
An Atlas Framework for Scalable Mapping
Michael Bosse1 Paul Newman2 John Leonard2 Martin Soika3 Wendelin Feiten3 Seth Teller1

1Laboratory of Computer Science and 2Ocean Engineering
Massachusetts Institute of Technology
{ifni,pnewman,jleonard,seth}@mit.edu

3Siemens Corporate Technology, Information and Communications
{Martin.Soika,Wendelin.Feiten}@mchp.siemens.de

Abstract— This paper describes Atlas, a hybrid metri-
cal/topological approach to SLAM that achieves efficient
mapping of large-scale environments. The representation is
a graph of coordinate frames, with each vertex in the graph
representing a local frame, and each edge representing the
transformation between adjacent frames. In each frame, we
build a map that captures the local environment and the
current robot pose along with the uncertainties of each.
Each map’s uncertainties are modeled with respect to its
own frame. Probabilities of entities with respect to arbitrary
frames are generated by following a path formed by the edges
between adjacent frames, computed via Dijkstra’s shortest
path algorithm. Loop closing is achieved via an efficient map
matching algorithm. We demonstrate the technique running
in real-time in a large indoor structured environment (2.2
km path length) with multiple nested loops using laser or
ultrasonic ranging sensors.

I. INTRODUCTION

This paper describes Atlas, a framework in which
existing small-scale mapping algorithms can be used to
achieve real-time performance in large-scale, cyclic envi-
ronments. The approach does not maintain a single, global
coordinate frame, but rather an interconnected set of local
coordinate frames. The representation consists of a graph
of multiple local maps of limited size. Each vertex in
the graph represents a local coordinate frame, and each
edge represents the transformation between adjacent local
coordinate frames. In each local coordinate frame, we
build a map, which we refer to as a map-frame, that
captures the local environment and the current robot pose
along with their uncertainties. The spatial extent of the
map-frames is not predefined but rather determined by an
intrinsic metric of the contained map. The same metric is
used to invoke either a transition to an adjacent frame or
the genesis of a new one.

Atlas is intended to be a generic framework in which a
variety of techniques could be used as the local mapping
module. The approach assumes that a suitable local SLAM
algorithm is available that can produce consistent maps in
small-scale regions with a fixed amount of computation for
each new sensor observation. Efficient global performance
is not possible if the local SLAM method incurs an
ever-growing computational burden. For example, if local
SLAM was based on scan-matching, then only a finite

set of scans could be retained in local regions. If local
processing was based on the matching of a new sensor
scan with all of the scans ever obtained in a local region,
then local map complexity would grow linearly with time.

Each map’s uncertainties are modeled with respect
to its own local coordinate frame. The uncertainty of
the edges (adjacency transformations) in the Atlas graph
are represented by a Gaussian random variable, and are
derived from the output of the SLAM algorithm running
in a local region. A limit is placed on the per-map
computation by defining a measure of complexity for each
map-frame, which is not allowed to exceed a threshold
(the map capacity). Rather than operating on a single map
of ever-increasing complexity, the Atlas framework simply
switches its focus to a new or adjacent map-frame.

New links are added to the atlas graph via an efficient
map-matching algorithm. Potential map matches are enter-
tained only for map-frames that fall within an uncertainty
bound of the current map. Coordinate transformations and
associated error estimates are generated for the entities
in one map-frame with respect to another arbitrary map-
frame by following a path formed by the edges between
adjacent map-frames. These paths are computed using
either (1) Dijsktra’s shortest path algorithm [3], or (2)
breadth-first search (BFS). When Dijkstra’s shortest path
algorithm is used, the uncertainties of the transformations
of the edges of the graph serve as a statistical distance
metric, with a resulting order of growth of complexity
of amortized O(log n) (where n is the number of map-
frames). Alternatively, using BFS, the number of inter-
vening map-frames is used as the distance metric, and
amortized O(1) computational complexity is achieved. All
other components of Atlas have a bounded computational
cost, and hence the choice of Dijsktra vs. BFS determines
the overall order of growth of computational complexity
of the method. In the experiment results generated for this
paper, the two methods give identical performance.

