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Abstract— Most Autonomous Underwater Vehicle (AUV) sys-
tems rely on prior knowledge of beacon locations for localization.
We present a system capable of navigating without prior beacon
locations. Noise and outliers are major issues; we present a
powerful outlier rejection method that imposes geometric con-
straints on measurements. We have successfully applied our
algorithm to real-world data and have demonstrated navigation
performance comparable to that of systems that assume known
beacon locations.

I. I NTRODUCTION

Stationary acoustic transponder beacons (also known as
Long Baseline, or LBL, beacons) are commonly used as
navigational aids in AUV systems. AUVs can estimate the
range to a beacon by sending a ping and measuring the length
of time until a response is received. In most experiments, the
locations of the beacons are carefully surveyed, allowing the
position of the AUV to be easily determined by trilateration.

In this paper, we consider an AUV navigating in a beacon
field when beacon locations are unknown. There are a number
of important applications:

1) Unsurveyed beacons: There are a number of scenarios
in which carefully surveying beacon locations is im-
practical, including autonomous or aerial deployment of
beacon fields.

2) Detection of beacon movement: Most navigation sys-
tems assume that each beacon remains at its surveyed
location. It is important to be able to detect whether a
beacon has become unanchored.

One major difficulty arises from the partial observability
of beacon locations given range measurements. A single
measurement does not contain enough information to deter-
mine the location of a beacon. Systems typically depend on
estimates of both beacon and robot position, which allows an
update to be performed on a single measurement by linearizing
around the prior.

Without a prior, however, a linearization is not possible and
single measurement cannot be used; many measurements must
be fused into a single estimate. We describe a reliable method
for estimating a beacon location given a number of range-only
measurements.

Another major challenge to our system is the noisiness of
LBL data. Use of a prior allows improbable measurements to
be classified as outliers. However, when a prior is not known,
outlier rejection is much more difficult. We present an outlier
rejection method based on spectral graph partitioning that does
not require a prior.

Fig. 1. Caribou AUV. Our experiments used an Odyssey-III class vehicle
equipped with DVL/LBL/GPS and INS. The primary payload of Caribou was
a synthetic aperture sonar (SAS), not pictured. While we did not use data
from the SAS, our algorithms were designed to cope with the interference it
caused.

An algorithm for finding likely beacon locations given a
number of range-only measurements is also presented. We
have named the combination of spectral outlier rejection
and beacon localization the Range-Only Beacon Localization
(ROBL) algorithm.

We demonstrate how these methods can be combined into
a complete navigational system and show navigational re-
sults from data collected by an Odyssey III AUV during
the GOATS’02 experiment off the coast of Italy. In these
experiments, four LBL beacons were deployed. The beacons
were carefully surveyed, allowing a direct comparison of the
ROBL-based filter with a baseline filter that assumes beacon
locations.

The path of the AUV has a profound impact on its ability
to localize beacons. Range-only data often leads to multiple
plausible locations for a beacon. We present an exploration
strategy which optimally disambiguates multiple solutions.

We will consider the problem in two dimensions rather than
three. The 2D case is easier to visualize and is more easily
implemented. When AUVs operate in shallow depths, the 2D
case closely resembles the 3D case. All of the algorithms we
discuss have straightforward extensions to 3D.

II. PREVIOUS WORK

The problem of navigating with range-only data has not
been studied extensively, but a small number of important pa-
pers exist. One system uses only beacon range measurements,
casting the problem as an enormous nonlinear optimization
over a search space including not just the beacon locations,
but also the robot’s position at each point in time [1]. The
system suffers from significant convergence problems and has
difficulty handling baseline crossings.



A second paper [2] addresses the problem in a terrestrial
system, briefly discussing the case of unknown beacon loca-
tions. However, the authors assume that the beacon locations
are approximately known, and do not discuss the case when
no prior is available.

Our outlier rejection method uses a form of spectral graph
partitioning, which has been used in a number classification
systems ([3], [4]). Much of the mathematical foundation for
spectral analysis of adjacency matrices was established in [5],
[6], [7].

