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Abstract

We describea systemthatcomputesradiositysolutionsfor polyg-
onal environmentsmuchlarger thancanbe storedin main mem-
ory. Thesolutionis storedin andretrievedfrom a databaseasthe
computationproceeds.Our systemis basedon two ideas:theuse
of visibility oraclesto find sourceandblockersurfacespotentially
visible to a receiving surface;and the use of hierarchicaltech-
niquesto representinteractionsbetweenlargesurfacesefficiently,
and to representthe computedradiositysolutioncompactly.Vis-
ibility informationallows the environmentto be partitioned into
subsets,eachcontainingall the informationnecessaryto transfer
light to a clusterof receivingpolygons. Sincethe largestsubset
neededfor anyparticularclusteris muchsmallerthanthetotalsize
of the environment,thesesubsetcomputationscanbe performed
in muchlessmemorythancanclassicalor hierarchicalradiosity.
Thecomputationis thenorderedfor furtherefficiency. Carefulor-
deringof energy transfersminimizesthenumberof databasereads
andwrites. We reportresultsfrom large solutionsof unfurnished
and furnishedbuildings,andshowthat our implementation’sob-
servedrunning time scalesnearly linearly with both local and
global modelcomplexity.
CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]:Three-DimensionalGraphicsandRealism–Radiosity;
J.2 [PhysicalSciencesandEngineering]:Engineering.
Additional Key Words and Phrases: Multigridding; equilibrium
methods;spatialsubdivision.
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1 Introduction

An importantapplicationof computergraphicsis themodelingof
lighting in buildings. In fact, such interior lighting simulations
arethe major applicationof the radiositymethod.Unfortunately,
radiosityalgorithmsstill arenot fast androbustenoughto handle
standardbuilding databases.Evidenceof this is that previous
radiosity imagestypically showa solutionfor only a singleroom
of modestgeometriccomplexity. Furthermore,“tricks” areoften
usedto hideartifactsandto copewith eventhis low levelof model
complexity. In this paperwe describeradiositycomputationson
very large databases.

Therearethreebasicmeasuresof thecomplexityof a radiosity
solution: the input complexity, the output complexity, and the
intermediatecomplexity.

• The input complexityis relatedto the numberof geometric
primitives, textures,and light sourcespresent.

• The outputcomplexityis relatedto the numberand type of
elementsrequiredto representthe computedradiositysolu-
tion. Note that theoutputcomplexityis much,muchgreater
than the input complexity, as it includes the input model
plus a representationof the radiosity on all surfaces. The
radiosity function may be very complexdue to shadowing
and lighting variations,and much recentresearchhascon-
cernedits compact,accuraterepresentation.The optimal
outputcomplexity is that which representsthe radiosityso-
lution to within a specifiederror with a minimal amountof
information.

• The intermediatecomplexityis relatedto thesizeof thedata
structureneededto performthe radiositycomputation.The
major componentsof the intermediatecomplexity are the
form factor matrix and any data structuresused to accel-
eratevisibility computations.Sincethe form factor matrix
may grow quadraticallyin the outputcomplexity,andsince
acceleratedvisibility queriesmay involve sophisticateddata
structures,the intermediatecomplexitymay be evengreater
thanthe output complexity,and is, in fact, usually the lim-
iting factor in performinglarge radiositysimulations.When
storageis unlimited, the optimal intermediatecomplexityis
that associatedwith the most rapidly converging iterative
scheme.

Model Surfaces Patches Elements Time
Theater[1] ∼5K ∼80K ∼1M 192 H
Mill [5] ∼30K ∼50K 195 H
Cathedral[28] ∼10K ∼75K 1 H

Table 1: Previouscomplexradiositysolutions.

Severalcomplexradiositycomputationshavebeenreportedin
the literature(Table1). Perhapsthe mostcomplexis the Candle-
stick Theaterreportedin Baumet al [1]. This simulationgener-
atedover a million elements,performed1600iterationsof a pro-
gressiverefinementalgorithm(shootingfrom a singlesource),and
took approximately8 daysto compute. Other reportedcomplex
radiositysimulationseachgeneratedlessthan 100,000elements.
Our goal is to rendercompletebuildingsat onesquareinch effec-
tive resolution,obviously a very resource-intensivecomputation.
For example,considerthe model of the University of Califor-
nia,BerkeleyComputerScienceBuilding. Thefurnishedbuilding
modelcontainsmorethan8,000light sourcesand1.4million sur-
facesand requiresapproximately350 megabytesof storage[9].
We estimatethat 10 to 100 million elementsmay be requiredto
representa high-fidelity radiositysolutionthroughoutthe model.