Loop closing is clearly one of the most difficult issues
in SLAM research. Two different types of errors can
occur in loop closing, false positive matches and false
negative matches. The former refers to situations where
the robot erroneously asserts that a loop has been closed,

with a false match. The latter case occurs when a loop
closure has been missed, due to failure to successfully
match the current map with a previously mapped area.
Atlas adopts a very conservative loop closing strategy
which attempts to avoid false positive matches, at the
expense of missing some genuine loop closure events. It
is possible, however, for the technique to fail in situations
where the accumulated uncertainty is quite large and the
environment has a highly repetitive structure. In Atlas, we
employ a match verification procedure that has been very
effective in preventing false positive loop closure matches.
Nonetheless, one can envision adversely designed, maze-
like environments in which any known SLAM loop clos-
ing algorithm would fail.

After recognizing the closure of an extended loop, we
do not constrain the composition of adjacency transfor-
mations to be the identity transformation. This is essential
to achieving efficient real-time performance, since no
global updates are required during the robot’s motion.
The identity constraint can be applied off-line, however,
to refine the global arrangement of the multiple coordinate
frames (see Section IV)..

II. RELATED RESEARCH

Before describing the components of Atlas in more
detail, we first provide a brief review of related research.
Probabilistic techniques have proven vital in attacking
the large-scale simultaneous localization and mapping
(SLAM) problem. A variety of approaches have been pro-
posed for representing the uncertainty inherent to sensor
data and robot motion, including topological [9], particle
filter [16], [12], and feature-based [14] models. Several
highly successful SLAM approaches have been developed
based on the combination of laser scan matching with
Bayesian state estimation [7], [16]. These methods, how-
ever, incur computational difficulties that make real-time
performance impossible in closing large loops.

The Kalman filter provides the optimal linear recursive
solution to SLAM when certain assumptions hold, such as
perfect data association, linear motion and measurement
models, and Guassian error models [14]. The convergence
and scaling properties of the Kalman filter solution to the
linear Gaussian SLAM problem are now well-known [4].
Considerable recent research effort has been extended
toward mitigation of the O(n2) complexity (where n is the
number of features) of the Kalman filter SLAM solution.
Efficient strategies for SLAM with feature-based repre-
sentations and Gaussian representation of error include
postponement [2], decoupled stochastic mapping [10], the
compressed filter [6], sequential map joining [15], the
constrained local submap filter [18], and sparse extended
information filters [17]. Each of these methods employs
a single, globally referenced coordinate frame for state
estimation. The Kalman filter can fail badly, however,

in situations with large angular errors and significant
data association ambiguities, invalidating the Gaussian
error assumption. The odometry data shown below in
Figure 6(b) in Section V provides a dramatic illustration
of this type of situation.

One of the appealing aspects of a hybrid metri-
cal/topological approach to mapping and localization [1],
[9] is that uncertain state estimates do not need to be
referenced to a single global reference frame. This is the
strategy advocated in this paper. With Atlas, we obtain
the best of both global and local mapping approaches,
by restricting the representation of errors to local regions,
where linearization works well, but also providing meth-
ods by which the local submaps can be efficiently pieced
together to provide global results.

An alternative to the use of local linearization would
be to adopt a fully nonlinear formulation of the SLAM
problem, such as FastSLAM [12] or SLAM using a sum
of Gaussians model [5]. The computational requirements
of these methods, however, remain poorly understood in
large cyclic environments. In future research, it may be
possible to implement Atlas using one of these techniques
as the local mapping strategy.

III. ATLAS COMPONENTS

We now provide a detailed description of the six core
concepts of the Atlas framework: uncertainty projection,
competing hypotheses, creation of new map-frames (gene-
sis), closing loops (Map-Matching), instantiating and eval-
uating new hypotheses in adjacent map-frames (Traversal),
and transformation edge refinement. These six components
are now discussed.