Most systems incorporate some type of outlier rejection
strategy. When priors on beacon locations are available, ex-
tremely unlikely measurements can be discarded. Other meth-
ods include searching for intervals of data that are relatively
smooth and continuous (and thus presumably not caused by
noise), and using these intervals to help interpret noisier
intervals [1].

Hough transforms have previously been used to classify
sonar returns from point and line features ([8]). Another recent
work employing Hough-style voting is [9].

III. N OISE IN LBL DATA

Most navigation systems use Kalman filters for state estima-
tion. Kalman filters produce optimal estimates when measure-
ment noise is Gaussian and stationary, but their performance
can be dramatically degraded when noise is more complex.

LBL data is corrupted by a number of non-Gaussian and
non-stationary noise processes (see Figure 2). Removing out-
liers can greatly improve the statistical properties of the noise
and improve the performance of the navigation filter.
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Fig. 2. LBL Range Data. The range data for each beacon is corrupted by
large amounts of noise. Some outliers come in bursts and have slowly varying
range measurements that mimic valid data (A).

One source of error is the fluctuating speed of sound in wa-
ter. The speed of sound varies with environmental conditions,
making the error a function of the environment. The noise is
also range dependent, since the total time of flight is multiplied
by the speed of sound.

Multipath is another significant source of non-Gaussian
noise. In typical LBL operation, the acoustical energy from
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Fig. 3. LBL Range Error. (a) Range measurements normalized by the true
range. (b) Absolute error. In both views of the data, a Gaussian noise model
fits poorly due to the large number of outliers.

the transmitter travels in a straight line to the AUV. Multipath
occurs when the receiver is triggered by an indirect path rather
than the direct path. (For example, a pulse could travel from
the beacon, reflect off the ocean surface or floor, then travel to
the AUV.) Whether or not this happens is primarily a function
of the environmental conditions. These conditions change
slowly since the AUV moves at a low speed. As a result,
an indirect path is often measured consistently over several
successive measurements (Figure 2A). These indirect range
measurements may have very little variance, and their rate
of change may correlate very well to the vehicle’s estimated
motion. Multipath noise is non-uniformly distributed, since it
corresponds to an integer number of reflections from discrete
surfaces; thus different indirect paths generally result in a
multimodal distribution.

The AUV may also be operating in a noisy environment.
If multiple vehicles are present, one might receive an LBL
response caused by another vehicle’s request. Finally, the
AUV’s payload can also interfere; a high intensity acoustic
device like an SAS can either mask or falsely trigger an LBL
response. Closer examination of Figure 2 shows that there is
little noise until about 300 seconds into the mission, when the
SAS was activated.

We characterized the noise of raw range measurements by
collecting range data for an entire mission (Figure 3). We
modeled the error in two ways: as multiplicative noise and as
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additive noise. The multiplicative noise model is applicable
to speed of sound errors, while the additive model better
describes multipath and other noise sources. In both cases, the
Gaussian fit to the data bears little resemblance to the actual
data.

IV. SPECTRAL GRAPH PARTITIONING FOR OUTLIER

REJECTION

Our approach for identifying outliers in range data is to
represent a set of measurements as a graph, and apply graph
partitioning algorithms to identify sets of consistent measure-
ments. We associate each measurement with the vehicle’s
dead-reckoned position at the time of the measurement. Each
measurement can be drawn as a circle in the plane, centered
at the vehicle’s position with a radius equal to the measured
range. The beacon is constrained to lie on a circle with this
radius.

Fig. 4. Measurement consistency. Range measurements can be described
as circles in the plane centered at the vehicle’s position. For any given
measurement, the beacon must be located on the circle. Measurements are
consistent if the circles intersect (left). (The AUV’s heading is not used.)

Consider a set of range measurements,Mi : 1 ≤ i ≤ N .
Two measurements areconsistentif they can both be explained
by a beacon at some particular location. In other words, if
the circles describing the measurements intersect (within some
tolerance), they are consistent.

