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Partitioning and Ordering
Large Radiosity Computations

Seth Tellert Celeste Fowlerf

Abstract

We describea systemthatcomputegadiosity solutionsfor polyg-
onal environmentanuchlarger than can be storedin main mem-
ory. Thesolutionis storedin andretrievedfrom a databasasthe
computationproceeds Our systemis basedon two ideas:theuse
of visibility oraclesto find sourceandblockersurfacegotentially
visible to a receiving surface;and the use of hierarchicaltech-
niguesto representnteractionsbetweenlarge surfacesfficiently,
andto representhe computedradiosity solution compactly. Vis-
ibility information allows the environmentto be partitioned into
subsetsgachcontainingall the information necessaryo transfer
light to a clusterof receivingpolygons. Sincethe largestsubset
neededor anyparticularclusteris muchsmallerthanthetotal size
of the environmentthesesubsetcomputationscan be performed
in muchlessmemorythan canclassicalor hierarchicalradiosity.
Thecomputatioris thenorderedfor furtherefficiency. Carefulor-
deringof enegy transferaminimizesthe numberof databaseeads
andwrites. We reportresultsfrom large solutionsof unfurnished
and furnishedbuildings, and show that our implementation’sob-
servedrunning time scalesnearly linearly with both local and
global model complexity.
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1 Introduction

An importantapplicationof computergraphicsis the modelingof
lighting in buildings. In fact, suchinterior lighting simulations
arethe major applicationof the radiosity method. Unfortunately,
radiosityalgorithmsstill arenot fastandrobustenoughto handle
standardbuilding databases.Evidenceof this is that previous
radiosityimagestypically showa solutionfor only a singleroom
of modestgeometriccomplexity. Furthermore;‘tricks” are often
usedto hideartifactsandto copewith eventhislow level of model
complexity. In this paperwe describeradiosity computationson
very large databases.

Therearethreebasicmeasuresf the complexityof a radiosity
solution: the input complexity, the output complexity, and the
intermediatecomplexity.
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e The input complexityis relatedto the numberof geometric
primitives, textures,and light sourcesresent.

e The outputcomplexityis relatedto the numberandtype of
elementsequiredto representhe computedradiosity solu-
tion. Note thatthe outputcomplexityis much, muchgreater
than the input complexity, as it includesthe input model
plus a representatiorof the radiosity on all surfaces. The
radiosity function may be very complexdue to shadowing
and lighting variations,and much recentresearchhas con-
cernedits compact,accuraterepresentation. The optimal
outputcomplexityis that which representshe radiosity so-
lution to within a specifiederror with a minimal amountof
information.

e Theintermediatecomplexityis relatedto the size of the data
structureneededo performthe radiosity computation.The
major componentof the intermediatecomplexity are the
form factor matrix and any data structuresusedto accel-
eratevisibility computations.Sincethe form factor matrix
may grow quadraticallyin the outputcomplexity,andsince
acceleratedisibility queriesmay involve sophisticatedlata
structuresthe intermediatecomplexity may be evengreater
thanthe outputcomplexity,andis, in fact, usually the lim-
iting factorin performinglarge radiosity simulations.When
storageis unlimited, the optimal intermediatecomplexity is
that associatedwvith the most rapidly conveging iterative

scheme.

Model Surfaces| Patches| Elements| Time
Theater[1] ~BK ~80K ~1M 192H
Mill [5] ~30K ~50K 195H
Cathedral[28] ~10K ~75K 1H

Table 1: Previouscomplexradiosity solutions.

Severalcomplexradiosity computationshave beenreportedin
the literature(Table 1). Perhapghe mostcomplexis the Candle-
stick Theaterreportedin Baumetal [1]. This simulationgener-
atedover a million elementsperformed1600iterationsof a pro-
gressivaefinementlgorithm(shootingfrom a singlesource) and
took approximately8 daysto compute. Other reportedcomplex
radiosity simulationseachgeneratedessthan 100,000elements.
Our goalis to rendercompletebuildingsat onesquareinch effec-
tive resolution,obviously a very resource-intensiveomputation.
For example, considerthe model of the University of Califor-
nia, BerkeleyComputerScienceBuilding. The furnishedbuilding
modelcontainsmorethan8,000light sourcesand1.4 million sur-
facesand requiresapproximately350 megabytef storage[9].
We estimatethat 10 to 100 million elementsmay be requiredto
represent high-fidelity radiosity solution throughoutthe model.