A. Uncertainty Projection

Atlas edges contain the information necessary to relate
two map-frames. The uncertainty of the transformation
edge is used to project a stochastic entity (such as the robot
position) from one map-frame into another. However, if
the map-frames are not adjacent, these transformations
(and their uncertainties) must be composed along a path
of edges that link the Atlas vertices. There may be more
than one path from one vertex to another. Since these
cycles are are not constrained online, distinct paths will
not in general produce the same composite transformation.
In Figure 1(a), frame D is reachable from A via B or
C, resulting in the two possible projections of frame D
relative to A, shown in Figure 1(b).

To resolve this ambiguity we use either Dijkstra’s
shortest path algorithm [3] or breadth-first search to find
a unique path between the nodes. For the Dijkstra projec-
tion, we use a statistical metric, ρ, based on the uncertainty
of the transformation in Atlas edges. The metric we
choose is the determinant of the covariance matrix of the
composite transformation.

B

A� C

D

A

C

D

B D'
B

D

CA

A'

(a) (b) (c)

Fig. 1. The Dijkstra Projection using two different source nodes. (a) depicts the topological arrangement of the Atlas graph. (b) uses map-frame A as
the source of the projection. (c) uses map-frame D as the source. The ellipses on the coordinate frames represent the accumulated projection error. The
shortest path from map-frame A to D is clearly via map-frame B.

T c
a = T b

a ⊕ T c
b (1)

Σac = J1

(
T b

a , T c
b

)
ΣabJ1

(
T b

a , T c
b

)T
+

J2

(
T b

a , T c
b

)
ΣbcJ2

(
T b

a , T c
b

)T
(2)

ρ = det (Σac) (3)

We define the Dijkstra Projection of an Atlas graph with
respect to a given source vertex as the global arrange-
ment of frames using compositions along Dijkstra shortest
paths. This projection has the property of transforming the
Atlas graph into a tree of transformations with the source
map-frame as the root. We measure the nearness of any
map-frame to the source frame as ρ computed from the
compositions of transformations up the tree to the root.

B. Competing Hypotheses

At any given time, there are several competing map-
frame hypotheses that attempt to explain the current robot
pose and sensor observations. There can only be one
hypotheses per map-frame. We verify the validity of
each map-frame’s hypothesis by monitoring a performance
metric q ∈ [0 → 1] for a few time steps.

The metric q depends on the hypothesis’s map-frame
Mi, robot pose estimate xi, and recent sensor measure-
ments Z .

qi = q(Mi, Z,xi) ∈ [0 → 1] (4)

For example, a suitable form of q for a feature-based
approach is

q = α

(
1 − ‖Σxi‖

‖Σx�‖

)
+ (1 − α)

ηa

‖Zk‖ (5)

where ηa is the number of matched observations, and ‖Z‖
is the total number of recent observations. The parameter
α ∈ [0 → 1] reflects the relative importance placed
on the robot uncertainty and successful explanation of
sensor data. If in 2D, we specify maximum acceptable

uncertainties in location and orientation, σx, σy, σθ , then
‖Σx�‖ is the product σ2

xσ2
yσ2

θ .
At any given time, there may be several active hypothe-

ses in an Atlas graph. Each map-frame can support only
one hypothesis at a time, and the maximum number of
total hypotheses, Hm, is fixed so that the computational
requirements remain bounded. If the number of potential
hypotheses is greater than Hm, then they are instantiated
only when existing hypotheses are terminated. In practice
this will only occur in highly interconnected regions of
the Atlas graph.

C. Genesis

Since we bound the complexity (for example, the num-
ber of features) of each map, when we enter unexplored
regions we need to create new local map-frames. The
Genesis process adds a new vertex and edge to the Atlas
graph. Mathematically, the generation of a new map-frame
Mj and robot pose xj via genesis is a function of an old
map-frame Mi and robot pose xi:

(Mj ,xj) = g(Mi,xi). (6)

The process of genesis encapsulated by the function g
is broken down as follows:

1) The current robot pose defines the origin of a new
frame. Thus, the transformation from the old to the
new frame is simply the robot’s position in the old
frame at the time the new frame is created.

2) The robot pose is initialized to zero in the new
frame.

3) The uncertainty of the transformation is set to the
uncertainty of robot pose in the old frame.

4) The uncertainty of the robot pose in the new frame
is zero by definition. All of the uncertainty of the
robot pose at the time of genesis is captured by the
uncertain transformation.

