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Abstract

High-fidelity, textured geometric models are a funda-
mental starting point for computer graphics, simulation, vi-
sualization, design, and analysis. Existing tools for acquir-
ing 3D models of large-scale (e.g., urban) geometry from
imagery require significant manual input and suffer other,
algorithmic scaling limitations. We are pursuing a research
and engineering effort to develop a novel sensor, and as-
sociated geometric algorithms, to achieve fully automated
reconstruction from close-range color images of textured
geometric models representing built urban structures.

The sensor is a geo-located camera, which annotates
each acquired digital image with metadata recording the
date and time of image acquisition, and estimating the po-
sition and orientation of the acquiring camera in a global
(geodetic) coordinate system. This metadata enables the
formulation of reconstruction algorithms which scale well
both with the number and spatial density of input images,
and the complexity of the reconstructed model.

We describe our initial dataset of about four thousand
geo-located images acquired through a prototype sensor,
manual surveying, and semi-automated refinement of navi-
gation information. We demonstrate, for a small office park
on the MIT campus, the operation of fully automated al-
gorithms for generating hemispherical image mosaics, for
reconstructing vertical building facades, and for estimat-
ing high-resolution texture information for each facade. Fi-
nally, we describe the status of our efforts, and discuss sev-
eral significant research and engineering challenges facing
the project.
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1. Introduction

Visual simulation systems require geometric models as
input. Acquisition of complex 3D model geometry is a
long-standing bottleneck in computer graphics and general
simulation. We have chosen to address the problem of cap-
turing models of urban scenes (i.e., textured building exte-
riors) from high-resolution color imagery. This is a natural
problem domain in which to work, given the large num-
ber of applications engendered by rapid capture capability:
emergency planning, urban planning, embedding of com-
mercial databases, virtual sets, military operations, and the
like. Also, the urban acquisition problem is rich in interest-
ing research and engineering challenges.

We are addressing the acquisition problem with a re-
search and engineering effort to develop a novel sensor
and associated reconstruction algorithms [17]. We have
developed a prototype mobile, geo-located digital camera
to acquire digital images annotated with accurate estimates
of acquisition time, camera position, and camera orien-
tation. The availability of the sensor output, which we
call “pose imagery,” makes possible fundamentally novel
and powerful approaches to the model reconstruction prob-
lem. The sensor and algorithms are described elsewhere
[2,6,16,9,5,7,4].

1.1. Related Wor k

Existing computer vision algorithms [13, 11] usually
have one or more significant limitations. Often, they make
the assumption that input imagery is supplied already “con-
trolled,” or geo-registered. (Achieving geo-registration
in existing photogrammetry systems is a manual labor-
intensive task.) Typically, they are designed to operate on a
small number of images, for example a stereo pair or triad,
or a series of images acquired from a linear rail. Often the
assumption is made that all images are pairwise correlated,



that is, that every pair of images observes some common
portion of the real world. (This assumption clearly leads
to algorithms with running times quadratic in the number
of input images.) Alternatively, an image sequence (typi-
cally video) is processed, under the assumption that succes-
sive images are related. Both types of system usually re-
quire a human in the loop in order to initialize camera pose
estimates, indicate or select features, or supply correspon-
dences among features (e.g., [8]).

Such approaches are limited in at least three respects.
First, they do not scale to large numbers of images or very
complex output scenes, as human attention and handling are
required for each image and/or each reconstructed feature.
Second, they are not “algorithmic,” as they require a human
in the system to complete one or more tasks. Third, they
produce model data in an arbitrary coordinate system used
by the algorithm or chosen by the operator. In order to be
useful outside of the modeling tool, a coordinate transfor-
mation must be effected, either manually or by the incorpo-
ration of photogrammetric fiducial points.

Researchers have demonstrated impressive reconstruc-
tions of roof and building structures from multiple con-
trolled aerial images [3]. Another system has demonstrated
high-quality reconstructions from imagery, but employs a
human user to indicate block structures, feature correspon-
dences, and unoccluded texture regions [8]. Recently, a
reconstruction algorithm based on the evolution of level
sets has appeared, with impressive results [12] for con-
trolled imagery of textured shapes and faces. Another
group has published a notion of “space carving” which
produces a provably correct union of photo-consistent vol-
umes from controlled imagery [15]. However, no fully au-
tomatic system for reconstruction of textured urban mod-
els from initially uncontrolled close-range imagery has yet
been demonstrated.

