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Abstract

We describe the generation of a large pose-mosaic
dataset: a collection of several thousand digital im-
ages, grouped by spatial position into spherical mo-
saics, each annotated with estimates of the acquiring
camera’s 6 DOF pose (8 DOF position and 3 DOF
orientation) in an absolute coordinate system.

The pose-mosaic dataset was generated by acquir-
ing images, grouped by spatial position into nodes (es-
sentially, spherical mosaics). A prototype mechani-
cal pan-tilt head was manually deployed to acquire the
data. Manual surveying provided initial position esti-
mates for each node. A back-projecting scheme pro-
vided initial rotational estimates. Relative rotations
within each node, along with internal camera parame-
ters, were refined automatically by an optimization-
correlation scheme. Relative translations and rota-
tions among nodes were refined according to point cor-
respondences, generated automatically and by a human
operator. The resulting pose-imagery is self-consistent
under a variety of evaluation metrics.

Pose-mosaics are useful “first-class” data objects,
for example in automatic reconstruction of textured 3D
CAD models which represent urban exteriors.

1 Introduction

Automatic reconstruction of textured 3D CAD
models representing urban environments is an impor-
tant goal of computer vision systems, and more re-
cently of computer graphics systems. Developing such
a system will require the acquisition and processing of
a suitable dataset. Our approach involves annotating
each acquired image with an estimate of 6-DOF pose
— 3 DOF of position, and 3 DOF of orientation for the
acquiring camera — through the use of instrumenta-
tion.
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There are several advantages of such a scheme over
more traditional methods (e.g., a collection of many
high-resolution images). First, pose estimates are use-
ful in organizing the images in a spatial data structure
which supports proximity queries. This restricts pro-
cessing to images only when they are close together, or
otherwise likely to exhibit significant correlation. Sec-
ond, pose information provides useful geometric con-
straints that can the reconstruction process. Third,
the availability of a priori pose information prevents
the computational efforts expended by the reconstruc-
tion system from growing quadratically (or worse) in
the number of input images.

Existing physical instrumentation alone does not
produce pose estimates sufficiently accurate for direct
incorporation into reconstruction algorithms which
demand pixel-level agreement between features. For
example, most pan-tilt heads used to measure rota-
tion report rotation angles accurate only to about a
degree. This is one to two orders of magnitude greater
than would be required by an algorithm demanding
pixel-level agreement. Thus, we have developed a va-
riety of “pose-refinement” algorithms which revise the
pose-estimates based on correspondence and correla-
tion among two or more images.

1.1 Related Work

Our work builds upon many fundamental tech-
niques from photogrammetry and computer vision:

o Aerial imagery [3, 7): Photogrammetric systems
that analyze aerial imagery use pose obtained
by a combination of instrumentation, manual in-
put, and “bundle-adjustment” optimization. Ac-
quiring similar ground-based imagery poses addi-
tional challenges: to provide a large field of view
to capture all visible features and to refine initial
pose estimates to predict nearby features accu-
rately.

e Mosaicing [13, 20]: These techniques seamlessly
stitch together multiple images taken from the



same viewpoint. While such mosaics are typically
used in virtual environments, we apply mosaicing
techniques to refine our pose estimates and to pro-
vide a much larger field of view than would a sin-
gle image. In addition, we consider the problem
of registering multiple mosaics in a global coordi-
nate system.

o Structure from Motion [14, 16, 18]: These tech-
niques recover both scene structure and cam-
era, motion by analyzing correspondences in a
closely-spaced image sequence (e.g., frames from
a video sequence). While these techniques cor-
relate nearby images in the sequence, significant
analysis must be performed to relate images that
are farther apart.

The novel ideas presented in this paper are:

e Acquisition of close-range, ground-based imagery
of urban structures, annotated with absolute
6DOF pose estimates.

e Automatic correlation-based generation of spher-
ical mosaics.

e The use of a world-space notion of adjacency to
relate mosaics.

e Decoupling scene reconstruction from camera
pose estimation, and using pose estimates both
for initializing optimization procedures and for
semi-automatic identification of feature corre-
spondences across mosaics.