We can form an undirected graph from pairwise consis-
tencies. Each measurement becomes a vertex in the graph;
consistent measurements are connected by an edge (Figure 5).

The problem of outlier rejection can then be posed as a
graph partitioning problem: divide the graph into two sets of
vertices by cutting edges such that inliers are in one partition,
and outliers are in the other. Inliers will tend to be highly
consistent with each other, whereas outliers will have only
random consistency with other measurements.

A graph resulting from eight hypothetical measurements,
including three outliers, is shown in Figure 5. Note that only
the connectivity of the graph is relevant; the position of the
nodes relative to each other has no meaning. In the example,
nodes 1-5 are well-connected to each other. This means that
they are consistent with each other, and are therefore less
likely to be the result of noise. Nodes 6-8, while connected
to the other nodes, are less likely to be inliers. A good
partitioning of this graph would be cut A; it separates the
highly connected measurements from those that are poorly

connected. Cut B is poor since it divides a large number of
consistent measurements. Cut C is poor since it leaves several
unlikely measurements (6 and 8) classified as inliers.
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Fig. 5. Simplified Partitioning Problem. Each measurement is a node in
the graph, and edges connect consistent measurements. The outlier rejection
problem is to find a graph partitioning that separates well-connected vertices
(inliers) from poorly-connected vertices (outliers).

We construct anN × N adjacency matrixA by setting
Aij = 1 iff Mi and Mj are consistent. We set the diagonals
of A to zero.

Aij =
{

1 i 6= j, Mi andMj are consistent
0 otherwise

(1)

Since the graph in Figure 5 undirected, the adjacency matrix
A is symmetric. For our toy problem, it is:

A =



0 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0
0 1 0 1 1 0 0 0
1 1 1 0 1 0 0 0
1 0 1 1 0 0 0 1
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0


(2)

Let u be anN×1 indicator vector with each element either
0 or 1; if ui = 1 then measurementMi is an inlier. We can
measure the quality of a cut withr(u), a scalar-valued function
of u:

r(u) =
uT Au

uT u
. (3)

The productuT Au is twice the number of edges within
the inlier cluster. The denominator,uT u, is simply the total
number of vertices classified as inliers. Thus the metricr(u)
computes the average connectivity of the inliers. For our toy
problem, we can compute the metricr(u) for each of the cuts
in Figure 5.

Cut A Cut B Cut C
1.6 0.5 1.4

Cut A, the intuitively correct cut, has the highest score. Cut
B, which breaks a great deal of connectivity, has a very low
score. Cut C, while not optimal, scores relatively high because
it preserves almost all of the connectivity. Cut C does more
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poorly than A, however, because it includes nodes 6 and 8 as
inliers, which have lower connectivity than nodes 1-5. This
reduces the average connectivity.

Average inlier connectivity is a good metric for outlier
rejection. Consider an incremental argument: given a set of
inliers u, measurementMi should be added if it is at least as
well connected to the inliers as the inliers are connected to
themselves. If this is true, addingMi to u will increaser(u).

The challenge is to find an indicator vectoru which max-
imizes r(u). However, this is a hard problem for discrete-
valued u. However, if we allow the indicator value to be
continuous-valued, we can readily compute the solution.

Consider the gradient ofr(u), remembering thatA is
symmetric:

∇r(u) =
AuuT u− uT Auu

(uT u)2
=

Au− ru

uT u
(4)

Setting the gradient to zero yields the extrema ofr(u):

Au = ru. (5)

This is an eigenvector problem: the productAu must be in
the same direction asu, scaled by a factorr. We know all of
the solutions to equation 5; they are the eigenvalue/vectors of
matrix A.

Our goal is to maximizer, so we pickr to be the largest
eigenvalue andu to be the corresponding eigenvector. For the
toy problem in Figure 5, the eigenvectoru is plotted in Figure
6. The indicator values for the inlier measurements (1-5) are
significantly larger from the outliers (6-8).