Intermediatememorydemandsoften determinethe limits on
the size of the model usedin a radiosity system. The interme-
diate memory usagedependson the representationof the form
factor matrix. Two generalapproacheshave emerged for cop-
ing with thesizeof the form factor matrix: hierarchicalradiosity



Figure 1: A locally dense,
globally sparseinteraction
block matrix.

and visibility subspaces.Hierarchicalradiosity (and its relative,
waveletradiosity)efficiently approximateform factor matricesin
situationswherea setof largesurfacesaremutuallyvisible. Tech-
niquesareonly recentlyemerging for handlinglarge numbersof
small, mutually visible surfaces,for exampleby clustering. The
problemof efficiently computingcluster-clusterinteractionsis not
addressedin this paper. However,our visibility subspacemeth-
ods do exploit the fact that in many environments,particularly
building interiors,only a small percentageof the environmentis
visible from anyparticularsurface.A globalvisibility precompu-
tation constructsthis potentiallyvisible set for eachsurface,and
thesubspacemethodsmaintainthesetthroughouthierarchicalre-
finement.

Figure1 depictsa sparseblock-structuredform factor matrix.
Eachdiagonalblock representsa denseinteractionwithin a cluster
of surfaces,e.g., the polygons comprising a room. Each off-
diagonalblock representsthecouplingbetweentheseclusters,e.g.
the roomsvisible from a given room. Thuseachblock is locally
dense,but the matrix is globally sparse.

In this paperwe describeour systemto computeradiosityso-
lutions in suchenvironments.The environmentis assumedto be
very large and henceis storedin a databaseas the computation
proceeds.The ensuingradiosity computationis partitioned into
subsets.Eachsubsetcontainsthe informationneededto perform
a transferof light to a cluster of polygons. Thesesubsetcom-
putationsare ordered to performthe light transfersefficiently by
reducingthe numberof databasereadsandwrites. We report the
resultsof simulationsrun for modelsof varying density (local
complexity)andoverall size(global complexity).

This systemis built upon previously describedhierarchical
radiosity methods, global and local visibility algorithms, and
databaseandwalkthroughimplementations.

2 Prior Work

The problem of increasingthe speedand accuracyof radiosity
solutionshasbeenaddressedon many fronts.

• Visibility. One of the most expensiveoperationsin global
illumination is visibility computation.For a given surface,
the setof surfacesthat illuminate (or are illuminated by) it
must be efficiently identified. Clearly this requiresglobal
knowledgeof the model.
Classicalradiosityalgorithmsuseda “hemicube”algorithm
to approximateeachsurface’soccludedview of the model
as an environmentmap onto facesof a cube centeredon
a surfacepoint [6]. The projectionoperationinvolved the
wholemodelandrespecteddepth,producingdiscretizedsur-
face fragmentsvisible to the samplepoint. This and other
point-samplingtechniques(e.g.,[4]) maynot detectrelevant
light sourcesand/orblockers,however.
Shaftculling recastglobal visibility into a collectionof vis-
ibility subspacesby generatinga commonshaft volumefor
eachinteractingpair, andtreatingasblockersonly thoseob-

jects (potentially) intersectingthe shaft [14, 18]. Finally,
preprocessingandincrementalmaintenancetechniquesused
a coherentglobal passthroughthe modelto generateinitial
blocker lists, then maintainedthe lists incrementallyunder
link subdivision[25]. Thesetechniques,in contrastto those
basedon point-sampling,are conservative in the sensethat
they neverwrongly excludea blocker or light sourcefrom
an interaction.

• Solution Methods. Classicalradiosity algorithmsgenerate
a row-diagonallydominantinteractionmatrix [6]. The ra-
diosity matrix equationis then solvedby repeatedlyupdat-
ing the matrix entriesusinga numericalsolutiontechnique,
typically Gauss-Seideliteration. Severalproposedimprove-
mentsaddressthe order in which the matrix entriesareup-
dated. Progressiveradiosity techniqueschoosesourcesin
brightnessorderandshoot their energy into theenvironment
[5]. This may involve considerablebookkeeping,sinceeach
shootupdatesmanybrightnesses,and the relativepriorities
of queuedshootersmaychangeconsiderably.Parallelimple-
mentationsof progressiverefinementhavebeenreported[2,
19]. “Super-shootgather”techniquesrepeatedly(over)shoot
from andgatherto a smallnumberof surfaces,ignoringany
interactionsnot involving the shooters[7, 12].