1.2 Acquisition of Raw Images and Nodes

Our dataset consists of photographs acquired by a
Kodak DCS 420 digital camera mounted with fixed
optical center on an indexed pan-tilt head, itself at-
tached to a tripod base. The tripod was manually
positioned at eighty-one locations among the build-
ings of an office complex. At each position, the cam-
era was rotated through a predetermined “tiling” of
50-70 orientations, yielding a roughly hemispherical
field of view. We call a set of images obtained from
a common optical center a node. Initial translation
estimates for each node were obtained with survey-
ing instruments. Initial orientation estimates for each
node were obtained by manual pointing of the pan-
tilt head at some other node (marked by a second
tripod and orange ball). These orientation estimates
are expressed and manipulated as quaternions, which
possess useful stability properties for optimization [6].

1.3 Overview

The rest of the paper is organized as follows. Sec-
tion 2 describes an automatic spherical mosaicing al-
gorithm that accurately computes relative rotations
between images taken from the same position using a
quaternion-based correlation maximization algorithm.
Section 3 describes correspondence and optimization
techniques for a global registration algorithm that uses
these pose-mosaics as fundamental data objects, and
Section 4 concludes.

2 Automatic Spherical Mosaicing

In this section, we use the simple relation between
images taken from the same nodal point to refine rel-
ative orientations. As depth/parallax effects do not
occur across images taken from a single node, a con-
strained 2-D projective transformation (collineation)
describes the relation between any such pair of images
[5]. Computing and refining the projective transfor-
mations using correlation of pixel-values is the basis
of our approach to refine orientation estimates.

Our approach is closely related to the mosaicing
algorithm proposed by Szeliski [13] and extended to
cylindrical panoramas by McMillan [8]. Unlike McMil-
lan [8], who computes a cylindrical panoramic image
from a set of images taken with rotation around a
single axis, we compute a spherical panoramic image.
Szeliski & Shum in their recent papers [11, 15] also
compute full-view panoramas. However, their global
alignment algorithm requires a combination of both
correlation-based and feature-based optimization. In
contrast, we directly optimize correlation to perform
global alignment, avoiding the step of identifying suit-
able features.

The approach we follow is to optimize a global cor-
relation function defined for adjacent images with re-
spect to all orientations (represented as quaternions).
In addition, the algorithm also revises internal cam-
era parameters (camera focal length and image center
initially estimated using Tsai’s calibration algorithm
[19]) to maximize correlation. The result of the op-
timization is a spherical mosaic, a composite of all
images corresponding to a single node.

The basis of the optimization is the 2-D projective
transformation P15 between two images (labeled 1 and
2) taken from the same camera [5]:

P, = KRoR7 'K

which maps pixels from image 1 to pixels in image 2 by
a 2-D projective transformation (& denotes projective



equality):
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where (z1,y1) and (z2,y2) are pixel positions in im-
ages 1 and 2; K is the 3 x 3 upper triangular camera-
calibration matrix; and R; and Ry are 3 x 3 rotation
matrices.

Our algorithm uses the above relation to minimize
the function:

c= ¥

i,j are adjacent

Ci'+Cj'

where C; is the sum-of-squared-difference error be-
tween luminance values' of the images under the map-
ping P;:

Cij = Y (Li(wi,ys) — Li(Pij(mi, y:)))?
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The correlation function is computed only for pairs of
adjacent images in the spherical tiling, and only for
pixels of image ¢ that map to a valid pixel of image j.
This function is minimized by computing derivatives
with respect to the orientations and using Levenberg-
Marquadt nonlinear optimization [10] starting from
the initial orientations and internal parameters. The
optimization involves updating these unknowns with
increments computed using the gradient G and (an
approximation to) the Hessian H of the objective func-
tion, until convergence is achieved. The various steps
in the computation are described in greater detail be-
low.
For a single error term of the form:
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the derivatives are computed as follows (the rotation-
matrix derivative is given in the appendix):
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ITn practice, we perform the optimization on band-pass lu-

minance values instead of luminance values first, and then per-

form the optimization on luminance values. This results in both

faster convergence and increased avoidance of false-minima.
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where v = K~ ![z,y,1]7. Then, the derivative of the
term e, with respect to the quaternion q is given by:
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Note that Equation 1 involves image derivatives gTL,I,
and g;“,',; these are approximated using finite differ-
ences.