6

1
2

43

7
5

4

3

2

6

5

1

7

Dijkstra

Fig. 2. The Dijkstra projection from a given node in a graph transforms
the graph into a tree with the source node as a root. Here we are taking
node 4 as a source. Solid lines correspond to links that are used in the
tree representation. Note how in this example the uncertainty between
link 4 and 7 is larger than that accrued via traversing links 4-6 and then
6-7. Hence there is no direct link between 4 and 7 in the tree.

Ti
j

Mj

Mi

Map-Match Mi

M j

Fig. 3. Map-Matching as a search for a transformation between maps
that maximally aligns common mapped features. Here two maps i and j
share features and a good map match can be found between them. Note
how only a subset of features are matched.

D. Map-Matching

Genesis creates new maps to explain unexplored areas.
However, eventually the robot will revisit an area that it
has already explored. The Map-Matching process detects
these situations and forms an edge in the Atlas graph
between two unconnected vertices (map-frames).

We can describe the Map-Matching process as a search
for a coordinate transformation that aligns overlapping
map-frames. The Dijkstra projection is used to form the
prior estimate of the transformation between two map-
frames, but its uncertainty may be very large. Too large,
in fact, to be able to rely on the simple strategy of nearest
neighbor feature gating for data association. Thus we
need a method that is robust to large initial errors in the
transformation.

In general terms, Map-Matching is comprised of two
steps:

1) A scalar mij = m(Mi,Mj) identifies common
structure between two maps Mi and Mj .

2) A function t(Mi,Mj) forms an estimate of the
transformation T j

i and its covariance Σij between
maps Mi and Mj .

The exact form of m used for determining common
structure is not dictated by the Atlas framework. For
the results in this paper, based on the use of feature-

based SLAM within local map-frames, we define the
operation Mi ∩ Mj as the search for correspondence
between features in Mi and Mj . We define ηm as the
minimum number of correspondences required for m ij to
be considered a positive Map-Match.

Following a positive Map-Match between map-frames
Mi and Mj , we compute the estimate of the transforma-
tion T j

i between the coordinate frames of Mi and Mj , as
well as its uncertainty, Σij . Note that t does not depend on
the robot pose. This is crucial since the navigation errors
accumulated around a loop may be larger than simple data
association of sensor measurements can handle.

Repetitive structure in the environment may cause am-
biguous edges to be formed by Map-Matching. The degree
of repetition can be assessed by Map-Matching a map with
itself. Only structure elements that match uniquely within
a map should be used to evaluate a match to another map.

We now describe a two stage implementation of the
Map-Matching process for our feature-based example
summarized as follows:

1) A signature for both maps is constructed which is
an ordered list of elements describing properties of
the map that are invariant to translation and rotation
of its coordinate frame. A comparison operator is
defined over two signatures which yields a set of
correspondences between elements in each list.

2) Each map is matched with itself to identify repetitive
structure. Any elements that correspond to other ele-
ments in the same map are removed from the map’s
signature. This dramatically reduces the likelihood
of false map matches due to repetitive structure
by focusing on the unique elements of each local
environment.

3) The signatures of both maps are now compared.
Each element to element correspondence defines a
potential alignment transformation from M i to Mj .

4) Each potential alignment transformation is applied
to Mi. The validity of each transformation is eval-
uated by counting the number, η, of feature pairs it
brings into alignment with nearest–neighbor gating.
This is the implementation of function m defined
above.

5) The correspondences from the best (largest η) po-
tential transformation with η > ηm are used to
refine the transformation and its covariance. Each
correspondence defines a constraint on the trans-
formation. The combined set of η constraints are
solved in weighted least-squares sense using the
covariances of the feature estimates within each map
to form the weights. This process also yields the
covariance of the transformation. This step is the
implementation of function t as defined above.

In this implementation, our maps consist of 2D point
and line features. The elements used in creating a map

signature are pairings of non-parallel lines, point-line pairs
and point-point pairs drawn from the map. For each
pairing, the signature element consists of distances and/or
angles that are independent of the map-frame’s orientation
and location.