• Hierarchical Approaches and Clustering. Matrix-based
solutionsconsiderthematrix at a singlegranularity, namely
the correspondencebetweeneachmatrix entry and pair of
surfacesin theenvironment.Thehierarchicalradiosityalgo-
rithm appliedtechniquesdevelopedfor then-bodyproblem,
incorporatinga global error boundandallowing surfacesto
exchangeenergy whenevertheycoulddo sowithin thespec-
ified error [15]. Thus,whereversufficiently far-apartor dim
surfacesinteract, hierarchicalmethodsessentiallycompact
a block of the form-factor matrix into a scalar. Recursive
applicationof this idea yielded a radiosity algorithm with
running time that grows linearly with the numberof out-
put elements.The hierarchicalradiosity algorithm did not
addressthe “clustering” problemof efficiently handlingin-
teractionsamongsurfacescomposedof manysmallsurfaces;
sometechniqueshavebeenrecentlyproposedto do so [20,
22, 29].

• Meshing and Finite Element Methods. Finally, meshing
and finite-elementtechniqueshave beenemployedto im-
prove the accuracyof radiositysolutions. Classicaland hi-
erarchicalsolution algorithmsrepresentedradiosity as con-
stantover eachsurface. Galerkin-basedmethodsusefinite
elementtechniquesto representradiositiesmore generally,
as weightedsumsof smoothly varying basisfunctionsde-
fined over eachsurface[16, 17, 27, 30]. The resultingso-
lutions have better smoothnessand convergencebehavior
than thoseof classicalradiosity. Recently,the wavelet ra-
diosity method[13, 21] combinedhierarchicalradiositywith
Galerkintechniques.

3 Basic Ideas

Our systemis basedon two ideas:partitioningandordering.
Partitioning decomposesthe databaseinto subsets.Eachsub-

set containsthe informationneededto gatherall the energy des-
tinedfor a clusterof receivers.We assumethat the largestsubset,
including the sources,receivers,andvisibility and interactionin-
formation,requiresfewerresourcesthanwould berequiredfor the
wholemodel. Performingenergy transfersfor a partitionamounts
to a single block iteration of an iterative solution of the radios-
ity systemof equations.Partitioning is implementedby finding
thoseclustersof sourcepolygonsvisible to a clusterof receiving



polygons. Only light originating from the sourcesmay directly
illuminatethe receivers.Furthermore,only polygons visible to the
receivers may block light transfers from the sources. Therefore,
the visibility and light transfercomputationsmay use the same
database.

The goal of partitioning is to reducethe solver’s working set
to a manageablesize. Receiverclustersmay havedenseinterac-
tions in a local region, but shouldhavesparseinteractionswith
the remainderof the environment. Our implementationinherits
clusteringinformation(andthuslocal density)from themodeling
hierarchy,andachievesglobal sparsenessby partitioningaccord-
ing to visibility.

Ordering is schedulingradiositysubcomputations–theenergy
transfers–to achieverapidconvergence.An exampleof anorder-
ing algorithmis the progressiveradiosityalgorithm,in which the
sourcewith the largestunshotradiosity is selectedto “shoot” its
energy into the environment.In our system,the ordermustalso
be chosensothat thememory“footprint” changesslowly; that is,
the working set neededfor the next transfershoulddiffer little
from that of the current transfer. Successfulorderingstrategies
reducethe readand write traffic of the working set from and to
externalstorage,while maintainingrapid convergenceproperties.

In this paperwe analyzeseveralmethodsfor orderingthe en-
ergy transfers:randomorder;modeldefinitionorder;sourceorder;
andspatialcell order. We alsobriefly discussoptimal orderings.

4 System Architecture

Our systemis designedto solve the following problem: in prac-
tice, hierarchical radiosity is limited either by its intermediate
complexity(i.e., the numberof links) or by its outputcomplexity
(the descriptionof the radiosity solution), or both. We address
both limitations by constructingsmall but completeworking sets
(Figure2) for thehierarchicalalgorithm,theninvoking a radiosity
solverandstoringawaythe result– an improved,typically larger,
answer– in a spatialdatabasethatcangrow incrementallyandar-
bitrarily large. This partitioning of hierarchicalradiosityis shown
in §5 to preserveits correctnessandconvergenceproperties.