The gradient term corresponding to the quaternion
q; is computed using Equation 1 by accumulating over
all terms that depend on q;:
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Similarly, the Hessian term corresponding to two ad-
jacent images ¢ and j is:

N Oy Oy T
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For a spherical tiling consisting of n images, values of
G; and H;; are concatenated to yield the global 1 x4n
gradient G and the global 4n x 4n Hessian H.

In an unconstrained optimization, the increments
would be computed as —H™'G [10]. However, as
quaternions are constrained to be unit vectors, the fol-
lowing additional constraints involving the increments
dq; are necessary:

w’y

Vi:q;-6q; =0

Using Lagrange multipliers A; to enforce the above
constraints, the equation for computing the incre-
ments becomes:
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Q" o AT 0 |
where:
qaq 0 ... O dqp ] A1
0 q2 e 0 (qu )\2
Q=| . . . . [AaQ= .o bA=
0 0 ... qgn oqn | An

The optimization proceeds by solving Equation 2
for AQ and A using a linear-solver?, and then up-
dating quaternion q; to its new value (with re-
normalization):

q; + 0q;
llai + daill

2Sparse matrix techniques can be used to improve the speed
of the solver. However, as most of the computational effort is

expended in computing the entries of H, this optimization is
not worthwhile.




Convergence in the procedure is detected when the
objective function changes by less than some threshold
(e.g., 0.1%).

Figure 1: Part (a) shows the input images. Part
(b) shows the results of the mosaicing optimization
mapped onto a sphere. Details (below) show the re-
moval of blurring after optimization.

Figure 1 shows one mosaic resulting from our opti-
mization. Note that the input images are seamlessly
blended, without any “blurring” or “ghosting” arti-
facts. In a batch process, our algorithm was able to
successfully mosaic all (close to four thousand) input
images ® into eighty-one nodes, requiring about twenty
minutes of processing per node on a 150MHz SGI O2
workstation. Internal camera parameters converged to
values that differed by less than 1% across all nodes.

Grouping images into spherical mosaics has several
benefits. First, it allows robust automatic estimation
of internal camera parameters. Second, it effectively
produces an image with a spherical field of view, elim-
inating the ambiguity between camera motion and
camera rotation found in narrow field of view images.
Third, it reduces, by a factor of about fifty, the num-
ber of degrees of freedom when optimizing global po-
sitions and orientations. All of these are important

3A few input images were unusable due to sun flare and/or
CCD oversaturation.

engineering advantages.

3 Global Mosaic Registration

The problem addressed in this section is registering
initial camera pose estimates in a global coordinate
system so that the image locations of 3-D points are
known accurately, to within a pixel. The input to this
stage is a set of nodes with estimated camera orienta-
tions and positions in a global coordinate system.

In contrast to techniques that work in projective
space (e.g., [9]), we designed our algorithm to operate
in Euclidean space for the following reasons. First,
this makes full use of available camera-calibration and
pose information. Second, the use of the Euclidean
framework decreases the complexity of the optimiza-
tion by eliminating extra projective variables. Third,
from a practical standpoint, it is much easier to visu-
alize and debug (using computer graphics) algorithms
operating in 3-D than algorithms that operate in pro-
jective space.

For two views, registration is equivalent to comput-
ing relative orientation as in classical photogramme-
try [6]. While this technique performs well for pairs of
images, a disadvantage of using this approach is that
computing only pairwise pose may result in global in-
consistency. Instead, we use global optimization to re-
fine pose estimates, similar to the techniques proposed
in structure-from-motion [14, 16]. These approaches
use correspondences (either manually specified [16] or
obtained by tracking [14]) between image features to
set up a global objective function, and perform an op-
timization using non-linear methods.