Intermediatememory demandsoften determinethe limits on
the size of the model usedin a radiosity system. The interme-
diate memory usagedependson the representatiorof the form
factor matrix. Two generalapproachesave emeged for cop-
ing with the size of the form factor matrix: hierarchicalradiosity



Figure 1: A locally dense,
u L globally sparseinteraction
. block matrix.

and visibility subspacesHierarchicalradiosity (andits relative,
waveletradiosity) efficiently approximateform factor matricesin

situationswherea setof large surfacesaremutually visible. Tech-
niguesare only recentlyemeging for handlinglarge numbersof

small, mutually visible surfacesfor exampleby clustering. The
problemof efficiently computingcluster-clusteinteractionss not
addressedn this paper. However,our visibility subspacemeth-
ods do exploit the fact that in many environments particularly
building interiors, only a small percentagef the environmentis

visible from any particularsurface.A globalvisibility precompu-
tation constructsthis potentially visible setfor eachsurface,and
the subspacenethodsmaintainthe setthroughouthierarchicalre-

finement.

Figure 1 depictsa sparseblock-structuredform factor matrix.
Eachdiagonalblock represents.densdnteractionwithin a cluster
of surfaces,e.qg., the polygons comprisinga room. Each off-
diagonalblock representshe couplingbetweertheseclusterse.g.
the roomsvisible from a given room. Thuseachblock is locally
dense but the matrix is globally sparse.

In this paperwe describeour systemto computeradiosity so-
lutions in suchenvironments.The environmentis assumedo be
very large and henceis storedin a databases the computation
proceeds. The ensuingradiosity computationis partitioned into
subsets.Eachsubsetcontainsthe information neededo perform
a transferof light to a cluster of polygons. Thesesubsetcom-
putationsare ordered to performthe light transfersefficiently by
reducingthe numberof databaseeadsandwrites. We reportthe
results of simulationsrun for modelsof varying density (local
complexity) and overall size (global complexity).

This systemis built upon previously describedhierarchical
radiosity methods, global and local visibility algorithms, and
databaseind walkthroughimplementations.

2 Prior Work

The problem of increasingthe speedand accuracyof radiosity
solutionshasbeenaddressedn many fronts.

e Vishbility. One of the mostexpensiveoperationsin global
illumination is visibility computation. For a given surface,
the setof surfacegthatilluminate (or areilluminated by) it
must be efficiently identified. Clearly this requiresglobal
knowledgeof the model.

Classicalradiosity algorithmsuseda “hemicube” algorithm
to approximateeachsurface’soccludedview of the model
as an environmentmap onto facesof a cube centeredon
a surfacepoint [6]. The projection operationinvolved the
whole modelandrespectediepth,producingdiscretizedsur-
face fragmentsvisible to the samplepoint. This and other
point-samplingechniquege.g.,[4]) may not detectrelevant
light sourcesand/orblockers,however.

Shaftculling recastglobal visibility into a collectionof vis-
ibility subspace®y generatinga commonshaftvolume for
eachinteractingpair, andtreatingasblockersonly thoseob-

jects (potentially) intersectingthe shaft [14, 18]. Finally,

preprocessingndincrementalmaintenanceéechniquesised
a coherentglobal passthroughthe modelto generatdnitial

blocker lists, then maintainedthe lists incrementallyunder
link subdivision[25]. Thesetechniquesin contrastto those
basedon point-sampling.are conservative in the sensethat
they neverwrongly excludea blocker or light sourcefrom

an interaction.

e Solution Methods. Classicalradiosity algorithmsgenerate
a row-diagonallydominantinteractionmatrix [6]. The ra-
diosity matrix equationis then solvedby repeatedlyupdat-
ing the matrix entriesusinga numericalsolutiontechnique,
typically Gauss-Seideteration. Severalproposedmprove-
mentsaddresghe orderin which the matrix entriesare up-
dated. Progressiveradiosity techniqueschoosesourcesin
brightnessorderandshoot their enegy into the environment
[5]- This mayinvolve considerablédookkeepingsinceeach
shootupdatesmany brightnessesand the relative priorities
of queuedshooteramay changeconsiderably Parallelimple-
mentationof progressivaefinementhavebeenreported|2,
19]. “Super-shoogather”’techniquegsepeatedlyover)shoot
from andgatherto a small numberof surfacesjgnoringany
interactionsnot involving the shooterd7, 12].