Figure 2: A working setof sourcecluster(whiteoutline),receiver
cluster(yellow outline), andblockerpolygons(greenoutline) for
a solver invocation.The braid and links arenot shown.

The typessurface, patch, element, and link are familiar to ra-
diosity practitioners.The typesblocker, shaft, and tube arise in
recentrelatedwork on shaft-cullingandvisibility subspaces[14,
18, 25]. The novel typesdescribedhereare clusters andbraids,
definedanalogouslyto surfaces and links in existinghierarchical
radiositysystems.

• A tube is a list of blockersfor a pair of geometricentities
p and q, and a shaft volume, the convexhull of (p ∪ q).
For any tube T , variety(T) lazily computesone of in-
visible, visible, or partial, when p and q are totally

mutually invisible, visible, or only partially visible, respec-
tively. Tubescan also subdividethemselvesand reclassify
their child tubes’varieties whenoneof p or q subdivides.
Only entitiesthat impingeuponthe shaftmay be blockers.

• A braid is a list of links betweentwo clusters.A link is a
directededgeto a patchp from a patchq, associatingwith p
andq a form factorestimateandothercouplinginformation.
Every link containsa tube. Given the tube T describing
the shaft and blockersof clustersR andS, the braid over
this cluster-clusterinteractionis simply the set of all links
betweenpatches in clustersR andS, anda referenceto T .

• A cluster is a list of surfacesanda boundingvolume. Note
thata clustermaybraid with itself if containsanypatchesp
andq suchthat variety(p, q) 6= invisible.

Thesystemhassix principalcomputationalmodules.Five exist
in previouswork, and havebeenadoptedhere with only slight
changes. The remainingcomponent,the radiosity scheduler, is
the main novelty of our system. We describeeachmodule in
top-downfashion(Figure3).
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Figure 3: Systemblock diagram.

• Theradiosity scheduler is theconceptualcenterof thesys-
tem. It mediatesbetweenthe databaseand the radiosity
solver, selectinga clusterfor refinementand transferoper-
ations (ordering), extractinga small portion of the model
from the database(partitioning), manipulatingthe solver’s
working set, invoking the solver, extractingthe modified,
refinedclusters,andreturningthemto the database.

• The database containsa persistent(disk) representationof
all clustersanda hierarchicalspatialsubdivisioncomprised
of convex cells and portals that connectcells [26]. The
databasesupportsthe operationsof reading, dirtying, and
releasing clusters[9, 11]. Releasesof dirty data result in
deferredwrites to persistentstorage.

• The global visibility oracle, given a receivercluster,iden-
tifies thoseclusterspotentially visible to the receiver,i.e.,
thoseclustersthat may illuminate the receiver,or block en-
ergy transfersto it [23, 25]. A cluster may be visible to
itself.

• The hierarchical wavelet radiosity solver generateshigh-
quality radiosity solutions using wavelet basesof general
orderandGaussianquadrature[13, 15, 21].

• The local visibility oracle supportsoperationsfor allocating
and subdividingtubes,and acceleratingpoint-to-pointvisi-
bility queriesfor quadrature[25]. Theglobaloraclesupplies
the initial blockerlist for eachtube.

• Thevisualization moduleemploystheSiliconGraphicsIRIS
GLtm to facilitate interaction,inspection,andanimationof



geometricdatastructuresandalgorithms[24]. It hasproven
indispensableto developinga working system.

5 Partitioning

We wish to partitiona hugeradiositycomputationinto a sequence
of smallgathersto individual receivers,eachof which canfit into
a smallamountof memory.Whatinformationmustbemaintained
in order to scheduleand perform eachgathercorrectly? Clearly
thereceiverandsourceclusterinvolvedmustbememoryresident,
as must their braid (links) and blocker polygons(cf. Figure 2).
We compilethis workingsetfor eachtransfer,andsupplyit to the
radiositysolver.

Our system constructs partitioning information from three
sources. First, the modeling instantiationhierarchyyields clus-
tersof polygonsthat separatelycomprisethe structuralelements,
furnishings, light fixtures, etc., of the model. Second,a spa-
tial subdivisiongroupsclustersinto cellsby proximity, separating
them along major sourcesof occlusion. Third, a visibility com-
putationidentifiesall clusterpairs that may exchangeenergy [11,
23, 26].

