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Abstract

In this paper, the problem of recovering three-
dimensional information from multiple images
is considered. The goal is to build a system
that can incrementally process images acquired
from arbitrary camera positions. Our approach
makes use of both the geometric constraints in-
herent in the camera configuration, as well as
the structural relationships between image fea-
tures. The correspondence problem is analyzed
directly in 3D through multi-image triangula-
tion. To address the possibilities of false fea-
tures and spurious correspondence, every initial
match is modeled as a hypothesis. At the core
of our system is a state machine which keeps
track of matching hypotheses in various states
of certainty, and evolves their states in response
to new evidence.

1 Introduction

Traditional multi-image stereo analysis typi-
cally assumes that input images are temporally
coherent. A short baseline between consecutive
images is essential for constraining the matching
and tracking processes in these systems. But
in the context of a large-scale reconstruction
project to distill thousands of images into thou-
sands of structures, this assumption becomes
rather limiting. We wish to be able to pro-
cess images in arbitrary order, without temporal
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constraints on the input.

Algorithms crafted without dependence on tem-
poral coherence have a number of advantages.
iFrom geometry it is well known that long base-
line stereo can produce more stable and pre-
cise reconstruction than short baseline stereo.
Practically, it also simplifies the image acquisi-
tion process. No longer will there be a problem
with camera motion control. Moreover, since we
can record images at a larger sampling interval,
fewer images need to be taken. This will greatly
relieve the burden of storing and processing high
resolution image data.

Given these considerations, we have designed a
method for the recovery of 3D structure from
multiple images of an urban scene. The al-
gorithm operates by establishing long-baseline
correspondences between 3D features. However,
just as in 2D, spurious matches can occur in 3D.
The occurrence of false matches can be signifi-
cantly reduced by supplementing geometric con-
straints of imaging configuration with knowl-
edge about structural relationship of image fea-
tures. Still, feature detection is by no means
a flawless process. Each matching hypothesis
must be supported by a sufficient number of ob-
servations before it can be confirmed. A state
machine has been developed to keep track of the
hypotheses.

2 Previous Work

Over the years, stereo researchers have explored
countless ways to improve the performance of



stereo algorithms. A primary objective is to
establish reliable correspondence across two or
more images. The challenge is that when a large
area must be searched for a match, the potential
for spurious matches increases also.

In response to this problem, researchers first
turned to coarse-to-fine methods [Grimson,
1981], [Terzopoulos, 1983]. In these systems,
matching begins at a low resolution of the image
in order to cover large displacements. Match-
ing then proceeds to higher resolutions where
results from lower resolutions are used to con-
strain the search. This class of method cannot
deal with significant perspective distortion and
occlusion present in long baseline images.

Other researchers advocated using multiple im-
ages acquired with closely spaced cameras as a
way of extending the baseline of analysis while
minimizing false matches [Herman and Kanade,
1986], [Baker and Bolles, 1989]. By exploiting
the temporal coherence of very short baseline
images, stereo correspondence can be performed
accurately through incremental tracking of pix-
els or features. Although these methods seem
to work well, they are dependent on the tem-
poral coherence of the input for reliable feature
tracking. They cannot, for example, associate
images which are taken at very different times,
but which contain observations of identical real-
world structures.

Another approach is to utilize the structural re-
lationship between image features to resolveg
matches [Lim and Binford, 1988], [Horaud and
Skordas, 1989]. It has been observed that
structural properties tend to be more invariant
with respect to viewing changes than local im-
age/feature properties. The problem of corre-
spondence then becomes a problem in finding
the mapping which best preserves the structural
relationship. Because these methods often as-
sume their feature extraction process as ideal,
they tend to be fragile with real images.

Recently, new algorithms capable of analyzing
long baseline inputs have been proposed. Be-
dekar and Haralick [1996] describe a method for
Bayesian triangulation and hypothesis testing.
A major drawback of their work is that they do
not consider the possibility of spurious matches.
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Figure 1: Multi-image triangulation

Collins [1996] present a space-sweep approach to
multi-image matching. The problem with this
method is that it uses a constant threshold for
rejecting false matches, and so does not handle
underlying causal factors in a generic fashion.