The number of signature elements to compare when
matching maps is of O(n2) which may lead to O(n4)
matches that need to be performed. However, we can
reduce the number of matches that need to be tested to
O(n2) by sorting the signature elements into a canonical
order, which then reduces the total computational burden
to O(n2 log n).

The approach we have adopted for Map-Matching is
not unique. For example the Joint Compatibility test with
branch and bound technique suggested by [13] could
also be utilized. The freedom to choose a Map-Matching
strategy highlights the modularity of the Atlas framework.

E. Traversal

Once the robot has mapped an area, it can reuse
previously built maps when the current frame is no longer
adequate. When the robot leaves the area around which
a map-frame was created, it will fail to match sensor
measurements, indicating poor performance. Therefore,
in a continuous attempt to find the best explanation of
the sensor measurements, we run hypotheses in adjacent
map-frames by projecting the current robot pose and
uncertainty across the transformation edges in the local
neighborhood of the current Atlas vertex.

The traversal of the atlas graph (making transitions be-
tween adjacent map-frames) is managed using four types
of map-frame hypotheses, which we label as juvenile,
mature, dominant and retired. See Figure 4 for a state
transition diagram. All types, except retired ones, process
sensor measurements and evaluate the same performance
metric q. Mature hypotheses can extend their maps and
spawn new hypotheses. Juvenile hypotheses can only
process sensor data with regard to the existing map.
Juvenile hypotheses are restricted from extending their
maps because they are used to test how well a particular
map explains the sensor data and not whether a new map
could be built from the data.

A juvenile hypothesis can “mature” when after a proba-
tionary period its performance metric q becomes greater
than any other mature hypothesis. If at the end of this
probationary period a juvenile hypothesis’ quality does
not warrant promotion it is simply deleted.

The mature hypothesis with the best performance metric
is considered the dominant hypothesis. The dominant
hypothesis is used for publishing current robot pose and
local features to clients of the Atlas framework. In other
words, it is the output of the framework.

Mature hypotheses that fail to perform well are saved
and “retired”. A retired hypothesis may be reactivated at

Juvenile

Dominant

Retired

Mature

Fig. 4. Atlas hypothesis state transition diagram. The dominant
hypothesis is used to provide an output from the algorithm. It is simply
the most successful of all the mature hypotheses. Mature hypothesis
are able to extend maps and spawn juvenile hypotheses in adjacent
map-frames. When a mature hypothesis fails to describe the robot’s
environment adequately (the robot has moved away, for example) it is
retired. It can be reinstated as a juvenile at some time in the future by
an adjacent mature hypothesis. Juveniles are not allowed to modify their
map. If, after a probationary period, a juvenile’s map is failing to explain
sensor data, then it is deleted. However, a successful juvenile is promoted
to mature status.

a later time as a juvenile.
If we have only one mature but failing hypothesis, then

a new one must be created to explain current sensor data.
This is done by genesis (Section III-C). This situation will
occur when the robot moves into an unexplored area.

When creating a juvenile hypothesis in a retired map-
frame Mi we reinitialize its robot pose xi using the
robot pose xj from an adjacent map-frame Mj . (See
Figure 5.) First we seed the hypothesis with a robot pose
x�

j projected into frame i:

x�
i = T j

i ⊕ xj (7)

Σ�
xi

= J1

(
T j

i ,xj

)
ΣijJ1

(
T j

i ,xj

)T

+

J2

(
T j

i ,xj

)
Σxj J2

(
T j

i ,xj

)T

(8)

where J1 (·, ·) and J2 (·, ·) are the Jacobians of the trans-
formation composition operators [15].

�

�

��
�

��
��
������

Fig. 5. Seeding the robot position for juvenile hypothesis in frame i
using the current pose in the adjacent map-frame j. The retire hypothesis
attached to frame i has the robot location at xoldi . The hypothesis is
rejuvenated to have the robot pose of x�

i .

The hypothesis now enters a bootstrapping phase, in
which a consistent initialization of the vehicle into the
juvenile hypothesis is sought. Sensor measurements, inter-
preted with the seeded robot pose, x�

i , are accumulated.