Thefinal tool is a flexible databasefrom which individual por-
tions of the modelmay be extracted,modified andreplaced[11].
We adaptedthe databaseto supportthe new datatypesrequired
for radiosity.

5.1 The Algorithm

Our algorithm: extractseachreceiverand its visible set from the
spatialdatabase;links them; refinesandgathersacrossthe links;
and returns the modified clustersto the database.A hierarchi-
cal wavelet radiosity solver performsthe refinementand gather
operations.Our algorithm loops over receiverclustersR in the
databaseuntil convergence,executingthe following actions:

1. ReadR
2. Install R into working set
3. For eachsourceclusterS visible to R

(a) ReadS, blockersB(R,S)
(b) Install S, blockersB(R, S) into working set
(c) T = Tube(R, S,B(R, S))
(d) Install( links in Braid(R, S, T ) ) into working set
(e) Invoke solver Gather( eachpatchof R )
(f) Discard newly refined links from working set
(g) DeleteTubeT
(h) RemoveS, blockersB(R,S) from working set
(i) SetDirty(S)
(j) Release(S) andblockersB(R,S)

4. Invoke solver PushPull( eachpatchof R )
5. Extract(R) from working set
6. SetDirty(R)
7. Release(R)

ThefunctionBraid(R,S, T ) in line 3−d simply generatestop-
level links betweenvisible patch pairs from R and S, using
blockerinformationfrom the tubeT . Refinedlinks arediscarded
(line 3−f ), since A) they cannotbe reuseduntil the next full
databaseiteration, and B) they are so numerousthat, at ∼250
bytes/link,they do not fit in a 32-bit (4Gb) addressspace.

5.2 Iteration Methods, Correctness, and Convergence

HierarchicalradiosityperformsJacobiiteration. That is, only af-
ter a completeupdateof all patch’sgatherslotsare any patch’s
shootslots updated(by Pushand Pull [15]). Jacobiiteration is
clearly an untenablestrategyfor extremelylarge models,sinceit
would necessitatereadingand writing every patchtwice per up-
date. Moreover,hierarchicalradiosity is often memory-boundin

practice,i.e., limited by thenumberandcomputationalcomplexity
of its activesetof links, or by thesizeof thesolutionin progress.
OurpartitioningschemeeliminatesJacobiiterationaltogether,and
entirely removesthememorylimitations on hierarchicalradiosity
for environmentsof sufficiently limited visibility.

The correctnessof the partitionedsolveris easilyshown. Dur-
ing anygatherto a clusterR, theonly patchesexcludedassources
are invisible from R, and thereforecannotaffect the computed
solutiononR.

The convergenceof the partitionedsolver follows from a nu-
mericalargument.Theschedulersolvestheradiositymatrix equa-
tion as doestraditional hierarchicalradiosity,but for one differ-
ence:eachreceiverseesa combinationof old andupdatedshoot
slotson otherclusters,ratherthanseeinguniformly old slots. The
scheduleris thereforeperformingGauss-Seideliterationof thelin-
earsystem,ratherthanJacobiiterationasin hierarchicalradiosity.
Since both methodsconverge for row-diagonallydominantsys-
temsof radiosity equations[6], convergenceof the partitioning
algorithmis assured.

5.3 Partitioning Results

We studiedthe performanceof our systemfor modelsof varying
complexity. In onetest,weincreasedlocal complexityusingmod-
els Office, OfficeLow, andOfficeHigh which representthe same
office without furniture,with coarselymodeledfurniture,andwith
very detailedfurniture. Thesethreemodelscontainroughly one
hundred,fifteen hundred,and thirty-five hundredinput patches,
respectively. In a secondtest, we increasedglobal complexity
using the unfurnishedmodelsOffice, Floor, and Building which
representan office, one entire floor of a building, andfinally an
entire five floor building (including an atrium and many offices,
open areas,stairwells, and classrooms). Thesemodelscontain
roughly one hundred,seventhousand,and forty thousandinput
patches,respectively.
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Figure 4: Working setsizewhile solving the Building model.