3 Multi-Image Triangulation

The basic principle underlying the recovery
of three-dimensional information from two-
dimensional images is triangulation. Suppose
we are given the corresponding image positions
m; of a 3D point x projected onto a set of im-
ages I;. We can compute the 3D position of the
point by finding the intersection of rays pro-
jected, respectively, from camera ¢; and passing
through the image feature m; (Figure 1).

Typically the rays will not intersect precisely at
one point. However, a well-fitting point x can be
estimated with the least squares method. Our
goal is to minimize the sum of squared distances
of the rays to point x:

D(x) = Z (asti + b; — x)" (agt; + by — x) (1)
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where a; is the direction of the ray ¢, and b; is
an arbitrary point on the ray (usually taken to
be the camera position c;).

Setting dD(x)/dx = 0, we get
> (aial —I)T(aja] —1) x (2)
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We note that this is a linear system, Ax = b.
Using singular value decomposition the matrix
>, (a;al — I)T(a;al’ — I) can be decomposed
into

Y (aia] ~ D7 (@4l ~1) =UWUT  (3)
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where U is an orthonormal matrix satifying U7
= U~!, and W is a diagonal matrix containing
the singular values. The least squares estimate
X is then

x=Uw'u” (Z (aiaj —I)" (aua] — I)bz’)
’ ()

The residual of the intersection process is given
by D(%x) in Equation (1).

4 Matching via Triangulation

Suppose we hypothesize that a set of image fea-
tures is in correspondence. A direct method for
testing the hypothesis would be to apply multi-
image triangulation on the established feature
set, and examine the residual of the least square
computation. If the residual is greater than a
certain threshold, there is no single 3D point
near which all of the rays pass, and the corre-
spondence hypothesis can be rejected.

However, we cannot hastily accept any intersec-
tion of rays as a match. Figure 2 illustrates a
case in point. In the figure, the rays of ver-
tices a1 and ao intersect with the rays of ver-
tices b1 and b2 by accident. By themselves, the
accidental intersections could be interpreted as
a line floating in front of two buildings. This
is clearly incorrect, and situations like this are
not uncommon. Whenever multiple images are
shot with a camera revolving around some re-
gion in space, there will be many rays crossing
very close together.

Additional observation of the the features is
needed for resolving this ambiguity. Certain
structural properties, for example adjacency,
are invariant with respect to large changes in
viewing direction. Connectivity of vertices is a
useful structural property in this regard. For
two vertices to match, we require that at least

Figure 2: Two spurious matches

two of their incident edges must match also. In
the case of Figure 2, we test whether two inci-
dent edges of a; match with two incident edges
of b1, and can quickly reject this configuration
as a spurious intersection. To follow this strat-
egy, we need to determine vertex connectivity
information from the images.

Unfortunately, no existing feature extraction al-
gorithm is perfect. We may never be certain
that a feature detected from an image is not an
artifact of the extraction process. For instance,
occlusion often generates incidental features like
T-junctions. Since T-junctions are not intrinsic
to any real 3D object, their presence can confuse
the matching process. Due to these complica-
tions, every matching hypothesis should begin
with a low degree of certainty.

4.1 The Data Structures

We list here five types of data structures that
are relevant to our algorithm. The first two are
image features, and the last three are matching
hypotheses in increasing states of certainty.

e 2D lines — are extracted by fitting lines to
the output of an edge detector. The system
constructs 2D lines only for the purpose of
vertex detection.

e 2D vertices — are located by intersecting 2D
lines that form an L-junction. Vertices are
the key features used in the correspondence
process. Each vertex is described by: 1) a



label, 2) an image position, 3) the number
of incident lines, and 4) any connected ad-
jacent vertices.

o 2D hypothesis — is a list of matched 2D ver-
tices with a combined baseline too short to
produce a reliable 3D estimate. Each 2D
hypothesis is described by: 1) a label, 2)
the number of contributing vertices, 3) a
list of matched 2D vertices, and 4) baseline
information.

e 3D hypothesis — is a list of matched 2D ver-
tices with a 3D estimate, but a number of
observations insufficient for confirmation as
a 3D model. Each 3D hypothesis is de-
scribed in the same way as a 2D hypothe-
sis, with two elements of additional infor-
mation: 5) a 3D estimate of the feature’s
position, and 6) an estimate of the recon-
struction error in 3D.

e 3D element — is a confirmed 3D hypothesis.
Each 3D model is described in exactly the
same way as a 3D hypothesis.