This continues until we have collected enough measure-
ments, Z , to solve explicitly for the robot pose inde-
pendently of x�

i ; we call this function w. This approach
conserves the statistical independence of map-frames.

(Mi,xnew
i) = w(Mi, Z) (9)

If an explicit solution to w cannot be computed be-
cause of lack of explained sensor measurements, then the
hypothesis is invalid and terminated. Otherwise we have
a tenable juvenile hypothesis.

F. Edge Refinement

When there is more than one mature hypothesis, we can
refine the estimate of the transformation between them —
the Atlas graph edge. Consider the case of two mature
hypotheses in adjacent map-frames, Mi and Mj . Both
maintain an estimate of the current robot pose, x i and xj

respectively. In combination they form a measurement of
the transformation T j

i :

T j
i ⊕ xj = xi (10)

T j
i = xi � xj (11)

From Equation 11, we can write the covariance of the
observation, Σij , as a function of the robot uncertainties
Σxi and Σxj .

Mi = J1 (xi,�xj)
Mj = J2 (xi,�xj) J� (xj)
Σij = MiΣxiM

T
i + MjΣxj M

T
j (12)

We update the prior estimate T j
i

−
(the existing graph

edge) with the observation T j
i to form the refined estimate

T j
i

+
, and its uncertainty Σ+

ij . Since we do not maintain
the cross-covariances between robot estimates in different
maps, we advocate the use of Covariance Intersection [8]
to perform the update.

Σ+
ij =

[
ω (Σij)

−1 + (1 − ω)
(
Σ−

ij

)−1
]−1

(13)

T j
i

+
= Σ+

ij

[
ωΣ−1

xi
xi + (1 − ω)Σ−1

xj
xj

]
(14)

Where

ω = argmin
ω

∥∥Σ+
ij

∥∥ . (15)

If the uncertainty in local maps decreases, then with
each map transition we can also improve our estimate of
the transformation between frames.

IV. OBTAINING A GLOBAL MAP

We are often motivated to provide a single global map
of the robot’s environment. For example, in Section V we
compare an estimated map with an architectural drawing.
This “globalized” representation is a result of a post
processing procedure to find a global projection of each
map-frame. In other words, we wish to find the position
and orientation of each map-frame with respect to a single
frame. We choose to reference all maps to the first map-
frame created, frame 0.

The Dijkstra projection does this when using map-frame
0 as the source, however it only uses a minimal subset of
the edges in the graph. We wish to find a projection that
incorporates all the edges.

When there are loops in the graph, there will be a
disparity νi,j between the transformation T j

i stored in the
Atlas graph edge and the transformation derived from the
global poses of each frame (T i

0 and T j
0 respectively).

νij = T j
i ⊕ T 0

j ⊕ T i
0 (16)

We seek to find the global arrangement T ∗ of all N
frames T = {T 1

0 · · ·T N
0 } that minimizes this error over

all edges. This can be posed as a non-linear least squares
optimization problem:

T ∗ = argmin
T

∑
ij

‖νij‖2 (17)

We use the Dijkstra projection to compute the initial global
arrangement, and the optimization typically converges
in less than 5 iterations using the Matlab optimization
toolbox.

V. EXPERIMENTAL RESULTS

This section presents results for processing of data
from a long-duration mission performed within and around
MIT’s “Infinite Corridor”. The experiments utilized a stan-
dard B21 mobile robot equipped with SICK scanning laser
and a ring of 24 Polaroid ultrasonic sensors. The results
presented here, using eith sonar or laser sensors along
with odometry, are from a real-time C++ implementation
of the Atlas framework using an extended Kalman filter
for local navigation. Onboard odometry was the only other
source of information used. In related work, we have also
successfully implemented the method using scan-matching
as the local mapping method.

Figure 6(a) shows the topological path of the vehicle
superimposed on an architectural drawing of the MIT main
campus. The mission had a path length of approximately
2.2 km and a duration of 2.5 hours. The route contained
nested loops of various sizes and topologies. Figure 6(b)
shows the dead-reckoned path resulting from simply inte-
grating the odometry data.