e Hierarchical Approaches and Clustering. Matrix-based
solutionsconsiderthe matrix at a singlegranularity, namely
the correspondenceetweeneachmatrix entry and pair of
surfacesn the environment.The hierarchicalradiosityalgo-
rithm appliedtechniquesievelopedor the n-body problem,
incorporatinga global error boundandallowing surfaceso
exchangeenegy whenevethey coulddo sowithin the spec-
ified error[15]. Thus,whereversuficiently far-apartor dim
surfacesinteract, hierarchicalmethodsessentiallycompact
a block of the form-factor matrix into a scalar. Recursive
applicationof this idea yielded a radiosity algorithm with
running time that grows linearly with the numberof out-
put elements. The hierarchicalradiosity algorithm did not
addresghe “clustering” problemof efficiently handlingin-
teractionamongsurfacesomposedf manysmallsurfaces;
sometechniqueshavebeenrecentlyproposedo do so [20,
22,29].

e Meshing and Finite Element Methods. Finally, meshing
and finite-elementtechniqueshave been employedto im-
provethe accuracyof radiosity solutions. Classicaland hi-
erarchicalsolution algorithmsrepresentedadiosity as con-
stantover eachsurface. Galerkin-basednethodsusefinite
elementtechniqueso representadiositiesmore generally,
as weightedsumsof smoothly varying basisfunctionsde-
fined over eachsurface[16, 17, 27, 30]. The resultingso-
lutions have better smoothnessand convegence behavior
thanthoseof classicalradiosity. Recently,the waveletra-
diosity method[13, 21] combinedhierarchicakadiositywith
Galerkintechniques.

3 Basic ldeas

Our systemis basedon two ideas: partitioningand ordering.

Partitioning decomposethe databasénto subsets Eachsub-
setcontainsthe informationneededto gatherall the enegy des-
tinedfor a clusterof receivers.We assumehatthe largestsubset,
including the sourcesreceivers,and visibility andinteractionin-
formation,requiresfewerresourceshanwould berequiredfor the
whole model. Performingenegy transferdor a partition amounts
to a single block iteration of an iterative solution of the radios-
ity systemof equations. Partitioning is implementedby finding
thoseclustersof sourcepolygonsvisible to a clusterof receiving



polygons. Only light originating from the sourcesmay directly
illuminate the receivers.Furthermorepnly polygons visible to the
receivers may block light transfers from the sources. Therefore,
the visibility and light transfercomputationsmay use the same
database.

The goal of partitioning is to reducethe solver’s working set
to a manageablesize. Receiverclustersmay have denseinterac-
tionsin a local region, but should have sparseinteractionswith
the remainderof the environment. Our implementationinherits
clusteringinformation (andthuslocal density)from the modeling
hierarchy,and achievegylobal sparsenesBy partitioning accord-
ing to visibility.

Ordering is schedulingradiosity subcomputationsthe enegy
transfers-to achieverapid convegence.An exampleof anorder-
ing algorithmis the progressiveadiosity algorithm,in which the
sourcewith the largestunshotradiosity is selectedto “shoot” its
enegy into the environment.In our system,the order mustalso
be chosersothatthe memory“footprint” changesslowly; thatis,
the working set neededfor the next transfershould differ little
from that of the currenttransfer. Successfubrdering strategies
reducethe read and write traffic of the working setfrom andto
externalstoragewhile maintainingrapid convegenceproperties.

In this paperwe analyzeseveralmethodsfor orderingthe en-
ey transfers:randomorder; modeldefinitionorder;sourceorder;
andspatialcell order. We also briefly discussoptimal orderings.

4 System Architecture

Our systemis designedo solvethe following problem: in prac-

tice, hierarchicalradiosity is limited either by its intermediate
complexity (i.e., the numberof links) or by its outputcomplexity

(the descriptionof the radiosity solution), or both. We address
both limitations by constructingsmall but completeworking sets

(Figure?2) for the hierarchicalalgorithm,theninvoking a radiosity
solverandstoringawaythe result— animproved,typically larger,

answer-in a spatialdatabas¢hatcangrow incrementallyandar-

bitrarily large. This partitioning of hierarchicalradiosityis shown
in §5 to preserveits correctnessind convegenceproperties.

Figure2: A working setof sourcecluster(white outline), receiver
cluster(yellow outline), and blocker polygons(greenoutline) for
a solverinvocation. The braid and links are not shown.