The metricr(u) is also the Rayleigh quotient of matrixA,
whose extrema values have previously been known [10].

Smaller eigenvalues ofA correspond to alternative cuts with
lower scores. SinceA is symmetric, the cuts are orthogonal:
they provide radically different interpretations of the data. If
the first and second eigenvalue are similar in magnitude, it
means that two orthogonal cuts are of similar quality. If the
data is composed of a single set of interconnected inliers plus
random outliers, this should not occur since two orthogonal
cuts cannot similarly separate the inliers from outliers. Using
this fact, we can perform a sanity check on our data; if the
first and second eigenvalue are similar in magnitude, the data
must be considered suspect.

At this point, we have the optimalu which maximizes
r(u). The vectoru, however, is continuous-valued, while the
inlier/outlier classification problem is discrete-valued.

Consider the discrete-valued indicator vectorv(t), which is
the vectoru thresholded by the scalart:

vi(t) =
{

1 iff ui > t
0 otherwise

(6)

We wish to find the optimal threshold,topt:

topt =
max
t ∈ u

v(t)T u

v(t)T v(t)
. (7)
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Fig. 6. First eigenvector ofA, u ∈ <8. The continuous indicator vector
is the first eigenvector ofA. Large values indicate that the corresponding
measurement is an inlier; small values indicate outliers.

Maximizing the dot product ofv(t) andu yields the vector
v(t) that is closest to the direction ofu. This maximization
problem can be solved in a brute-force manner by trying every
functionally distinct threshold value, i.e., tryt ∈ u, computing
v(t) and the dot product (Equation 7) for each.

The algorithm presented here does not guarantee that the
final indicator vectorv(topt) is globally optimal. This algo-
rithm computes the optimal continuous indicator vector, and
then computes the optimal discretization ofthat vector. It
is possible that some other discrete vector, which does not
correspond to any thresholdingt of u, is actually optimal.
This is more likely to occur when the inlier elements ofu
have widely varying values; this corresponds to the direction
of u having varying magnitudes in each dimension. In this
case,v(t) will not be able to approximateu very well since
the components ofv(t) must be either zero or one. In practice,
however, not only are the inlier elements ofu of similar value
(they typically intersect roughly the same number of other
measurements), but the discrete vectorv(t) performs very
well.

Outlier rejection performance can be improved by incor-
poratinga priori knowledge of the noise characteristics into
the threshold. For example, if consistently half of the measure-
ments are outliers, then the algorithm should be biased towards
rejecting half of the measurements. To optimally reject a fixed
fraction of measurements, simply discard the measurements
with the lowest magnitudes inu. If only half of the measure-
ments are to be retained, then sett = max(median(u), topt).
This guarantees thatat leastthe expected number of samples
is discardedand that the measurements were highly consistent
with each other.

A typical result on 25 real range measurements is shown
in Figure 7. Several extreme outliers are outside of the plot
area. In this case, over 25% of the measurements are outliers,
and every measurement is correctly classified. Some of the
outliersare consistent with inliers, however their connectivity
is so low in the graph that they are given small indicator
values. Also noteworthy is that one of the measurements is
completely disconnected from the other measurements; the
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algorithm works for the case of unconnected graphs.
As mentioned before, measurements are also considered

consistent if they intersect within some tolerance. The toler-
ance is an important consideration for good outlier rejection.
Given no noise and accurate vehicle positions, inliers always
intersect. Now consider two measurements made in quick
succession, with noise. If noise makes the first measurement
range a bit too large and the second measurement a bit too
small, it is possible that the circles will not intersect. The
algorithm works best if inliers have as much connectivity to
other inliers as possible; adding a small intersection tolerance
helps improve their connectivity. Outliers are typically so
different from inliers that this tolerance rarely changes their
connectivity.
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Fig. 7. Outlier Rejection Result. Twenty-five measurements are plotted,
showing both inliers and outliers. Measurements that were consistent with
many other measurements were classified as inliers.
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Fig. 8. Data from Figure 2 After Outlier Rejection. The filtered data is dra-
matically cleaner than the input data, and no beacon location information was
required. The raw measurements were filtered in blocks of ten measurements
(about 30 seconds) each.