1.2. Project Rationale

Our goal is the development of algorithms which extract
from geo-located imagery a collection of textured geomet-
ric objects expressed in a global (Earth) coordinate system.
We have demonstrated several algorithms which scale well
with input and output complexity, using images of a small
office park as a test dataset. These algorithms usefully ex-
ploit both the geo-locative metadata inherent in pose im-
agery, and the large number of images present in the dataset.
The key strategies of this work are described below.

First, we augment existing digital cameras with geo-
locating sensors, consisting of GPS (Global Positioning
System) and inertial sensors, wheel encoders, a compass,
and a Kalman filter which aggregates observations from dis-

parate sensors. We are also experimenting with the incorpo-
ration of wide field-of-view video cameras in order to better
estimate instantaneous translational and rotational veloci-
ties, and gather additional (low-resolution) observations.

Geo-location of each image allows us to insert incom-
ing imagery directly into a spatial data structure indexed
by position of the acquiring camera, and to query the data
structure by region of interest. For example, in Figure 1, the
query “report all cameras within 50 meters of, and contain-
ing within their field of view all or part of a specified re-
gion (the dashed rectangle)” might return the images shown
in bold. Thus, for a given region of space, the number of
images reported by the query (and thus subsequently pro-
cessed) depends only on the size of the region of interest,
and the density of images acquired in and around the region
— but not on the total number of images in the dataset.

Figure 1. Pose metadata enables spatial in-
dexing of large numbers of images, regard-
less of acquisition order.

This approach overcomes two scaling problems inher-
ent in existing systems. Systems which use small num-
bers of images can employ brute-force algorithms to per-
form matching, but can achieve reconstruction data only
over limited areas (for example, small portions of individual
buildings). Moreover, by assuming all pairs of images are
correlated, these algorithms have quadratic running times,
so clearly cannot be applied to very large numbers of im-
ages. Systems which use large numbers of images (typi-
cally from a video sequence) assume that consecutive im-
ages are related, to perform reliable short-baseline tracking.
However, these approaches have a different scaling prob-
lem: they must process all images before discovering any



correlated non-adjacent image pairs. To see this, consider
an acquisition path that circles a region (Figure 1). In order
to relate images far apart in the input sequence, all interme-
diate images must first be processed.

Our second strategy is to acquire very large numbers
(thousands) of high-resolution images. The computer vi-
sion problem is generally underconstrained; that is, given a
set of observations (images), there are many different three-
dimensional structures and lighting conditions that could
have given rise to it. Thus, acquiring many observations
yields many constraints on the underlying model and illu-
mination conditions which gave rise to those observations,
improving confidence in the generated geometry and tex-
ture. Multiple observations help in a different fashion, as
well. Significant structural elements (e.g. building corners,
edges, or facades) will appear in many images. Our strat-
egy is to aggregate many such observations so that real-
world structures will have significant “signatures” in our
aggregate. Preliminary results are quite encouraging. For
example, from our first dataset of nearly 4,000 images [5]
we can reliably detect the vertical facades of buildings in
the Technology Square office park using a histogramming
technique on edge orientations. Moreover, we can produce
high-quality estimates of building texture for each facade,
using a simple technique based on weighted median statis-
tics. Both algorithms are described fully in [7, 4].

The third salient aspect, our use of hemi-spherical im-
ages, yields primarily engineering, rather than theoretical,
advantages. We acquire imagery by rotating (panning and
tilting) a camera into about 50 discrete orientations around
a fixed optical center, or “node.” Automated optimization
techniques [5] aggregate the images into a single hemi-
spherical mosaic image. The advantage is that, once the
hemispherical mosaic is created, it can be treated as if it
were captured by a physical camera with a hemispherical
field of view.