The typessurface, patch, element, and link are familiar to ra-
diosity practitioners. The typesblocker, shaft, and tube arisein
recentrelatedwork on shaft-cullingand visibility subspace§l4,
18, 25]. The novel typesdescribedhereare clusters andbraids,
definedanalogouslyto surfaces andlinks in existing hierarchical
radiosity systems.

e A tubeis alist of blockersfor a pair of geometricentities
p and ¢, and a shaft volume, the convexhull of (p U q).
For any tube 7', vARIETY(T') lazily computesone of IN-
VISIBLE, VISIBLE, Of PARTIAL, When p and ¢ are totally

mutually invisible, visible, or only partially visible, respec-
tively. Tubescan also subdividethemselvesand reclassify
their child tubes’vARIETIES whenoneof p or ¢ subdivides.
Only entitiesthat impinge uponthe shaftmay be blockers.

e A braid is alist of links betweentwo clusters.A link is a
directededgeto a patchp from a patchg, associatingvith p
andq aform factorestimateandothercouplinginformation.
Every link containsa tube. Given the tube T describing
the shaft and blockersof clustersR and S, the braid over
this cluster-clusteiinteractionis simply the setof all links
betweenpatches in clustersR and .S, anda referenceto 7.

e A cluster is alist of surfacesand a boundingvolume. Note
thata clustermay braid with itself if containsany patchesp
andq suchthat VARIETY(p, g) # INVISIBLE.

The systemhassix principal computationaimodules.Five exist
in previouswork, and have beenadoptedhere with only slight
changes. The remainingcomponentthe radiosity scheduler, is
the main novelty of our system. We describeeach module in
top-downfashion(Figure 3).

Database  [€!? 1 —p|  Radiosity
—l |_ Solver
@ Radiosity i
Scheduler

DISK

1 Working set
(elements, links )
? ?
Spatial Shafts
Subdivision Blocker Lists
¢ [ storage t

[] computation

Global Visibility Local Visibility

Oracle Oracle
?—> A queries B A writes to B
z-} A directs B A reads from B

Figure 3: Systemblock diagram.

e Theradiosity scheduler is the conceptuatenterof the sys-
tem. It mediatesbetweenthe databaseand the radiosity
solver, selectinga clusterfor refinementand transferoper-
ations (ordering), extractinga small portion of the model
from the databasgpartitioning), manipulatingthe solver’s
working set, invoking the solver, extractingthe modified,
refinedclusters,andreturningthemto the database.

e The database containsa persistent(disk) representatiorof
all clustersand a hierarchicalspatialsubdivisioncomprised
of convex cells and portals that connectcells [26]. The
databasesupportsthe operationsof reading, dirtying, and
releasing clusters[9, 11]. Releaseof dirty dataresultin
deferredwrites to persistenistorage.

e Theglobal visibility oracle, given a receivercluster,iden-
tifies thoseclusterspotentially visible to the receiver,i.e.,
thoseclustersthat may illuminate the receiver,or block en-
emy transfersto it [23, 25]. A cluster may be visible to
itself.

e The hierarchical wavelet radiosity solver generatesigh-
quality radiosity solutions using wavelet basesof general
orderand Gaussiamuadraturg13, 15, 21].

e Thelocal visibility oracle supportsoperationgor allocating
and subdividingtubes,and acceleratingooint-to-pointvisi-
bility queriesfor quadraturg25]. The globaloraclesupplies
theinitial blockerlist for eachtube.

e Thevisualization moduleemploysthe Silicon GraphicdRIS
GL™ to facilitate interaction,inspection,and animationof



geometricdatastructuresandalgorithms[24]. It hasproven
indispensableo developinga working system.

5 Partitioning

We wish to partition a hugeradiositycomputatiorinto a sequence
of smallgathersto individual receivers gachof which canfit into
a smallamountof memory. Whatinformationmustbemaintained
in orderto scheduleand perform eachgathercorrectly? Clearly
thereceiverandsourceclusterinvolved mustbe memoryresident,
as must their braid (links) and blocker polygons(cf. Figure 2).
We compilethis workingsetfor eachtransfer,andsupplyit to the
radiosity solver.