Figure 7(a) shows the result of applying the global
optimization described in Section IV to the Atlas output

(a) −600 −500 −400 −300 −200 −100 0

−500

−400

−300

−200

−100

0

(b)

Fig. 6. (a) The manually drawn topology of the driven route overlaid
on an architectural drawing of part of the MIT campus. The large east-
west passage (a.k.a. the “Infinite Corridor”) is about 250m long. (b) The
trajectory derived from odometry alone.

based on laser scanner data and odometry. A total of 101
map-frames were built, each containing a maximum of 15
mapped line segments. Figure 8 shows the instantaneous
sum of kernel and user time for the Atlas process as well as
its smoothed value. Note that as more features are mapped
and more map-frames are created the mean processor
load stays constant. Figure 8 also plots the numerical
label of the dominant map-frame with time. During map-
frame genesis a counter is incremented and the newly
created map is labeled with its value. As new ground
is covered, the value of the dominant map ID increases.
When the robot returns, however, to a previously mapped
area, the dominant map ID will decrease if loop closure is
successful. For example, approximately one hour into the
experiment the robot returned to an area first mapped 45
minutes earlier. Similarly, after 2 hours and 15 minutes,
the vehicle returned to a region mapped just five minutes
after the experiment began.

Figure 7(b) shows results using data from the same
experiment but using the Polaroid ultrasonic rangers
instead of the laser scanner. The local navigation
method used is described fully in [11]. Additional
results, including concurrent processing of both laser

0 50 100 150 200

−40

−20

0

20

40

60

80

100

120

140

1

2 3
4

5
67

8
9

10

1112

13 14 15

16
17 18

1920
21

22 23 24 25 26 27
28

293031

32
33

34

35
363738

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55
56 57

58

59

60

61

62
63

6465 66 67 68 69 70

71

72

73

74

75
76 77 78 79

80

81

82
83

84

85868788899091929394

95

9697
9899

100

101

(a)

50 100 150 200 250

−40

−20

0

20

40

60

80

100

120

140

1

2
3
4

567

8

9

1011

12 13 14
15 16 17

18
19

20
21
22 23

24 25 26 27 28

29303132

33 34 35

36

37
38

3940414243

4445

46

47 48
49

50

51

52

53

54

55

56
57

58

59
60

61

62 63 64

65

66

67

68

69
7071 72 73 74

75

76 77
78

79

80

81

82

83

84
85 86 87

88

89

90

91
92

93

94
9596979899100101

102
103104105106

107108

109
110

(b)

Fig. 7. Global optimized map and Atlas graph for processing of (a)
laser and (b) sonar.

and sonar data, the use of scan-matching for local
SLAM, movie files demonstrating Atlas processing, and
the raw data for this experiment, can be accessed at:
http://graphics.lcs.mit.edu/˜ifni/atlas

VI. CONCLUSION

This paper has presented Atlas, an general framework
for efficient large-scale mapping and navigation. The
performance of the approach has been verified using both
laser scanner and ultrasonic range data, demonstrating the
capability to perform SLAM in large areas comprised of
multiple, nested loops in real-time. The method achieves
a growth of complexity of either amortized O(log n)
when using Dijsktra’s shortest path algorithm to select
candidates for map-matching, or O(1) when breadth-first
search is used for this task. An off-line global alignment
step is utilized to generate a single global map for visual-
ization purposes at the end of a mission. This method is

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

Time (hours)

Map ID
CPU Load
Smoothed CPU Load

Fig. 8. Processor load and current map ID for laser data run. The general
linear increase in current map ID is indicative of the mapping of new
areas. The occasional “fall-back” to a map with a lower ID represents
successful loop closing —the re-use of an existing map.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

90

100

nz = 8912

M
ap

 ID

1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

time (sec)

of

 h
yp

s

0 200 400
0

10

20

30

40

50

60

70

80

90

100

total activity time

Fig. 9. Map ID vs. time, total activity vs. map ID, and the number of
active hypotheses vs. time for the laser data run.

not constant-time, but operates extremely quickly (a few
seconds for generation of the results in this paper).