An important benefit of our outlier rejection algorithm
is its ability to incorporate information about the vehicle’s
motion. For example, if the measured range to a beacon
increased slowly over time, with very little apparent noise,
most algorithms would classify those measurements as inliers.

However, those measurements could be spurious; if the vehicle
was stationary, for example, then the rangeshouldbe constant.
Our algorithm can reject this sort of noise, since it incorporates
knowledge of the vehicle’s trajectory.

A. Computation in Blocks

The heart of the outlier rejection algorithm is the adjacency
matrix A. When testing two measurements for consistency,
we determine whether two circles (centered at the vehicle’s
estimated locations) intersect. However, if the measurements in
A span a large time interval, the accumulation of navigational
error can cause measurements to appear consistent when they
are not and vice versa.

The maximum acceptable time interval is dependent on
the quality of navigation information available. With Doppler
velocity logs (DVL) and a fluxgate compass, time windows of
up to 10 minutes are practical. We have gotten good results
using both DVL/compass and compass alone (using thrust
control to estimate forward speed.)

Of course, if high precision inertial devices are used, or if
the vehicle can use GPS, accumulation of navigation error is
not a significant issue.

B. Comparison to other spectral partitioning methods

A number of similarly motivated partitioning methods exist
([3], [4]). These algorithms also compute a graph partition-
ing through essentially the same mechanism described here.
However, they are fundamentally different in their formulation:
they are designed to cluster data that contains two different sets
of consistent data. This is a different problem than finding a
single set of consistent data amidst noisy outliers. This fact
accounts for the different objective functionr(u) used in this
paper.

C. Computational Optimization

Ultimately, the largest eigenvalue of a potentially large
matrix will need to be computed. From an implementation
standpoint, several optimizations can be employed to reduce
the computational burden.

As already discussed, outlier rejection should be done
on modestly sized sets of measurements. Since the size of
matrix A is determined by the number of measurements,
controlling the block size has a direct impact on computational
requirements.

A fortuitous advantage of the average inlier connectivity
metric is that the solution is thelargesteigenvalue. The largest
eigenvalue can be found in a fast iterative manner via the
Power Method [10]. For any vectorx not perpendicular to
the largest eigenvectoru, the direction ofAnx approachesu
as n → ∞. In practice,x converges to a sufficiently good
approximation ofu in a few iterations.

Most other spectral partitioning algorithms have eigenvalue
solutions as well, but their solution is found in different
eigenvalues.

Considering the low rate at which an AUV receives LBL
data (each beacon is queried roughly every five seconds), an
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AUV is typically starved for data and has CPU time to spare.
Even though spectral outlier rejection is more expensive than
other methods, it makes sense to trade CPU time for higher-
quality navigation.

D. Extension to Multiple Vehicles

It is possible to extend the spectral outlier rejection to
multiple vehicles. In fact, the algorithm makes no assumptions
about how many vehicles are operating; it only assumes that
approximate vehicle positions are available for each range
measurement. A consistency matrixA can be computed re-
gardless of how many vehicles were involved in data acqui-
sition. The algorithm is entirely unchanged; a single set of
inliers is identified.

In order for multiple vehicles to share data, they must have
estimates of their positions in the same coordinate frame.
If the robots know their starting positions, then they can
share data immediately. Otherwise, the vehicles will need to
independently localize at least two beacons in order to define
a new common coordinate system. Once this is achieved, they
can collaborate on localizing beacons.

It is not necessary to do outlier rejection on vehicles before
trying to fuse the data. Groups of vehicles in very noisy
environments might not be able to individually discern inliers
from outliers, but taken collectively, their data might be usable.
We hope to experimentally verify the performance of the
algorithm on multiple vehicles in the future.