Our system constructs partitioning information from three
sources. First, the modeling instantiationhierarchyyields clus-
ters of polygonsthat separatelycomprisethe structuralelements,
furnishings, light fixtures, etc., of the model. Second,a spa-
tial subdivisiongroupsclustersinto cellsby proximity, separating
them along major sourcesof occlusion. Third, a visibility com-
putationidentifiesall clusterpairsthat may exchangeenegy [11,
23, 26].

Thefinal tool is a flexible databasdérom which individual por-
tions of the modelmay be extracted modified andreplaced11].
We adaptedthe databaseo supportthe new datatypesrequired
for radiosity.

5.1 The Algorithm

Our algorithm: extractseachreceiverandits visible setfrom the
spatialdatabaselinks them; refinesand gathersacrossthe links;
and returnsthe modified clustersto the database.A hierarchi-
cal waveletradiosity solver performsthe refinementand gather
operations. Our algorithm loops over receiverclustersR in the
databaseintil convegence executingthe following actions:

1. ReadR

2. Install R into working set

3. For eachsourcecluster S visible to R
(a) ReadsS blockersB(R, S)
(b) Install S, blockersB(R, S) into working set
(c) T =TubgR, S,B(R,S))
(d) Install( links in Braid(R, S, T") ) into working set
(e) Invoke solver Gathe( eachpatchof R )
(f) Discard newly refined links from working set
(g) DeleteTubeT
(h) RemoveS, blockers B(R, S) from working set
(i) SetDirtyS)
() ReleaseS) andblockersB(R, S)

. Invoke solver PushPul{ eachpatchof R )

. Extract( R) from working set

. SetDirty(R)

. ReleaséR)

~No oA

Thefunction Braid(R, S, T') in line 3—d simply generatesop-
level links betweenvisible patch pairs from R and S, using
blockerinformationfrom the tubeT". Refinedlinks arediscarded
(line 3—f), since A) they cannotbe reuseduntil the next full
databasdteration, and B) they are so humerousthat, at ~250
bytes/link,they do not fit in a 32-bit (4Gb) addressspace.

5.2 Iteration Methods, Correctness, and Convergence

Hierarchicalradiosity performsJacobiiteration. Thatis, only af-
ter a completeupdateof all patch’sgatherslots are any patch’s
shootslots updated(by Pushand Pull [15]). Jacobiiterationis
clearly an untenablestrategyfor extremelylarge models,sinceit
would necessitateeadingand writing every patchtwice per up-
date. Moreover,hierarchicalradiosity is often memory-boundn

practice,.e., limited by the numberandcomputationatomplexity
of its activesetof links, or by the sizeof the solutionin progress.
Our partitioningschemeeliminatesJacobiiterationaltogetherand
entirely removesthe memorylimitations on hierarchicalradiosity
for environmentof sufficiently limited visibility.

The correctnes®f the partitionedsolveris easilyshown. Dur-
ing anygatherto a clusterR, theonly patchesxcludedassources
areNnvISIBLE from R, andthereforecannotaffect the computed
solutionon R.

The convegenceof the partitionedsolver follows from a nu-
mericalagument. The schedulesolvesthe radiositymatrix equa-
tion as doestraditional hierarchicalradiosity, but for one differ-
ence: eachreceiverseesa combinationof old and updatedshoot
slotson otherclusters ratherthanseeinguniformly old slots. The
scheduleis thereforeperformingGauss-Seiddterationof thelin-
earsystem ratherthanJacobiiterationasin hierarchicakadiosity.
Since both methodsconvege for row-diagonallydominantsys-
tems of radiosity equations[6], convegenceof the partitioning
algorithmis assured.

5.3 Partitioning Results

We studiedthe performanceof our systemfor modelsof varying
complexity. In onetest,we increasedocal complexityusingmod-
els Office OfficeLow, and Office High which representhe same
office without furniture,with coarselymodeledfurniture,andwith
very detailedfurniture. Thesethree modelscontainroughly one
hundred,fifteen hundred,and thirty-five hundredinput patches,
respectively. In a secondtest, we increasedglobal complexity
using the unfurnishedmodels Office Floor, and Building which
representan office, one entire floor of a building, andfinally an
entire five floor building (including an atrium and many offices,
open areas,stairwells, and classrooms). Thesemodels contain
roughly one hundred,seventhousand,and forty thousandinput
patchesrespectively.

Gather

Figure 4: Working setsize while solving the Building model.