4.2 The Matching Algorithm

The algorithm maintains a set of hypotheses,
and evolves the state of each after insertion of
each image.

After the features (lines and vertices) of a new
image have been extracted, the algorithm tries
to find confirming evidence for existing hypothe-
ses among any newly observed 2D features. The
algorithm first attempts to reduce reconstruc-
tion error for any 3D element for which a new
observation is found. Next, hypotheses are pro-
cessed in order of most to least evolved, be-
ginning with 3D hypotheses, then 2D hypothe-
ses, and finally unmatched 2D vertices. For
each, confirmatory evidence is sought among
any newly identified features.

For every existing element/hypothesis/vertex:

1. For every new vertex, we project a ray from
the new camera position through the new
vertex.

2. For 3D elements and 3D hypotheses, we
find the shortest distance between the ray
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and the estimated 3D position of the el-
ement/hypothesis. If this distance is suffi-
ciently small, we check to see if at least two
incident edges of the element/hypothesis
match edges incident to the new vertex.

3. For 2D hypotheses and unmatched vertices,
we find the residual resulting from inter-
secting this ray with rays from all matched
vertices in the 2D hypothesis, or the sin-
gle ray of the unmatched vertex. If this
residual is sufficiently small, we check for
matching adjacent edges as in Step 2.

4. We link the
model/hypothesis/vertex with the new
vertex that has the best score.

current

Each new vertex can be matched with more
than one hypothesized object. Thus, a spurious
match will not affect other objects in the sys-
tem. After each new match is identified, we test
for these possible state transitions (Figure 3):

e 3D hypothesis — 3D element
if the number of observations is sufficient.

e 2D hypothesis — 3D element
if the baseline is long enough and the num-
ber of observations is sufficient.



Figure 4: Images are associated spatially, not
temporally.

e 2D hypothesis — 3D hypothesis
if the baseline is long enough.

e 2D feature — 3D hypothesis
if the baseline is long enough.

e 2D feature — 2D hypothesis
if the baseline is not long enough.

If a hypothesis lingers longer than permitted
without confirmatory evidence, it is “killed” or
deleted from the set of active hypotheses.

5 Image Insertion

Above, we specified the processing to be done
for each newly inserted image. Rather than in-
sert the images in temporal order (the order in
which they were acquired), we process images in
groups according to whether they are suspected
to have observed the same region of absolute
3D space (Figure 4). That is, given a set of im-
ages annotated with estimates of 6-DOF pose,
we fix our attention on a region of 3D space
(the dashed box in Figure 4), then identify those
images possibly containing observations of this
region from a distance less than some absolute
threshold (typically, one hundred meters). In
the figure, this set of images is represented by
bold wedges. These images are inserted in ar-
bitary order and processed as described above,
producing a stateful set of feature hypotheses.
The region of interest is then moved; any 3D
elements no longer in the region of interest are

output, and the set of relevant images is co-
herently updated to contain observations of the
new region of interest.

6 Conclusion

In this paper, we describe a method for match-
ing images acquired from arbitrary camera posi-
tions. Rather than processing images in tempo-
ral order, we process images by grouping them
according the 3D regions they observe. The
method operates by hypothesizing 3D features,
then seeking confirmatory evidence for these
features in successively inserted images. This
incremental approach seeks to evolve feature hy-
potheses by amassing a sufficiently large num-
ber of observations which agree on a feature’s
position to within a sufficiently small tolerance
or reconstruction error.
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