The upshot of this strategy is that, when performing
“bundle adjustment” (optimizing external calibration pa-
rameters) on the entire image set, the number of free vari-
ables to be optimized is reduced by a factor of fifty (to a
single hemispherical image with 6 associated rigid DOFs,
from fifty images, 6 DOFs each). Moreover, the effective
resolution of the resulting mosaic image is nearly fifty times
that of the underlying camera, clearly much higher than we
could achieve with a single CCD array (even higher effec-
tive resolutions are achievable by further narrowing the un-
derlying camera’s field of view, at the cost of course of in-
creased acquisition time). Both the reduced optimization
load and increased image resolution are significant engi-
neering advantages.

Fourth, the project is riding a collection of technology

trendsthat make our methods timely. These trends are: the
emergence of high-resolution electronic cameras (to acquire
digital imagery); the availability of accurate GPS (position-
ing) and INS (orientation) sensors (to annotate imagery with
geo-locative metadata); and the availability of ever more ca-
pacious storage devices and more powerful CPUs to store
and process the data.

Finally, a significant portion of our work consists of val-
idation, both of the accuracy of the geo-locative data pro-
duced by the sensor, and of the reconstruction data produced
by our algorithms. To validate the sensor data, we acquire
survey data through independent means consisting of man-
ual surveying and the use of commercial photogrammetry
systems. To validate the resulting reconstruction data we
employ both survey data and traditional notions of image-
space and world-space feature residuals.

2. Preliminary Results

This section describes the deployment of our prototype
sensor in and around a small office park at MIT, and the
subsequent processing of the acquired pose imagery.

2.1. Acquisition Platform

The pose camera [9] is a wheeled mobile platform with
a high-resolution color digital camera mounted on a pan-
tilt head, itself mounted on a vertically telescoping stalk.
The platform also includes instrumentation to maintain es-
timates of global positioning (GPS), heading information
(IMU), and dead-reckoning (mechanical wheel encoders).
A Kalman filter maintains estimates of camera position and
bearing in geodetic coordinates. Finally, an on-board power
source and PC provide power and control to all of the de-
vices, and a disk drive and digital tape drive store digital
image and pose (position, heading, time) data.

2.2. First Dataset

We deployed an early prototype of the pose camera in
and around Technology Square, an office park of four build-
ings located on the MIT campus. The prototype included a
digital camera, mounted with fixed nodal point on a pan-tilt
head, which was mounted on a moveable tripod. During
acquisition, location and bearing information was derived
from manually operated surveying instrumentation, and the
introduction of one visible fiducial point for each node [5].

The pose camera was moved into eighty-one distinct
locations. At each, a node was acquired by rotating the
camera through a sequence of orientations. The result-
ing “tiling” amounted to a roughly hemispherical view of
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Figure 3. The hemispherical tiling (47 images)
used for node acquisition.

the environment surrounding the camera, and comprised
roughly fifty images (Figure 3). Digital imagery and meta-
data were transferred from the platform to our lab’s storage
facilities. At this stage, both position and rotation estimates
were rough and in need of refinement; i.e., the imagery was
only approximately controlled.

2.3. Mosaicing

The next step was to produce, from each set of images
acquired at a node, a “spherical mosaic” which merged
all of the images into a single, virtual image with a full
hemispherical field of view. We do so with an iterative,
dense correlation algorithm [5]. The algorithm’s output is a

inertial unit

quaternion (rotation) for each image, which relates that im-
age to some reference direction for the node. Using these
quaternions, and a interpolation scheme to blend pixels in
overlap regions, virtual hemispherical images can be gener-
ated for each node location (Figure 4). At the right of the
figure is another representation of the nodes; they have been
unwrapped into cylinders, causing distortion of straight fea-
tures (e.g., building edges).

2.4. Registration

Once each of the individual nodes has been processed
into a mosaic, it remains to register the nodes with respect
to each other; that is, to situate and orient each node in a
common, global coordinate system. Our goal, as yet un-
realized, is to eventually achieve a fully automated mech-
anism for exterior registration of the nodes. In the interim
we employ a semi-automated method, which involves au-
tomatic identification of point features, and user selection
and semi-automated correspondence detection [5]. Our tool
registers all eighty-one nodes (comprising about 4,000 im-
ages) in about one hour of interaction time, or less than one
second per image (Figure 5).