We measuredheinput, intermediateandoutputcomplexity,as
well asworking setmemoryrequirementsfor solutionsof these
test models. Statisticsfor three completeiterations (gathersto
all clusters)of the radiosity solverare shownin Tables2 and 3.
The minimum allowableelementareawas one squarench for all
runs. All times are wall-clock measurementsising a 16 u-sec
timer, on a lightly loadedSGI CrimsonReality Enginewith a 50
MHz R4000CPU, 256Mb memory,and8Gblocal disk. Figure4
chartsthe size of the solverworking setduring onefull iteration
of the mostcomplexmodel, Building.

Severaltrendscan be gleanedfrom the measurementsFirst,
thevisibility andhierarchicafradiositytechniqgueszompactedarge
numbersof potential elementsand interactionsto manageable
sizes. Second,partitioning techniquessuccessfullypoundedthe
working setsizeat a few tensof megabytesevenfor modelsde-
mandingseveralgigabytesof intermediatesolution data. Third,
intermediateand output complexity and running time appearto
vary nearly linearly with input complexity. Thus, partitioning



Input Intermediate Output Observed

Working Set (Mb) # Links # Elements Elapsed Time ()

Model Clusters / Patches / Lights || WS Total WS Total | Patch WS Total | Patch Total | Patch
Office 36 127 18 13 9.5 3,914 36,186 285 1,445 3,142 24.7 180 14
Office Low 70 1,418 21 111 239.9 38,593 960,432 677 7,081 | 36,377 25.7 7,111 5.0
Office High 70 3,466 21 14.1 4144 48,784 | 1,678,105 484 8,975 | 42,400 12.2 13,051 3.8

Table 2: Input, intermediate, and output complexities, and observed solution times, for models of increasing local complexity. The
tabulated quantities are divided into: WS (the largest working set processed by the solver); Total (the total data processed throughout the
run); and Per Patch (the total amount divided by the number of input patches). The intermediate working set WS was defined as the
size of the links (including tubes, shafts, and kernel coefficients), elements (including wavelet coefficients), and blocker polygons.

Input Intermediate Output Observed
Working Set (Mb) # Links # Elements Elapsed Time (s)
Model Clusters / Patches/ Lights || WS Total WS Total | Patch WS Total | Patch Total | Patch
Office 36 127 18 13 9.5 3,914 36,186 285 1,445 3,142 24.7 180 14
Floor 1,761 7,054 788 3.7 1,116.1 12,532 4,307,705 611 2,686 250,933 35.6 56,712 8.0
Building 9,625 39,979 7,826 145 6,063.0 52,454 | 23,528,943 589 7,104 | 1,265,843 317 491,040 12.2

Table 3: Input, intermediate, and output complexities, and observed solution times, for models of increasing global complexity.

successfully exploited the global sparsity of the interaction ma-
trix to achieve radiosity solutions for very large models, while
maintaining quite small working sets.

6 Ordering

Partitioning alone is not sufficient to produce a practical system
for large radiosity solutions. The partitioned transfers must be
ordered so as to minimize expensive reads and writes of partial
solution data from and to the database.

To be effective, an ordering a gorithm must schedule successive
gathers so as to minimize disk accesses, while maintaining rapid
convergence properties. Much work has focused on the effects
of ordering on convergence rates for the radiosity computation
[5, 7, 12]; here we concentrate on the effect of ordering on disk
accesses.

A good ordering algorithm maintains a high degree of coher-
ence among the working sets of successive cluster interactions.
Unfortunately, finding an optimal ordering is intractable. The
problem is computationally equivalent to finding a solution to the
traveling salesman problem. Asapractical simplification, we have
considered only orderings in which all gathers to a single cluster
are performed successively (i.e., complete gathers). These order-
ings are particularly efficient and easy to implement because all
sources and blockers for a complete gather to a single cluster are
contained in the gatherer’s visible set. Our implementation reads
the entire set of clusters visible from the gatherer into the memory
resident cache before performing any transfers to the gatherer.

We experimented with several ordering agorithms:
e Random order gathers to clusters in random order.

e Model order gathers to clusters in the order in which they
were instantiated by the modeler. In most cases, this is
not a random order since models are often constructed by
successive addition of related parts. For instance, in the
Berkeley Computer Science building model, walls, ceilings
and floors were instantiated first (grouped roughly by room),
followed by patches representing light fixtures and furniture.

e Source order gathers to that cluster which has most often
acted as a source (ties are broken by proximity to the most
recent gatherer). This strategy is based on the intuition that
the working set of a cluster that has been visible to many

previous receivers is likely to have a large overlap with the
current working set.

e Cédll order schedules clusters by traversing cells of the wall-
aligned BSP-tree [8] spatial subdivision [23, 26]. Consec-
utive cells are chosen by selecting the neighbor cell whose
intervening boundary has the largest transparent area. This
approach exploits the visibility coherence of clusters due to
proximity and local intervisibility.