We measuredtheinput, intermediate,andoutputcomplexity,as
well as working setmemoryrequirements,for solutionsof these
test models. Statisticsfor three completeiterations(gathersto
all clusters)of the radiosity solverare shownin Tables2 and3.
Theminimum allowableelementareawasonesquareinch for all
runs. All times are wall-clock measurementsusing a 16 µ-sec
timer, on a lightly loadedSGI CrimsonReality Enginewith a 50
MHz R4000CPU,256Mbmemory,and8Gblocal disk. Figure4
chartsthe sizeof the solverworking setduring one full iteration
of the mostcomplexmodel,Building.

Severaltrendscan be gleanedfrom the measurements.First,
thevisibility andhierarchicalradiositytechniquescompactedlarge
numbersof potential elementsand interactionsto manageable
sizes. Second,partitioning techniquessuccessfullyboundedthe
working setsizeat a few tensof megabytes,evenfor modelsde-
mandingseveralgigabytesof intermediatesolution data. Third,
intermediateand output complexity and running time appearto
vary nearly linearly with input complexity. Thus, partitioning



Input Intermediate Output Observed

Working Set (Mb) # Links # Elements Elapsed Time (s)
Model Clusters / Patches / Lights WS Total WS Total / Patch WS Total / Patch Total / Patch
Office 36 127 18 1.3 9.5 3,914 36,186 285 1,445 3,142 24.7 180 1.4

Office Low 70 1,418 21 11.1 239.9 38,593 960,432 677 7,081 36,377 25.7 7,111 5.0
Office High 70 3,466 21 14.1 414.4 48,784 1,678,105 484 8,975 42,400 12.2 13,051 3.8

Table 2: Input, intermediate, and output complexities, and observed solution times, for models of increasing local complexity. The
tabulated quantities are divided into: WS (the largest working set processed by the solver); Total (the total data processed throughout the
run); and Per Patch (the total amount divided by the number of input patches). The intermediate working set WS was defined as the
size of the links (including tubes, shafts, and kernel coefficients), elements (including wavelet coefficients), and blocker polygons.

Input Intermediate Output Observed

Working Set (Mb) # Links # Elements Elapsed Time (s)
Model Clusters / Patches / Lights WS Total WS Total / Patch WS Total / Patch Total / Patch
Office 36 127 18 1.3 9.5 3,914 36,186 285 1,445 3,142 24.7 180 1.4
Floor 1,761 7,054 788 3.7 1,116.1 12,532 4,307,705 611 2,686 250,933 35.6 56,712 8.0

Building 9,625 39,979 7,826 14.5 6,063.0 52,454 23,528,943 589 7,104 1,265,843 31.7 491,040 12.2

Table 3: Input, intermediate, and output complexities, and observed solution times, for models of increasing global complexity.

successfully exploited the global sparsity of the interaction ma-
trix to achieve radiosity solutions for very large models, while
maintaining quite small working sets.

6 Ordering

Partitioning alone is not sufficient to produce a practical system
for large radiosity solutions. The partitioned transfers must be
ordered so as to minimize expensive reads and writes of partial
solution data from and to the database.

To be effective, an ordering algorithm must schedule successive
gathers so as to minimize disk accesses, while maintaining rapid
convergence properties. Much work has focused on the effects
of ordering on convergence rates for the radiosity computation
[5, 7, 12]; here we concentrate on the effect of ordering on disk
accesses.

A good ordering algorithm maintains a high degree of coher-
ence among the working sets of successive cluster interactions.
Unfortunately, finding an optimal ordering is intractable. The
problem is computationally equivalent to finding a solution to the
traveling salesman problem. As a practical simplification, we have
considered only orderings in which all gathers to a single cluster
are performed successively (i.e., complete gathers). These order-
ings are particularly efficient and easy to implement because all
sources and blockers for a complete gather to a single cluster are
contained in the gatherer’s visible set. Our implementation reads
the entire set of clusters visible from the gatherer into the memory
resident cache before performing any transfers to the gatherer.

We experimented with several ordering algorithms:

• Random order gathers to clusters in random order.

• Model order gathers to clusters in the order in which they
were instantiated by the modeler. In most cases, this is
not a random order since models are often constructed by
successive addition of related parts. For instance, in the
Berkeley Computer Science building model, walls, ceilings
and floors were instantiated first (grouped roughly by room),
followed by patches representing light fixtures and furniture.

• Source order gathers to that cluster which has most often
acted as a source (ties are broken by proximity to the most
recent gatherer). This strategy is based on the intuition that
the working set of a cluster that has been visible to many

previous receivers is likely to have a large overlap with the
current working set.