Though the problem of automatically generating
correspondences is well studied in computer vision, the
process tends to be very fragile, especially across dis-
parate images. The large inter-node distance in our
dataset (with baselines of tens of meters) produces
fairly dissimilar images due to perspective and occlu-
sion effects. In addition, different nodes are acquired
in very different lighting conditions, further accentu-
ating the dissimilarity.

Fortunately, as we are interested primarily in re-
covering accurate pose for each node, very few cor-
respondences are necessary (five points [6] per mo-
saic). Thus, our system allows a user to manually
correspond points computed by intersecting adjacent
straight edges obtained by using the Canny edge de-
tector [1]. The user’s task is further simplified by our
system, which uses the available pose information to
generate matches automatically in most cases. The
matching technique is described in Section 3.2, after
the optimization described in Section 3.1.



3.1 Optimization
Formally, the pose refinement problem is as follows.
Given:

e For 1 <i <m, p} (position) and g} (orientation)
estimates of the it camera pose;

eFor 1 < i < m,1 < j < n, unit vectors
ri; (in camera 4’s coordinate system) describing
rays through the image feature corresponding to
world-space point s; .

Compute:
e p;, q; for 1 <i < m (the true camera poses);
e s; for 1 < j <n (the true 3-D feature positions).

The pose-refinement algorithm performs a global op-
timization that refines both position and orientation
estimates. Our approach is to use the Levenberg-
Marquadt optimization to minimize the objective
function described below.

Let u;; = ”:j::g::” represent the world-space unit
vector directed from camera ¢ to point s;. The same
vector predicted by using the image feature is v;; =
R; 'r;;, where R; is the 3 x 3 rotation matrix equiv-
alent to q;. Their difference in the spherical image,
e;j = W;j — Vjj, is the residual error vector of predict-
ing ray u;;. The objective function O is simply the
sum of the squared magnitudes of the residual vec-

tors: o
0=>">"llesl?

i=1 j=1

To perform the optimization, we use an approach
similar to “bundle-adjustment” in photogrammetry
[12] that alternately refines 3-D positions and pose es-
timates. The advantage of this method is that fixing
the 3-D positions of point features decouples the op-
timization of the various camera poses, each of which
can be independently updated (and vice-versa). Thus,
an efficient implementation of the optimization in-
volves inverting only small constant-sized matrices.
Our experiments show that the optimization requires
only a few iterations, making it usable in an interac-
tive system.

The derivatives of a single residual term (omitting
subscripts) are computed as follows. Let I be the 3x 3
identity matrix. Then, the gradient G¢ and Hessian
Hy with respect to a 3-D point s are:

0e I- uu”
ds |[ls—pl
G.=(2)Te H,= ()72 3)

The gradient Gp q and Hessian Hp, q with respect to
pose parameters p and q are:

8e _ uu’ -1 f9e _ _ (8R! _ | 8e B8e
%‘kﬂl%_(aq%D_wa
Gp,q = D'e Hpq = DD (4)

To update the position of a 3-D point s;, the gradi-
ent Gg; and the Hessian Hy; are computed by accu-
mulating Equation 3 over all cameras that “see” s;.
To update the pose p;,q; of camera i, the gradient
Gp,;,q; and Hessian Hy, o; are computed by accumu-
lating Equation 4 over all points visible to camera 1.
As in Section 2, Lagrange multipliers are used to en-
force the unitary constraint for quaternions.

Typical residuals after optimization are about
0.001, equivalent to 0.05 degrees of error in predict-
ing a ray, and to about 2.5 cm of error in predicting
the location of a 3-D point about 25 meters from the
camera.