Figure 5 illustrates the effect that ordering can have on the co-
herence of the working set during an actual radiosity computation
involving amost 2,000 clusters. The figure depicts matrices with
adot at position (i, 7) if clusters C; and C; were potentidly vis-
ible to each other. Otherwise, no interaction between C; and C;
was possible, and the space (i, j) is left blank. Four permutations
of the underlying interaction matrix were generated, by number-
ing clustering according to the order in which they were gathered
to. Thus, the position of a cluster along the axes of the matrix
depends on the gather order. Figure 5 depicts the permuted ma-
trix resulting from gathers in A) random order, B) model order,
C) source order and D) cell order, respectively.

In the case of random and model orders, the interactions are
spread uniformly over the matrix. No block structure is evident,
indicating that objects with similar visibility characteristics are
gathered to at very different times. When gathering in source
order the matrix appears much more block structured, especially in
the early iterations. However, as gathering proceeds the coherence
appears to degrade as evidenced by the fact that the block structure
disappears in the upper right. The best ordering strategy appears
to be cell order, yielding a matrix in natural block diagonal form,
as would be expected in a building model. Note the horizontal
and vertical stripes; these correspond to clusters in long corridors
with many interactions.

6.1 Ordering Results

We studied the effects of ordering algorithms on cache perfor-
mance by restricting the memory resident cache size to 32Mb
while solving a one-floor building model. In each test, every clus-
ter gathered exactly once. We logged statistics regarding cluster
reads, writes, cache hit ratio, and 1/O time during the third com-
plete iteration of the radiosity computation (Table 4). All runs
were executed on a 100 MHz R4000 SGI Indigo? with 160Mb of
fast memory and 1Gb of local disk.




A) Random B) Model

C) Source D) Cdll

Figure 5: Matrices depicting permutations of the cluster-cluster interaction matrix. A dot at position (7, j) denotes potentia intervisibility
of C; and C;. Cluster position along axes corresponds to gather order during a complete radiosity iteration in A) random order, B) model

order, C) source order, and D) cell order.

Clusters Mb Cache 1/10 Total
Order Read Read Hit Ratio | Time(s) || Time(s)
Random 77916 | 4,374 35.4% 23,330 49,111
Model 44,163 | 2,376 63.4% 12,806 43,685
Source 30,798 | 1,708 74.4% 8,912 33,815
Cell 11,312 617 90.6% 3,180 26,454

Table 4: 1/O statistics for various ordering algorithms.

There are significant differences in the 1/0 overhead incurred
by each ordering algorithm. Figure 6 shows the percentage of total
execution time spent on 1/O (transfers between the disk and mem-
ory resident cache) for different gather orders. Random order had
a 35.4% cache hit ratio, spending 23,330 seconds (47.5% of the
total execution time) on more than 4.3GB of 1/0 between the disk
and memory resident cache. In contrast, cell ordering achieved a
90.6% hit ratio, spending only 3,180 seconds on 1/0O (12.0% of the
execution time). We conclude that the order in which clusters are
processed can greatly affect performance during radiosity compu-
tations on very large models. We are currently investigating other
possible ordering algorithms, including ones derived from pro-
gressive radiosity [5], nearest neighbors, and minimum spanning
trees [3]. We expect that the best ordering agorithms will take
into account both cache coherence and convergence behavior.
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Figure 6: Time distributions for various gather orders.

7 Results

Using a Silicon Graphics Crimson workstation with a single 50
MHz processor and 256 megabytes of main memory, we computed
three complete iterations of a radiosity solution on the entire un-
furnished Berkeley Computer Science Building model to one inch
resolution. The input model had 9,625 clusters comprising a total
of 39,979 polygons. Of these polygons, 7,826 were emissive and
served as light sources.

To give an idea of scale, the total areaof all polygonsin the un-
furnished building model is 64,517,972 square inches. Therefore,

without the use of visibility-based partitioning and hierarchical
techniques, the numbers of elements and links potentially created
during the radiosity computation at one inch resolution are approx-
imately 6.4 x 107 and 4.2 x 10*®, respectively — unmanageably
high.