• Cell order schedules clusters by traversing cells of the wall-
aligned BSP-tree [8] spatial subdivision [23, 26]. Consec-
utive cells are chosen by selecting the neighbor cell whose
intervening boundary has the largest transparent area. This
approach exploits the visibility coherence of clusters due to
proximity and local intervisibility.

Figure 5 illustrates the effect that ordering can have on the co-
herence of the working set during an actual radiosity computation
involving almost 2,000 clusters. The figure depicts matrices with
a dot at position (i, j) if clusters Ci and Cj were potentially vis-
ible to each other. Otherwise, no interaction between Ci and Cj
was possible, and the space (i, j) is left blank. Four permutations
of the underlying interaction matrix were generated, by number-
ing clustering according to the order in which they were gathered
to. Thus, the position of a cluster along the axes of the matrix
depends on the gather order. Figure 5 depicts the permuted ma-
trix resulting from gathers in A) random order, B) model order,
C) source order and D) cell order, respectively.

In the case of random and model orders, the interactions are
spread uniformly over the matrix. No block structure is evident,
indicating that objects with similar visibility characteristics are
gathered to at very different times. When gathering in source
order the matrix appears much more block structured, especially in
the early iterations. However, as gathering proceeds the coherence
appears to degrade as evidenced by the fact that the block structure
disappears in the upper right. The best ordering strategy appears
to be cell order, yielding a matrix in natural block diagonal form,
as would be expected in a building model. Note the horizontal
and vertical stripes; these correspond to clusters in long corridors
with many interactions.

6.1 Ordering Results

We studied the effects of ordering algorithms on cache perfor-
mance by restricting the memory resident cache size to 32Mb
while solving a one-floor building model. In each test, every clus-
ter gathered exactly once. We logged statistics regarding cluster
reads, writes, cache hit ratio, and I/O time during the third com-
plete iteration of the radiosity computation (Table 4). All runs
were executed on a 100 MHz R4000 SGI Indigo2 with 160Mb of
fast memory and 1Gb of local disk.



A) Random B) Model C) Source D) Cell

Figure 5: Matrices depicting permutations of the cluster-cluster interaction matrix. A dot at position (i, j) denotes potential intervisibility
of Ci and Cj . Cluster position along axes corresponds to gather order during a complete radiosity iteration in A) random order, B) model
order, C) source order, and D) cell order.

Clusters Mb Cache I/O Total
Order Read Read Hit Ratio Time(s) Time(s)
Random 77,916 4,374 35.4% 23,330 49,111
Model 44,163 2,376 63.4% 12,806 43,685
Source 30,798 1,708 74.4% 8,912 33,815
Cell 11,312 617 90.6% 3,180 26,454

Table 4: I/O statistics for various ordering algorithms.

There are significant differences in the I/O overhead incurred
by each ordering algorithm. Figure 6 shows the percentage of total
execution time spent on I/O (transfers between the disk and mem-
ory resident cache) for different gather orders. Random order had
a 35.4% cache hit ratio, spending 23,330 seconds (47.5% of the
total execution time) on more than 4.3GB of I/O between the disk
and memory resident cache. In contrast, cell ordering achieved a
90.6% hit ratio, spending only 3,180 seconds on I/O (12.0% of the
execution time). We conclude that the order in which clusters are
processed can greatly affect performance during radiosity compu-
tations on very large models. We are currently investigating other
possible ordering algorithms, including ones derived from pro-
gressive radiosity [5], nearest neighbors, and minimum spanning
trees [3]. We expect that the best ordering algorithms will take
into account both cache coherence and convergence behavior.
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Figure 6: Time distributions for various gather orders.

7 Results• =⇒
Using a Silicon Graphics Crimson workstation with a single 50
MHz processor and 256 megabytes of main memory, we computed
three complete iterations of a radiosity solution on the entire un-
furnished Berkeley Computer Science Building model to one inch
resolution. The input model had 9,625 clusters comprising a total
of 39,979 polygons. Of these polygons, 7,826 were emissive and
served as light sources.

To give an idea of scale, the total area of all polygons in the un-
furnished building model is 64,517,972 square inches. Therefore,

without the use of visibility-based partitioning and hierarchical
techniques, the numbers of elements and links potentially created
during the radiosity computation at one inch resolution are approx-
imately 6.4 × 107 and 4.2 × 1015 , respectively – unmanageably
high.

