,
l = OBJ5(f = the truck))))

(a) SDC tree
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(b) Induced model

Figure 3: (a) SDC tree for “Go to the pallet on the truck.” (b)
A different induced factor graph from Figure 2. Structural
differences between the two models are highlighted in gray.

• λ
f
i The words of the figure field of the ith SDC.

• λr
i The words of the relation field of the i

th SDC.

• λl1
i , λ

l2
i The words of the first and second landmark fields

of the ith SDC; if non-empty, always a child SDC.

• γ
f
i , γ

l1
i , γl2

i ∈ Γ The groundings associated with the cor-

responding field(s) of the ith SDC: the state sequence of
the robot (or an object), or a location in the semantic map.

For a phrase such as “the pallet on the truck,” λr
i is the

word “on,” and γ
f
i and γl1

i correspond to objects in the
world, represented as a location, a bounding box, and a list
of labels. φi would be true if the induced features between

γ
f
i and γl1

i correspond to “on,” and false otherwise.

Each random variable connects to one or more factor
nodes, Ψi. Graphically, there is an edge between a variable
and a factor if the factor takes that variable as an argument.
The specific factors created depend on the structure of the
SDC tree. The factorsΨ fall into two types:

• Ψ(φi, λ
f
i , γi) for leaf SDCs.

• Ψ(φi, λ
r
i , γ

f
i , γ

l1
i ) or Ψ(φi, λ

r
i , γ

f
i , γ

l1
i , γl2

i ) for internal
SDCs.

Leaf SDCs contain only λ
f
i and a grounding γ

f
i . For ex-

ample, the phrase “the truck” is a leaf SDC that generates

the subgraph in Figure 3 containing variables γ5, φ5 and λ
f
5
.

The value of γ5 is an object in the world, and φ5 is true if the



object corresponds to the words “the truck” and false other-
wise (for example, if γ5 was a pallet).
An internal SDC has text in the relation field and SDCs

in the figure and landmark fields. For these SDCs, φi de-
pends on the text of the relation field, and the groundings
(rather than the text) of the figure and landmark fields. For
example, “the pallet on the truck” is an internal SDC, with
a corresponding grounding that is a place in the world. This
SDC generates the subgraph in Figure 3 containing the vari-
ables γ4, γ5, φ3, and λ

r
3
. φ3 is true if γ4 is “on” γ5, and false

otherwise.
Figures 2 and 3 show the SDC trees and induced ground-

ing graphs for two similar commands: “Put the pallet on the
truck” and “Go to the pallet on the truck.” In the first case,
“Put” is a two-argument verb that takes an OBJECT and a
PLACE. The model in Figure 2b connects the grounding γ3
for “on the truck” directly to the factor for “Put.” In the
second case, “on the truck” modifies “the pallet.” For this
reason, the grounding γ4 for “on the truck” is connected to
“the pallet.” The differences between the two models are
highlighted in gray.
In this paper we use generalized grounding graphs to de-

fine a discriminative model in order to train the model from
a large corpus of data. However, the same graphical formal-
ism can also be used to define factors for a generative graph-
ical model, or even a constraint network that does not take
a probabilistic approach at all. For example, the generative
model described in Kollar et al. (2010) for following route
instructions is a special case of this more general framework.
We model the distribution in Equation 2 as a conditional

random field in which each potential function Ψ takes the
following form (Lafferty, McCallum, and Pereira, 2001):

Ψi(φi, SDCi,Γ) = exp

(

∑

k

µksk(φi, SDCi,Γ)

)

(4)

Here, sk are feature functions that take as input the binary
correspondence variable, an SDC and a set of groundings
and output a binary decision. The µk are the weights corre-
sponding to the output of a particular feature function.
At training time, we observe SDCs, their corresponding

groundings Γ, and the output variable Φ. In order to learn
the parameters µk that maximize the likelihood of the train-
ing dataset, we compute the gradient, and use the Mallet
toolkit (McCallum, 2002) to optimize the parameters of the
model via gradient descent with L-BFGS (Andrew and Gao,
2007). When inferring a plan, we optimize over Γ by fixing
Φ and the SDCs as in Equation 1.