An interesting scenario with multiple vehicles involves a
command/control vehicle that autonomously deploys a beacon
field. All of the vehicles use range measurements to establish a
common coordinate system without the use of GPS or known
beacon locations. Sensing platforms can identify targets of
interest and relay the information to other vehicles. Since no
surveying of the operational area is required, the vehicles could
conceivably be deployed without any human support.

V. ESTIMATING LBL B EACON LOCATIONS

Once beacon range measurements have been filtered, leav-
ing only reasonably reliable data, the actual location of the
beacons must be determined. Three perfect measurements
(made from non-collinear positions) uniquely determine a bea-
con location. However, the measurements are contaminated by
noise, and three range measurements rarely intersect exactly.

Our approach, once again, is to consider pairs of measure-
ments. A pair of measurements is not sufficient to constrain a
beacon’s location to a point; two circles havetwo point inter-
sections and thus two possible solutions. However, provided
the vehicle is not traveling in a straight line, some solutions
will occur more often than others.

We use a voting scheme implemented with a two-
dimensional accumulator similar to that used in a Hough
transform [11]. Each consistent measurement pair “votes” for
its two solutions. The physical world is discretized into a
two-dimensional grid, with each grid cell corresponding to
a rectangular area in the world. Ideally, solutions that are
near each other should end up in the same cell, even in the

presence of noise. This can be accomplished by choosing a
grid size that matches the total uncertainty in the solution:
range uncertainty plus dead-reckoning uncertainty. Once all
votes have been added to the accumulator, we can search the
accumulator for the grid with the greatest number of votes.

If the beacon happens to lie near a cell boundary, it is
possible that the votes for solutions around it will fall into
differentcells. In the worst case, the votes for similar solutions
could be evenly split into four different cells, making it likely
that none of the cells would be noticed when accumulator is
searched.

Fortunately, there is a simple solution: when voting, vote
for a cell and all of its neighbors. At the expense of smearing
the peak, this approach eliminates the risk of a peak being
hidden due to the discretization of grid boundaries.

Our implementation finds the two largest peaks in the
accumulator. After finding the first peak, all votes for that cell
are removed from the accumulator so that the second peak can
be found without influence from the first.

The number of votes for each peak serves as a confidence
metric. If the ratio of votes between the first and second peak
exceeds a threshold, then the first peak is declared to be the
(approximate) beacon location. If the vote ratio is less than
the threshold, then both peaks are still plausible solutions;
no decision will be made until more range measurements are
available. This process is illustrated in Figure 9. Empirically,
we found a vote ratio of around two to be sufficiently high to
virtually guarantee that the correct peak is selected. Higher ra-
tios increase confidence, of course, but they can unnecessarily
delay making a decision.

Finding a solution as early as possible is highly advanta-
geous. First, it becomes difficult to reliably estimate measure-
ment intersections for long time windows due to accumulating
dead-reckoning error. The ability to make decisions based
on smaller sets of data mitigates this problem. Second, until
the AUV localizes a few beacons, it must rely on dead-
reckoning for navigation. During this time, the global transla-
tional/rotational misalignment between the robot’s coordinate
frame and the global frame will increase.

VI. SLAM WITHOUT PRIOR BEACON LOCATIONS

Once beacons have beenapproximatelylocated, a conven-
tional Extended Kalman Filter (EKF) can be used to jointly
refine both vehicle position and beacon locations as additional
measurements arrive. We have implemented our entire system
on data gathered during the GOATS’02 experiment.

As opposed to systems in which beacon locations are known
a priori, the beacon locations become part of the filter state
and the covariance matrix is appropriately enlarged. A simple
state vector incorporating one beacon location is shown below,
where the robot is located at(rx, ry), the beacon at(bx, by)
and the robot’s orientation isrt.
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Fig. 9. Beacon Localization Using Voting. Using the inliers computed by our spectral outlier rejection algorithm, we compute possible beacon locations by
finding the pairwise intersections of a set of measurements. Each of these intersections is avote in a two-dimensional accumulator. The figure shows the votes
in Euclidean space (left) and the vote density (right) in three successive iterations. At each iteration, the two largest peaks in the vote density are identified.
If the largest peak is sufficiently larger than the second largest peak, the beacon’s location is decided. Otherwise, initialization of the beacon is deferred until
more data is available.
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xn =


rx

ry

rt

bx

by

 (8)

When we receive a new range measurementzn to the
beacon, we perform a Kalman update step. The first step is to
estimate the range to the beacon from our current state.