Ongoing research efforts include the extension of
the approach to accommodate three-dimensional, omni-
directional video camera data and underwater sonar data.

VII. REFERENCES

[1] K. Chong and L. Kleeman. Large scale sonarray mapping
using multiple connected local maps. In International
Conference on Field and Service Robotics, pages 538–545,
ANU, Canberra, Australia, December 1997.

[2] A. J. Davison. Mobile Robot Navigation Using Active
Vision. PhD thesis, University of Oxford, 1998.

[3] E.W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Matematik, 1:269–271, 1959.

[4] M. W. M. G. Dissanayake, P. Newman, H. F. Durrant-
Whyte, S. Clark, and M. Csorba. A solution to the simulta-
neous localization and map building (slam) problem. IEEE
Transactions on Robotic and Automation, 17(3):229–241,
June 2001.

[5] H. F. Durrant-Whyte, S. Majumder, M. de Battista, and
S. Scheding. A Bayesian algorithm for simultaneous

TABLE I

ATLAS PARAMETER SETTINGS FOR THE PRESENTED RESULTS.

Description Parameter Value
minimum probationary period τj 3 sec
for a juvenile hypothesis
maximum number of active hypotheses Hm 5
maximum number of features in map 15
maximum local uncertainty in robot σ�

x, σ�
y 0.2 m

σ�
θ 2 deg

minimum number of matched features ηm 4

localisation and map building. In R. Jarvis and A. Zelin-
sky, editors, Robotics Research: The Tenth International
Symposium, Victoria, Australia, 2001.

[6] J. Guivant and E. Nebot. Optimization of the simulta-
neous localization and map building algorithm for real
time implementation. IEEE Transactions on Robotic and
Automation, 17(3):242–257, June 2001.

[7] J-S. Gutmann and K. Konolige. Incremental mapping of
large cyclic environments. In International Symposium on
Computational Intelligence in Robotics and Automation,
1999.

[8] S. J. Julier and J. K. Uhlmann. A non-divergent estimation
algorithm in the presence of unknown correlations. In
Proceedings of the IEEE American Control Conference,
volume 4, pages 2369–2373, Albuguerque, NM, USA, June
1997.

[9] B. J. Kuipers. The spatial semantic hierarchy. Artificial
Intelligence, 119:191–233, 2000.

[10] J. Leonard and H. Feder. Decoupled stochastic mapping.
IEEE J. Ocean Engineering, 26(4):561–571, 2001.

[11] J. J. Leonard, R. J. Rikoski, P. M. Newman, and M. C.
Bosse. Mapping partially observable features from multiple
uncertain vantage points. Int. J. Robotics Research, October
2002.

[12] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fast-
SLAM: A factored solution to the simultaneous localization
and mapping problem. In Proceedings of the AAAI National
Conference on Artificial Intelligence, Edmonton, Canada,
2002. AAAI.

[13] J. Neira and J.D. Tardós. Data association in stochastic
mapping using the joint compatibility test. IEEE Trans. on
Robotics and Automation, 17(6):890–897, 2001.

[14] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain
spatial relationships in robotics. In I. Cox and G. Wil-
fong, editors, Autonomous Robot Vehicles, pages 167–193.
Springer-Verlag, 1990.

[15] J.D. Tardós, J. Neira, P.M. Newman, and J.J. Leonard.
Robust mapping and localization in indoor environments
using sonar data. Int. J. Robotics Research, 2002.

[16] S. Thrun. A probilistic online mapping algorithm for teams
of mobile robots. Int. J. Robotics Research, 20(5):335–363,
May 2001.

[17] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte,
and Ng. A.Y. Simultaneous mapping and localization with
sparse extended information filters. In Proceedings of the
Fifth International Workshop on Algorithmic Foundations
of Robotics, Nice, France, 2002. Forthcoming.

[18] S.B Williams, G. Dissanayake, and H. Durrant-Whyte.
An efficient approach to the simultaneous localisation and
mapping problem. In Proc. IEEE Int. Conf. Robotics and
Automation, pages 406–411, 2002.

	Text9: International Conference on Robotics and Automation, Taipei, Taiwan, September 2003, pp. 1899-1906