3.3 Features

To train the model, the system extracts binary features sk for
each factor Ψi. These features correspond to the degree to
which each Γ correctly grounds SDCi. For a relation such as
“on,” a natural feature is whether the the landmark ground-
ing supports the figure grounding. However, the feature

supports(γf
i , γ

l
i) alone is not enough to enable the model

to learn that “on” corresponds to supports(γf
i , γ

l
i). Instead

we need a feature that also takes into account the word “on:”

supports(γf
i , γ

l
i) ∧ (“on” ∈ λr

i ) (5)

More generally, we implemented a set of base features
involving geometric relations between the γi. Then to com-
pute features sk we generate the Cartesian product of the
base features with the presence of words in the correspond-
ing fields of the SDC. A second problem is that many natu-
ral features between geometric objects are continuous rather
than binary valued. For example, for the relation “next to,”

one feature is the normalized distance between γ
f
i and γl

i .
To solve this problem, we discretize continuous features into
uniform bins. We use 49 base features for leaf OBJECT
and PATH SDCs, 56 base features for internal OBJECT and
PATH SDCs, 112 base features for EVENT SDCs and 47
base features for PATH SDCs. This translates to 147,274
binary features after the Cartesian product with words and
discretization.
For OBJECTs and PLACEs, geometric features corre-

spond to relations between two three-dimensional boxes in
the world. All continuous features are first normalized so
they are scale-invariant, then discretized to be a set of binary
features. Examples include

• supports(γf
i , γ

l
i). For “on” and “pick up.”

• distance(γf
i , γ

l
i). For “near” and “by.”

• avs(γf
i , γ

l
i). For “in front of” and “to the left of.” At-

tention Vector Sum or AVS (Regier and Carlson, 2001)
measures the degree to which relations like “in front of”
or “to the left of” are true for particular groundings.

In order to compute features for relations like “to the left”
or “to the right,” the system needs to compute a frame of ref-
erence, or the orientation of a coordinate system. We com-
pute these features for frames of reference in all four cardi-
nal directions at the agent’s starting orientation, the agent’s
ending orientation, and the agent’s average orientation dur-
ing the action sequence.
For PATH and EVENT SDCs, groundings correspond to

the location and trajectory of the robot and any objects it
manipulates over time. Base features are computed with re-
spect to the entire motion trajectory of a three-dimensional
object through space. Examples include:

• The displacement of a path toward or away from a ground
object.

• The average distance of a path from a ground object.

We also use the complete set of features described in
Tellex (2010). Finally, we compute the same set of fea-
tures as for OBJECTs and PLACEs using the state at the
beginning of the trajectory, the end of the trajectory, and the
average during the trajectory.
The system must map noun phrases such as “the wheel

skid” to a grounding γ
f
i for a physical object in the

world with location, geometry, and a set of labels such as
{“tires”, “pallet”}. To address this issue we introduce a sec-
ond class of base features that correspond to the likelihood
that an unknown word actually denotes a known concept.
The system computes word-label similarity in two ways:
using WordNet; and from co-occurrence statistics obtained
by downloading millions of images and corresponding tags
from Flickr (Kollar et al., 2010).



3.4 Inference

Given a command, we want to find the set of most probable
groundings. During inference, we fix the values ofΦ and the
SDCs and search for groundings Γ that maximize the prob-
ability of a match, as in Equation 1. Because the space of
potential groundings includes all permutations of object as-
signments, as well as every feasible sequence of actions the
agent might perform, the search space becomes large as the
number of objects and potential manipulations in the world
increases. In order to make the inference tractable, we use a
beam search with a fixed beam-width of twenty in order to
bound the number of candidate groundings considered for
any particular SDC.