ẑn =
[
(rx − bx)2 + (ry − by)2

] 1
2 (9)

The EKF also requires the JacobianJ of zn (the partial
derivatives ofzn with respect to each state variable). After
some algebra, we see that:

Hn = J (zn) =


(rx − bx)/ẑn

(ry − by)/ẑn

0
−(rx − bx)/ẑn

−(ry − by)/ẑn

 . (10)

Given a model of the measurement noise varianceR, the
Kalman gain can be computed:

Kn = PnHT
n (HnPnHT

n + R)−1. (11)

The usual EKF time update steps are used unchanged, i.e.:

xn+1 = xn + Kn(zn − ẑn) (12)

Pn+1 = (I −KnHn)Pn (13)

Unlike many navigation filters, we require the ability to
dynamically increase the amount of state. When a new beacon
is localized, the state vectorx and covariance matrixP must
be extended to incorporate information about the beacon. The
initial estimate for the beacon’s location is the output of the
ROBL beacon localization algorithm (see Section V).

It might be tempting, if thenumberof beacons is known
in advance, to “preallocate” room in the state and covariance
matrix for them. When a beacon is first localized, the state
could be initialized with a synthetic observation. This is a
recipe for disaster. A Kalman update step must not be used
to initialize a new feature since the Kalman update equations
perform a linearization around the current state. In the case of
a preallocated state, the “current state” is meaningless, and a
linearization around it is unlikely to produce good results.

Consider the moment when a new beacon is first initialized.
The error in the beacon estimate is perfectly correlated with
the error in the robot’s state since the robot’s state was used
to estimate the beacon’s position. Thus, the covariance data
for the beacon is initialized to be equal to the robot’s. If an
additional uncertaintyN from the beacon localization phase
is available (for example, the covariance of the points in the
grid cell), it can be added to the covariance matrix as shown
below.

xn =


rx

ry

rt

b1x

b1y

 −→ xn+1 =



rx

ry

rt

b1x

b1y

b2x

b2y


(14)

Pn =
(

C(r, r) C(r, b1)
C(b1, r) C(b1, b1)

)
−→

Pn+1 =

 C(r, r) C(r, b1) C(r, r)
C(b1, r) C(b1, b1) C(b1, r)
C(r, r) C(r, b1) C(r, r) + N

 (15)
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Fig. 10. Dead-Reckoned Path. The dead-reckoned path that we used to
bootstrap our SLAM filter was relatively poor. It was constructed from DVL
and an uncalibrated fluxgate compass.

We have applied our algorithm to a dataset collected on an
Odyssey III class vehicle during the GOATS’02 experiment.
We used DVL/INS data for our dead-reckoned trajectory. The
compass was poorly calibrated, resulting in a poor dead-
reckoned path (see Figure 10.)

The path begins with a very long, almost straight segment.
For beacons lying off the line of travel, this is a particularly
difficult situation, since two solutions are always possible (one
on either side of the vehicle.) Due to this difficulty, it takes
four minutes to localize the first beacon. All four beacons are
localized eleven minutes into the mission.

Once several beacons are localized, the entire trajectory of
the robot, including the initial portion during which only dead-
reckoning was possible, can be recomputed. The coordinate
frame of the robot will differ from the global coordinate frame
by a simple translation and rotation. If the vehicle’s initial
position in the global frame is known, the magnitude of this
translation and rotation is determined by the amount of dead-
reckoning error accumulated prior to the localization of the
beacons.