2.5. Reconstruction and Texture Estimation

Once we have a large collection of geo-registered dig-
ital images, a variety of 3D reconstruction algorithms can



Figure 4. Two hemispherical mosaics (left), also displayed as cylinders (right).

be brought to bear. We are developing several complemen-
tary algorithms for inferring 3D structure from geo-located
imagery. One algorithm matches dense regions of texture
from many images to infer the existence of oriented sur-
face elements [16]. Another algorithm generalizes tem-
poral tracking methods to a spatial tracking method for
sparse features such as corners, edges, and polygonal fa-
cades [2]. A third algorithm [1] establishes geometric varia-
tions within nearly-planar surfaces using plane plus parallax
and level set evolution methods based on those described in
[14, 8, 12].

A fourth algorithm is essentially mature [4]; it detects
fragments of significant vertical facades via a Hough-like
transformation [10] of horizontal scene edges. These frag-
ments are linked into large vertical facades, which are then
“extruded” downward to the ground terrain. Finally, me-
dian statistics are used to estimate for each facade a high-
resolution texture map consistent with observation. A tex-
tured model generated by this algorithm is shown in Figure
6. The terrain is a triangulated height field, with heights de-
rived from node survey information. It has been textured by
the addition of a single geo-registered aerial image.

3. Challenges

This effort faces a number of engineering and research
challenges. First, we must continue development of ro-
bust instrumentation for rapid acquisition of high-resolution
digital imagery and navigation metadata. Interferomet-
ric differential GPS works well in open areas, but suffers
from frequent dropouts in urban areas due to satellite oc-
clusion and multipath interference, causing loss of phase
lock. We are working to incorporate redundant navigation
instrumentation (inertial sensors; wheel encoders; compass;
etc.) with complementary performance characteristics to
improve pose estimates.

Instrumentation improvements will produce more accu-
rate, but not perfect, pose estimates for each acquired im-
age. We anticipate that even with refined instrumentation, a
node registration step will be required to produce controlled
imagery of sufficient accuracy. Our semi-automatic meth-
ods are quite efficient; however, our goal is to achieve a
fully automatic method.

From a systems point of view, the sheer data size of
the input imagery and output models necessitates external-
memory spatial indexing schemes to organize both the im-
age data and generated models. We also employ multi-



Figure 5. Initial pose-image dataset (about 4,000 images acquired from 81 node locations), geo-
registered to a derived wireframe model of the Technology Square office park.

Figure 6. Result of reconstruction: a textured geometric model representing the office park.



scale techniques, for example performing initial pose refine-
ment with low resolution imagery, then using the generated
pose estimates as starting points for optimizations involving
higher-resolution images.

Currently, our system implements techniques to recon-
struct only vertical facades, which are “extruded” to ground
and capped with rooftops using heuristics [4]. Clearly ex-
tensions will be required to capture, with reasonable fidelity,
the rich variety of shapes present in an extended urban area.

The enormous variation in lighting conditions caused by
changes in camera position, by occluding structures and
foliage, by the passage of time, and by surface specular-
ity, makes estimation of surface BRDFs difficult. We use
weighted median statistics on multiple observations to elim-
inate most occluded pixels and estimate surface color [4].
This approach is naive in its assumption of constant, dif-
fuse lighting and diffuse surfaces. Using the time estimates
(and therefore associated sun positions and sky conditions)
logged by our instrumentation, techniques such as those of
[18] can be used to approximate reflectance properties of
reconstructed surfaces.

4. Conclusion

We described the status of a project whose goal is fully
automated capture of textured geometric models represent-
ing urban scenes. Imagery of a small office park demon-
strated the prototype acquisition platform and reconstruc-
tion algorithms. All aspects of the system are fully auto-
matic, save one: a semi-automated method for registering
hemispherical images with respect to each other. The next
goals for the project are to achieve full automation through
improvement of both the sensor and the registration algo-
rithms, and to scale the acquisition area up by two orders of
magnitude, to a region about one kilometer square contain-
ing several hundred structures.
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