Statistics regarding the time and space complexity of the radios-
ity solution for the entire unfurnished building model are shown
in Table 5. To our knowledge, this is the most complex model for
which a radiosity solution has been computed. The entire radios-
ity computation took 136.4 hours and created 1,265,843 elements
and 23,528,943 links – 2.0% and 0.00000056% of the potential
numbers at one inch resolution, respectively. The partitioning
techniques yielding a maximum working set size of 14.5MB, or
0.24% of the 6.1GB of total intermediate and output data. Cell
ordering yielded a total I/O time of 14.2 hours, or 10.4% of the
total execution time.

# # # Max Solver I/O Total
Iter Elements Links WS Time Time Time

0 39,979 - - - - -
1 295,039 2,649,521 2.0 3.3 0.2 5.1
2 884,905 15,860,111 11.2 40.6 3.2 47.0
3 1,265,843 23,528,943 14.5 69.9 10.8 84.3

Total 1,265,843 23,528,943 14.5 113.8 14.2 136.4

Table 5: Complexity of radiosity solution for the unfurnished
building model (times are in hours).

The five color plates on the next page show images of a ra-
diosity solution for one furnished floor of the Berkeley Computer
Science Building model, after two complete iterations. The solu-
tion contains 734,665 elements and took 48.5 hours to compute.
Plate I shows an overhead view of the furnished floor. Plates II
and III show interior views of a typical furnished office, shaded
and with an overlaid quadtree mesh, respectively. The global and
local complexities of the radiosity solution are readily apparent
from these views. Plates IV and V show a typical work area and
hallway view, respectively.

The radiosity solutions generated by this system are used as
input for the real-time walkthrough program (the color plates were
generated using screen-captures from this program). The same
visibility information and computations used to determine source
and receiver interactions are used to maintain an interactive frame
rate in the walkthrough. The hierarchical (quadtree) representation
of radiosity on each polygon is particularly useful, as it allows
easily selectable levels of detail [10] for each polygon.



Plate I. The entire furnished floor, solved to one inch effective resolution (734,665 elements).

Plate II: Office, gouraud shaded.

Plate IV: Workroom, gouraud shaded.

Plate III: Office, meshed.

Plate V: Hallway, gouraud shaded.



8 Summary and Discussion

This paperpresenteda systemthat exploits visibility and coher-
ence information to computeradiosity solutions for very large
geometricdatabases,using existing high-quality global illumi-
nation algorithms. Physically-basedlighting simulation is more
challengingthanstandardrenderingalgorithmsin that the output
complexityis very high,andtheintermediatecomplexityandcal-
culation costsare evenhigher. However,in the future thereare
likely to bemanyapplicationsrequiringdisplayof complex,real-
istic virtual environments,suchasthebuilding usedin this study.
To achievesuchcomplexityrequiresadvancesat both thetheoret-
ical andthepracticallevel. The theoreticaladvancesdiscussedin
this paperare the visibility andhierarchicalradiosityalgorithms.
The practicaladvancesincludetheuseof systemtechniquessuch
asdatabases,scheduling,andcaching.

Specifically,we haveimplementeda systemcapableof com-
putingradiositysolutionsfrom largemodelsresidingin a database
storedon a disk. We show how partitioning the model leadsto
small working sets,allowing us to processdatabasesmuchlarger
thenthosewe couldhandlewithout partitioning. Poorpartitioning
of the databasecan causeit to be readand written many times.
We showhow cleverorderingcansignificantlyreducedisk traffic.
The combinationof thesetwo techniquesallow us to handlevery
large geometricmodels.

Given our experiencewith the system to date, the follow-
ing researchdirectionsseempromising. First, the tradeoffs be-
tweengatheringandshootingalgorithmsin hierarchicalradiosity
shouldbe investigated,aspreliminaryresultsindicatethat shoot-
ing convergesmore rapidly in somesituations. Second,interac-
tions amongobjectscomprisedof manysmall polygonsmustbe
handledmore efficiently, perhapsby incorporatingthe notion of
levelsof detail into the radiositysolutionmethod.Third, thevis-
ibility calculationsusedto determinesoft shadowsarestill very
expensive,and shouldbe improved. Finally, the refinementor-
acle employedby the hierarchicalradiosity algorithm is far too
conservative.Ratherthanrelying solelyon estimatesof form fac-
tor and transporterror, it should incorporatea term basedupon
representationerror over eachreceiversurface.
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