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Abstract

This paper proposes an approach called object cut to

tackle an important problem in computer vision, 3D object

reconstruction from single line drawings. Given a complex

line drawing representing a solid object, our algorithm finds

the places, called cuts, to separate the line drawing into

much simpler ones. The complex 3D object is obtained by

first reconstructing the 3D objects from these simpler line

drawings and then combining them together. Several propo-

sitions and criteria are presented for cut finding. A theorem

is given to guarantee the existence and uniqueness of the

separation of a line drawing along a cut. Our experiments

show that the proposed approach can deal with more com-

plex 3D object reconstruction than state-of-the-art methods.

1. Introduction and Related Work

Reconstructing a 3D object from its 2D line drawing is a

classic topic in computer vision. The visual system of hu-

man beings can interpret a 2D line drawing and perceive its

3D model easily. In order to emulate this ability by a com-

puter vision system, many methods have been proposed in

the literature [2], [3], [4], [6], [8], [9], [12], [14]. The ap-

plications of 3D reconstruction from 2D line drawings in-

clude: user-friendly sketch interface for conceptual 3D de-

signers in CAD systems, 3D query creation for 3D object

retrieval, converting existing industrial wireframe models to

solid models, and generating 3D objects from images with

user sketches [1], [8], [9], [15]. In this paper, we consider

line drawings with hidden lines visible. This kind of line

drawings allows the reconstruction of complete and com-

plex objects, including their invisible parts. A line drawing

with hidden lines visible can be obtained by the sketch of

the user on the screen directly or by the scan of the sketch

on a piece of paper.

When a line drawing becomes complex, most previous

algorithms fail in the reconstruction, getting trapped in lo-
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Fig. 1. Comparison between the method in [12] and object cut. (a)

A line drawing. (b) Only one internal face. (c) Separation result

by [12]. (d) Five cuts. (e) Separation result by object cut.

cal minima due to the large number of variables in the ob-

jective functions [12]. Among previous methods, the one

in [12] can handle most complex objects. In [12], the au-

thors propose to separate a complex line drawing into mul-

tiple simpler line drawings, then independently reconstruct

the 3D objects from these line drawings, and finally merge

them to form a complete object. This approach well solves

the problem mentioned above. Its key step is how to sep-

arate a complex line drawing. The authors propose to do

it from the internal faces of the line drawing. An internal

face is a face inside an object with only its edges visible

on the surface and these edges are all from the line draw-

ing. However, this method may fail when a complex object

has no or too few internal faces. One example is given in

Fig. 1(a) where there is only one internal face (Fig. 1(b)),

from which the separation is shown in Fig. 1(c). We can see

that the bigger object in Fig. 1(c) is still complex.

In this paper, we propose a novel approach, called ob-

ject cut, to decompose a complex line drawing into multiple

simpler line drawings. We use cuts but not internal faces to

partition a line drawing. An internal face is a special case of

a cut. One example is shown in Fig. 1. From Fig. 1(a), our

algorithm can find five cuts (Fig. 1(d)), based on which the

line drawing is separated into five simpler ones (Fig. 1(e)).
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Note that only one of these cuts is an internal face since

the other four cuts contain edges not from the original line

drawing. Obviously, the reconstruction problem from the

line drawings in Fig. 1(e) is easier to handle than those in

Fig. 1(c). We develop several propositions and criteria for

cut finding, and present a theorem showing the existence

and uniqueness of the separation of a line drawing along

a given cut. Our experimental results indicate that our ap-

proach can deal with 3D reconstruction of more complex

objects than previous methods.

2. Assumption and Terminology

In this paper, we consider the reconstruction of the same

kind of objects as that in [12], i.e., planar-faced manifolds,

which are the most common solids (see below for their defi-

nition). A line drawing, represented by a single edge-vertex

graph, is the parallel or near parallel projection of the edges

of a manifold in a generic view with all its edges and ver-

tices visible. Same as [12], we also assume that the faces

of a manifold are available from its line drawing. Finding

faces from a line drawing with hidden lines visible has been

well studied in previous work [1], [7], [10], [11], [13], [17].

Next, we list the terms used in the rest of this paper, most of

which are exemplified in Fig. 2.

• Manifold. A manifold, or more specifically 2-

dimentional manifold, is a solid where every point on

its surface has a neighborhood topologically equivalent

to an open disk in the 2D Euclidean space. Manifolds

considered in this paper are made up of flat faces. In

this kind of manifolds, each edge is shared exactly by

two faces [5].

• Face. A face is a flat patch of a manifold bounded by

edges.

• Internal Face. An internal face is a face inside a man-

ifold only with its edges visible on the surface. It is

not a real face but is formed by gluing two manifolds

together [12].

• Degree of a vertex. The number of edges adjacent to

a vertex is called the degree of the vertex.

• Artificial line. An artificial line is a line used to indi-

cate the coplanarity of two cycles [12].

• Chord. A chord of a cycle is an edge or a virtual line

inside the cycle that connects two nonadjacent vertices

of the cycle. A virtual line does not appear as an edge

in the original line drawing.

• Neighboring face. If a face f1 has a sharing edge with

another face f2, then f2 is called a neighboring face of

f1. If an edge is on the boundary of a face, then the

face is called a neighboring face of the edge.