Statistics regarding the time and space complexity of the radios-
ity solution for the entire unfurnished building model are shown
in Table 5. To our knowledge, this is the most complex model for
which a radiosity solution has been computed. The entire radios-
ity computation took 136.4 hours and created 1,265,843 elements
and 23,528,943 links — 2.0% and 0.00000056% of the potential
numbers at one inch resolution, respectively. The partitioning
techniques yielding a maximum working set size of 14.5MB, or
0.24% of the 6.1GB of total intermediate and output data. Cell
ordering yielded a total 1/O time of 14.2 hours, or 10.4% of the
total execution time.

# # # Max Solver 1/0 Tota

Iter Elements Links WS Time | Time | Time
0 39,979 - - - - -

1 295,039 2,649,521 2.0 3.3 0.2 51

2 884,905 | 15,860,111 | 11.2 40.6 3.2 47.0

3 1,265,843 | 23,528,943 | 14.5 69.9 10.8 84.3

Total 1,265,843 | 23,528,943 | 145 113.8 142 | 1364

Table 5: Complexity of radiosity solution for the unfurnished
building model (times are in hours).

The five color plates on the next page show images of a ra-
diosity solution for one furnished floor of the Berkeley Computer
Science Building model, after two complete iterations. The solu-
tion contains 734,665 elements and took 48.5 hours to compute.
Plate | shows an overhead view of the furnished floor. Plates Il
and |11 show interior views of a typical furnished office, shaded
and with an overlaid quadtree mesh, respectively. The global and
local complexities of the radiosity solution are readily apparent
from these views. Plates IV and V show a typical work area and
hallway view, respectively.

The radiosity solutions generated by this system are used as
input for the real-time walkthrough program (the color plates were
generated using screen-captures from this program). The same
visibility information and computations used to determine source
and receiver interactions are used to maintain an interactive frame
rate in the walkthrough. The hierarchical (quadtree) representation
of radiosity on each polygon is particularly useful, as it alows
easily selectable levels of detail [10] for each polygon.



Plate I1: Office, gouraud shaded. ‘ Plate I11: Office, meshed.

Plate IV: Workroom, gouraud shaded. Plate V: Hallway, gouraud shaded.




8 Summary and Discussion

This paperpresentech systemthat exploits visibility and coher-
ence information to computeradiosity solutions for very large
geometric databasesusing existing high-quality global illumi-

nation algorithms. Physically-basedighting simulationis more
challengingthan standardrenderingalgorithmsin that the output
complexityis very high, andthe intermediatecomplexityandcal-
culation costsare evenhigher. However,in the future thereare
likely to be manyapplicationsrequiringdisplay of complex,real-
istic virtual environmentssuchasthe building usedin this study.
To achievesuchcomplexityrequiresadvancest both the theoret-
ical andthe practicallevel. Thetheoreticaladvancesliscussedn

this paperare the visibility and hierarchicalradiosity algorithms.
The practicaladvancesncludethe useof systemtechniquesuch
asdatabasesschedulingand caching.

Specifically,we haveimplementeda systemcapableof com-
putingradiositysolutionsfrom large modelsresidingin a database
storedon a disk. We show how partitioning the model leadsto
small working sets,allowing us to procesdatabasesuchlarger
thenthosewe could handlewithout partitioning. Poorpartitioning
of the databasecan causeit to be read and written many times.
We showhow cleverorderingcansignificantlyreducedisk traffic.
The combinationof thesetwo techniquesallow usto handlevery
large geometricmodels.

Given our experiencewith the systemto date, the follow-
ing researchdirectionsseempromising. First, the tradeofs be-
tweengatheringand shootingalgorithmsin hierarchicalradiosity
shouldbe investigated as preliminary resultsindicate that shoot-
ing convegesmore rapidly in somesituations. Second,interac-
tions amongobjectscomprisedof many small polygonsmustbe
handledmore efficiently, perhapsby incorporatingthe notion of
levelsof detail into the radiosity solutionmethod. Third, the vis-
ibility calculationsusedto determinesoft shadowsare still very
expensive,and shouldbe improved. Finally, the refinementor-
acle employedby the hierarchicalradiosity algorithm is far too
conservative Ratherthanrelying solely on estimateof form fac-
tor andtransporterror, it shouldincorporatea term basedupon
representatiorrror over eachreceiversurface.
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