A second optimization is that we search in two passes:
the algorithm first finds and scores candidate groundings for
OBJECT and PLACE SDCs, then uses those candidates to
search the much larger space of robot action sequences, cor-
responding to EVENTs and PATHs. This optimization ex-
ploits the types and independence relations among SDCs to
structure the search so that these candidates need to be com-
puted only once, rather than for every possible EVENT.

Once a full set of candidate OBJECT and PLACE ground-
ings is obtained up to the beam width, the system searches
over possible action sequences for the agent, scoring each
sequence against the language in the EVENT and PATH
SDCs of the command. After searching over potential ac-
tion sequences, the system returns a set of object groundings
and a sequence of actions for the agent to perform. Figure 4
shows the actions and groundings identified in response to
the command “Put the tire pallet on the truck.”

4 Evaluation

To train and evaluate the system, we collected a corpus of
natural language commands paired with robot actions and
environment state sequences. We use this corpus both to
train the model and to evaluate end-to-end performance of
the system when following real-world commands from un-
trained users.

4.1 Corpus

To quickly generate a large corpus of examples of language
paired with robot plans, we posted videos of action se-
quences to Amazon’sMechanical Turk (AMT) and collected
language associated with each video. The videos showed a
simulated robotic forklift engaging in an action such as pick-
ing up a pallet or moving through the environment. Paired
with each video, we had a complete log of the state of the
environment and the robot’s actions. Subjects were asked to
type a natural language command that would cause an ex-
pert human forklift operator to carry out the action shown
in the video. We collected commands from 45 subjects for
twenty-two different videos showing the forklift executing
an action in a simulated warehouse. Each subject interpreted
each video only once, but we collected multiple commands
(an average of 13) for each video.

Actions included moving objects from one location to an-
other, picking up objects, and driving to specific locations.

Subjects did not see any text describing the actions or ob-
jects in the video, leading to a wide variety of natural lan-
guage commands including nonsensical ones such as “Load
the forklift onto the trailer,” and misspelled ones such as
“tyre” (tire) or “tailor” (trailer). Example commands from
the corpus are shown in Figure 1.

To train the system, each SDC must be associated with
a grounded object in the world. We manually annotated
SDCs in the corpus, and then annotated each OBJECT and
PLACE SDC with an appropriate grounding. Each PATH
and EVENT grounding was automatically associated with
the action or agent path from the log associated with the
original video. This approximation is faster to annotate but
leads to problems for compound commands such as “Pick
up the right skid of tires and place it parallel and a bit closer
to the trailer,” where each EVENT SDC refers to a different
part of the state sequence.

The annotations above provided positive examples of
grounded language. In order to train the model, we also need
negative examples. We generated negative examples by as-
sociating a random groundingwith each SDC. Although this
heuristic works well for EVENTs and PATHs, ambiguous
object SDCs such as “the pallet” or “the one on the right,”
are often associated with a different, but still correct object
(in the context of that phrase alone). For these examples we
re-annotated them as positive.

4.2 Cost Function Evaluation

Using the annotated data, we trained the model and evalu-
ated its performance on a held-out test set in a similar envi-
ronment. We assessed the model’s performance at predict-
ing the correspondence variable given access to SDCs and
groundings. The test set pairs a disjoint set of scenarios from
the training set with language given by subjects from AMT.

SDC type Precision Recall F-score Accuracy

OBJECT 0.93 0.94 0.94 0.91
PLACE 0.70 0.70 0.70 0.70
PATH 0.86 0.75 0.80 0.81

EVENT 0.84 0.73 0.78 0.80

Overall 0.90 0.88 0.89 0.86

Table 1: Performance of the learned model at predicting the
correspondence variable φ.

Table 1 reports overall performance on this test set and
performance broken down by SDC type. The performance
of the model on this corpus indicates that it robustly learns to
predict when SDCs match groundings from the corpus. We
evaluated how much training was required to achieve good
performance on the test dataset and found that the test error
asymptotes at around 1,000 (of 3,000) annotated SDCs.