The results of the experiment are shown in Figure 11. The
global translation/rotation error (which amounted to 17 meters
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and a few degrees of heading error) have been manually
removed to allow the estimated path to be easily compared
to the baseline path. (The baseline path was generated by a
causal EKF filter that used the surveyed beacon locations.)

After global alignment, the beacon localization error was
extremely low. One of the estimated beacon locations was used
to determine the global translation error. The errors for the
remaining beacons were:

Beacon 1 Beacon 2 Beacon 3
2.89 m 2.52 m 1.85 m

Since the global translational/rotational error was estimated
by aligning the beacons, the beacon localization error is proba-
bly somewhat over-fit. However, due to the close agreement of
the the two vehicle tracks, the degree of over-fitting is arguably
small.

Animations of both the beacon localization process and
operation of the ROBL SLAM filter are available at
http://cgr.csail.mit.edu/robl.

VII. O PTIMAL EXPLORATION

The number of measurements needed to localize a beacon
is strongly dependent on the path of the robot. Straight
trajectories are the worst possible case; an AUV can travel
in a straight line forever, and will not be able to determine
whether the beacon is to the right or left.

Suppose a beacon’s location has been reduced to two
possible points,A or B. This will be the case after two range
measurements from slightly different positions.
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Fig. 12. Exploration Gradient. If a beacon’s location is believed to be
either (-1,0) or (1,0), then the best disambiguating motion is a function
of the AUV’s position. The vehicle maximizes the difference between the
range measurements by traveling along the arrows. The length of the arrows
indicates how rapidly the difference in range changes.

If the range to pointsA and B is the same, then a range
measurement tells you nothing in terms of which point is more
likely. To maximize the amount of knowledge about which
point is more likely, the robot should move so that theabsolute
differencein range to pointsA andB is as large as possible.

Given pointsA, B, and the robot’s positionR, the magni-
tude of the difference in range betweenR andA andR and
B is given by:

r =
∣∣∣[(Ax −Rx)2 + (Ay −Ry)2

] 1
2 − (16)[

(Bx −Rx)2 + (By −Ry)2
] 1

2

∣∣∣
The gradient∇(r) is the direction of greatest increase.

∇(r) =
(

Bx −Rx

|B −R|
− Ax −Rx

|A−R|

)
x̂ + (17)(

By −Ry

|B −R|
− Ay −Ry

|A−R|

)
ŷ

An example gradient field, withA = (−1, 0) andB = (1, 0)
is plotted in Figure 12. The arrows indicate the direction in
which the vehicle should travel to maximizer. The length of
the arrows indicate how rapidlyr changes as the robot moves.

Better performance can be expected by employing an active
exploration algorithm. Fewer measurements will be needed to
find a solution, which means that lower-quality dead reckoning
can be used. In addition, locating beacons quickly reduces
the magnitude of the global translation/rotation error resulting
from navigating without fixed reference points.

VIII. C ONCLUSION

We have described a system capable of performing localiza-
tion without relying on carefully surveyed beacon locations.
Filtering noise in LBL data was a major challenge, prompting
our development of a outlier rejection algorithm based on
spectral graph partitioning.

We showed how to compute likely beacon locations. An
important feature of our method is its ability to discern whether
more than one location is likely. The combination of strong
outlier rejection and beacon position estimation comprise our
Range-Only Beacon Localization (ROBL) algorithm.

Using the ROBL algorithm, we implemented a SLAM filter,
and demonstrated it on data collected during the GOATS’02
experiment. The estimated vehicle path is close to the baseline
path, which was computed using known beacon locations. In
addition, the ROBL/SLAM filter localized all four beacons to
within a few meters of their surveyed positions.

The ability to localize a beacon is tightly coupled to the
path traveled by the AUV. We showed how the robot’s path
should be chosen to optimally resolve ambiguous data.

Future work includes reducing the dependence on dead-
reckoning, and using particle filters to allow beacon positions
to be estimated earlier.
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Fig. 11. SLAM filter results. Our SLAM filter’s performance (labeled ROBL EKF) favorably compares to the performance of a baseline filter that uses
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