3.2 Automatic Matching

In this section, we describe a technique that exploits
the availability of pose-information to aid the user in
establishing correspondences across nodes. The basic
idea, similar to that proposed by Collins [2], is as fol-
lows. If any sparse set of points in a set of nodes is
projected into 3-D rays, regions with high incidence of
rays correspond to likely locations of 3-D features. If
a 3-D feature is present in multiple nodes, then rays
through the corresponding 2-D points pass near the 3-
D feature, increasing its incidence count. Conversely,
as the set of points are sparse, it is rare that unrelated
rays pass through the same 3-D region by chance.

The matching algorithm first defines a notion of
adjacency using a 2-D Delaunay triangulation of node
positions projected onto the ground plane!. Given a
nearness threshold T, the match for a selected point r
of node 7 is generated as follows:

For each s; in decreasing order of incidence
If ||les;]| < T associate r with point s;.
If r is not matched
Let minimum error e = T', closest 3-D point s = ¢.
For each Delaunay neighbor node i’ of i
For each unmatched point r' of node ¢’
Generate sy, closest to rays r and r'.
If ||e,/k|| < e then e = ||e,~rk||; S = Sg.
If s # ¢ add s to the 3-D point set.

4This spatial notion of adjacency is necessary as the usual
temporal notion used in structure-from-motion is not applicable
to our dataset, where nodes acquired at very different times can
observe nearby 3-D regions.



Informally, given a newly selected point r, the algo-
rithm first searches for an existing high incidence 3-D
point s; that projects close to r. If such a point is
not found, the algorithm matches r with a close un-
matched point ¢’ from a neighboring node i'.

Figure 3 shows a snapshot of the global registration
algorithm in action. To test this matching algorithm
on our dataset, a user interactively selected five or
more points (typically, building corners) in each mo-
saic. The algorithm automatically inferred sufficient
number of matches to generate pose for over 95% of
the nodes; for the remaining nodes, the user estab-
lished correspondences manually. The user required
about one hour to process the entire dataset (eighty-
one mosaics comprising nearly four thousand images).

4 Conclusion

In this paper, we described the process of acquiring
pose-mosaics, utilizing two techniques that compute
accurate pose from approximate estimates. Our algo-
rithms are simple and robust, and scale to a large set
of input images.

Preliminary results indicate that our dataset can be
used to reconstruct urban vertical facades [4]. Figure 2
shows some initial reconstruction results, co-located
with the input spherical mosaics.

We are currently building a pose image acquisition
platform using instrumentation such as Global Posi-
tioning System (GPS), inertial units, etc. [17]. The
acquisition platform should enable collection of even
larger pose-mosaic datasets. Also, we are investigat-
ing fully automatic matching techniques for use in the
inter-mosaic registration procedure. A promising ap-
proach, exploiting domain-specific knowledge, would
be to automatically detect sky-linesin the input nodes,
and attempt to match only features of the sky-lines.
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A Rotation-Matrix Derivative

The derivative of a rotation matrix R~! with re-
spect to a quaternion q = [qo, Az, Qy, qz]T is a tensor of
dimension 3 x 4 x 3. Since the derivative is typically



multiplied by a vector (say, v = [v,,vy,v;]T), only its
value at v, a 3 x 4 matrix, is given below:

a = +qoVz + Uy — QyU;
b = —q; + qovy + Gz,
C = FqyUz — qzVy + QoV;
d = +qavy + qyUy + q.v;
SR-1 a d —-c b
( 3 v = b ¢ d -a
9 ¢c —-b a d

Figure 2: This figure shows reconstructed vertical fa-
cades in wireframe, co-located with input spherical
mosaics.
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Figure 3: This figure shows a snapshot of the global
registration algorithm for ten nodes. Part (a) shows
two such nodes (represented on a plane using an
equal-area projection) with manually selected points
(squares). The points shown have been automatically
matched by the incidence counting algorithm, despite
the significant dissimilarity due to perspective, occlu-
sion, and lighting effects. Part (b) shows the locations
of the ten nodes (shown as spheres) and reconstructed
points (shown as boxes) in 3-D. For these nodes, auto-
matically identified matches were sufficient to recover
pose.