For OBJECT SDCs, correctly-classified high-scoring ex-
amples in the dataset include “the tire pallet,” “tires,” “pal-
let,” “pallette [sic],” “the truck,” and “the trailer.” Low-
scoring examples included SDCs with incorrectly annotated
groundings that the system actually got right. A second class
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Figure 4: A sequence of the actions that the forklift takes in response to the command, “Put the tire pallet on the truck.” (a) The
search grounds objects and places in the world based on their initial positions. (b) The forklift executes the first action, picking
up the pallet. (c) The forklift puts the pallet on the trailer.

of low-scoring examples were due to words that did not ap-
pear many times in the corpus.
For PLACE SDCs, the system often correctly classifies

examples involving the relation “on,” such as “on the trailer.”
However, the model often misclassifies PLACE SDCs that
involve frame-of-reference. For example, “just to the right
of the furthest skid of tires” requires the model to have fea-
tures for “furthest” and the principal orientation of the “skid
of tires” to reason about which location should be grounded
to the language “to the right,” or “between the pallets on the
ground and the other trailer” requires reasoning about mul-
tiple objects and a PLACE SDC that has two arguments.
For EVENT SDCs, the model generally performs well on

“pick up,” “move,” and “take” commands. The model cor-
rectly predicts commands such as “Lift pallet box,” “Pick up
the pallets of tires,” and “Take the pallet of tires on the left
side of the trailer.” We incorrectly predict plans for com-
mands like, “move back to your original spot,” or “pull par-
allel to the skid next to it.” The word “parallel” appeared
in the corpus only twice, which was probably insufficient
to learn a good model. “Move” had few good negative ex-
amples, since we did not have in the training set, to use as
contrast, paths in which the forklift did not move.

4.3 End-to-end Evaluation

The fact that the model performswell at predicting the corre-
spondence variable from annotated SDCs and groundings is
promising but does not necessarily translate to good end-to-
end performance when inferring groundings associated with
a natural language command (as in Equation 1).
To evaluate end-to-end performance, we inferred plans

given only commands from the test set and a starting lo-
cation for the robot. We segmented commands containing
multiple top-level SDCs into separate clauses, and utilized
the system to infer a plan and a set of groundings for each
clause. Plans were then simulated on a realistic, high-fidelity
robot simulator fromwhich we created a video of the robot’s
actions. We uploaded these videos to AMT, where subjects
viewed the video paired with a command and reported their

agreement with the statement, “The forklift in the video is
executing the above spoken command” on a five-point Likert
scale. We report command-video pairs as correct if the sub-
jects agreed or strongly agreed with the statement, and in-
correct if they were neutral, disagreed or strongly disagreed.
We collected five annotator judgments for each command-
video pair.

To validate our evaluation strategy, we conducted the eval-
uation using known correct and incorrect command-video
pairs. In the first condition, subjects saw a command paired
with the original video that a different subject watched when
creating the command. In the second condition, the subject
saw the command paired with random video that was not
used to generate the original command. As expected, there
was a large difference in performance in the two conditions,
shown in Table 2. Despite the diverse and challenging lan-
guage in our corpus, new annotators agree that commands
in the corpus are consistent with the original video. These
results show that language in the corpus is understandable
by a different annotator.

Precision

Command with original video 0.91 (±0.01)
Command with random video 0.11 (±0.02)

Table 2: The fraction of end-to-end commands considered
correct by our annotators for known correct and incorrect
videos. We show the 95% confidence intervals in parenthe-
ses.

We then evaluated our system by considering three differ-
ent configurations. Serving as a baseline, the first consisted
of ground truth SDCs and a random probability distribution,
resulting in a constrained search over a random cost func-
tion. The second configuration involved ground truth SDCs
and our learned distribution, and the third consisted of auto-
matically extracted SDCs with our learned distribution.

Due to the overhead of the end-to-end evaluation, we con-



Precision

Constrained search, random cost 0.28 (±0.05)
Ground truth SDCs (top 30), learned cost 0.63 (±0.08)
Automatic SDCs (top 30), learned cost 0.54 (±0.08)
Ground truth SDCs (all), learned cost 0.47 (±0.04)

Table 3: The fraction of commands considered correct by
our annotators for different configurations of our system. We
show the 95% confidence intervals in parentheses.

sider results for the top 30 commands with the highest pos-
terior probability of the final plan correctly corresponding to
the command text for each configuration. In order to evalu-
ate the relevance of the probability assessment, we also eval-
uate the entire test set for ground truth SDCs and our learned
distribution. Table 3 reports the performance of each config-
uration along with their 95% confidence intervals. The rela-
tively high performance of the random cost function config-
uration relative to the random baseline for the corpus is due
the fact that the robot is not acting completely randomly on
account of the constrained search space. In all conditions,
the system performs statistically significantly better than a
random cost function.

The system performs noticeably better on the 30 most
probable commands than on the entire test set. This result
indicates the validity of our probability measure, suggesting
that the system has some knowledge of when it is correct and
incorrect. The system could use this information to decide
when to ask for confirmation before acting.

The system qualitatively produces compelling end-to-end
performance. Even when the system makes a mistake, it is
often partially correct. For example, it might pick up the left
tire pallet instead of the right one. Other problems stem from
ambiguous or unusual language in the corpus commands,
such as “remove the goods” or “then swing to the right,”
that make the inference particularly challenging. Despite
these limitations, however, our system successfully follows
commands such as “Put the tire pallet on the truck,” “Pick up
the tire pallet” and “put down the tire pallet” and “go to the
truck,” using only data from the corpus to learn the model.

Although we conducted our evaluation with single SDCs,
the framework supports multiple SDCs by performing beam
search to find groundings for all components in both SDCs.
Using this algorithm, the system successfully followed the
commands listed in Figure 1. These commands are more
challenging than those with single SDCs because the search
space is larger, because there are often dependencies be-
tween commands, and because these commands often con-
tain unresolved pronouns like “it.”

5 Conclusion

In this paper, we present an approach for automatically
generating a probabilistic graphical model according to the
structure of natural language navigation or mobile manip-
ulation commands. Our system automatically learns the
meanings of complex manipulation verbs such as “put” or
“take” from a corpus of natural language commands paired

with correct robot actions. We demonstrate promising per-
formance at following natural language commands from a
challenging corpus collected from untrained users.
Our work constitutes a step toward robust language under-

standing systems, but many challenges remain. One limita-
tion of our approach is the need for annotated training data.
Unsupervised or semi-supervised modeling frameworks in
which the object groundings are latent variables have the
potential to exploit much larger corpora without the expense
of annotation. Another limitation is the size of the search
space; more complicated task domains require deeper search
and more sophisticated algorithms. In particular, we plan
to extend our approach to perform inference over possible
parses as well as groundings in the world.
Our model provides a starting point for incorporating di-

alog, because it not only returns a plan corresponding to the
command, but also groundings (with confidence scores) for
each component in the command. This information can en-
able the system to identify confusing parts of the command
in order to ask clarifying questions.
There are many complex linguistic phenomena that our

framework does not yet support, such as abstract objects,
negation, anaphora, conditionals, and quantifiers. Many of
these could be addressed with a richer model, as in Liang,
Jordan, and Klein (2011). For example, our framework does
not currently handle negation, such as “Don’t pick up the
pallet,” but it might be possible to do so by fixing some cor-
respondence variables to false (rather than true) during in-
ference. The system could represent anaphora such as “it”
in “Pick up the pallet and put it on the truck” by adding a
factor linking “it” with its referent, “the pallet.” The system
could handle abstract objects such as “the row of pallets”
if all possible objects were added to the space of candidate
groundings. Since each of these modifications would sub-
stantially increase the size of the search space, solving these
problems will require efficient approximate inference tech-
niques combined with heuristic functions to make the search
problem tractable.
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