• Rotation direction of a face. For a manifold consist-

ing of planar faces, there exists an assignment of a ro-

tation direction for each face simultaneously such that
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Fig. 2. Examples of most of the terms. In Fig. 2(a), edges

(u, v) and (w, x) are two artificial lines. Fig. 2(b) shows the

resulted sub-manifolds after removing them. In Fig. 2(c), cycle

(a, j, s, t, k, d, h, e, a) is a face. Face (d, i, h, d) is a neighboring

face of face (c, i, d, c). The dashed arrows show the rotation direc-

tions of four faces (a, j, s, t, k, d, h, e, a), (a, b, c, d, k, l, m, j, a),

(c, i, d, c), and (d, i, h, d). Note that on edges (d, k), (a, j), (d, c),

(d, i), and (d, h), the rotation directions of their two neighbor-

ing faces are opposite. The bold (red) arrows show the rota-

tion direction of cut (c, g, h, d, c), which is arbitrarily assigned.

Face (a, j, s, t, k, d, h, e, a) is inconsistent with cut (c, g, h, d, c),

but face (d, i, h, d) is consistent with it. Edge (e, f) is a chord

of cycle (a, b, f, g, h, e, a), and a virtual line connecting ver-

tices e and g is also a chord of the cycle. In Fig. 2(d), cy-

cles (p, q, r, p), (c, g, h, d, c), and (m, l, k, j, m) are cuts. Face

(a, j, s, t, k, d, h, e, a) is a neighboring face of cut (c, g, h, d, c).

Face (c, d, i, c) is connected to cuts (c, g, h, d, c). Edge (f, g) is

connected to cut (c, g, h, d, c).

the rotation directions of any two neighboring faces on

their sharing edge(s) are opposite [16].

• Cut. A cut is a planar cycle on the surface of a mani-

fold, formed by cutting the manifold with a plane, con-

sisting of some edges of the manifold and/or new edges

on the surface of the manifold, with its enclosed region

not on the surface of the manifold. In this paper, we

also assign a rotation direction to a cut.

• Connected faces and edges of a cut. If a face has

at least one sharing point with a cut, then the face is

called connected to the cut. If an edge has a sharing

point with a cut and is not an edge of the cut, then the

edge is called connected to the cut.

• Neighboring face of a cut. If a cut has at least one

sharing edge with a face, the face is called a neighbor-

ing face of the cut.

• Consistency of a face with a cut. Given a cut and one

of its neighboring faces, if they have the same rotation

direction on their sharing edge(s), they are called con-

sistent; otherwise, they are called inconsistent.

• Partition of a set. Given a non-empty set S, a partition

of S is denoted by P (S) = (S0, S1) where S0 and S1
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are two non-empty sets with S0 ∪ S1 = S and S0 ∩
S1 = φ.

Artificial lines, added by the designer, are used to in-

dicate the coplanarity of two cycles in solid modeling

[1], [3], [11], [12]. One example is shown in Fig. 2(a) where

two artificial lines (u, v) and (w, x) indicate that the two

bold cycles are coplanar. Without them, it is impossible

to know the geometric relation between the two objects in

Fig. 2(b). Detecting artificial lines is an easy task according

to the connection between an artificial line and the edges

it connects to [12]. After removing the artificial lines in

Fig. 2(a), the line drawing becomes two line drawings with-

out artificial lines (Fig. 2(b)). In the next Sections 3 and 4,

we consider line drawings without artificial lines.

3. Finding Cuts from a Line Drawing

The main difference between a cut and an internal face

is that the former can have part or all of its boundary not

from the original line drawing, while the latter consists of

edges all from the original line drawing. An internal face

is a special case of a cut. The strict requirement of inter-

nal faces makes the partition algorithm in [12] fail when a

complex manifold is without, or with too few, internal faces

(see Fig. 1 for example).

According to the definition of a cut, there is an infinite

number of cuts on a manifold. We should find those cuts

that really simplify the reconstruction problem. Internal

faces are good cuts to partition a line drawing, such as the

one in Fig. 1(b) and the cut (c, g, h, d, c) in Fig. 2(d). How-

ever, the cut (p, q, r, p) in Fig. 2(d) is not a good cut, and

a cut that separates a rectangular solid into two rectangular

solids is not a good cut either, because they do not simplify

the reconstruction. In the next two sub-sections, we present

some propositions and criteria for finding good cuts.

3.1. Propositions for Finding Cuts

Given a cycle on the surface of a manifold, determining

whether the cycle is a cut is not a trivial problem due to the

lack of 3D geometry in a 2D line drawing. Here we present

three propositions to eliminate cycles that cannot be cuts.

Proposition 1. A cycle is not a cut if it is self-intersecting.

When we cut a manifold with a plane to form a cut, the

cut becomes two visible planar faces, which are not self-

intersecting obviously.

Proposition 2. A cycle is not a cut if it has a chord inside

it and the chord is on the surface of the manifold.

Proof. As shown in Fig. 3, suppose that the cycle

(. . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . .) is a cut with a

chord (vi, vj). Let v be a point in the middle of the chord.

If the chord is an edge of the original line drawing, then v

inside the cut is on the surface of the manifold. If the chord

j+1v
jv j-1v

i+1vi-1v iv

v

...

...

Fig. 3. Part of a line drawing where the cycle has a chord (vi, vj).

is not an original edge but is on a face, then v inside the cut

is still on the surface of the manifold. Both cases contradict

the definition of a cut.

Proposition 3. A cycle is not a cut if it has two non-

collinear edges belonging to a face and there is an overlap-

ping region between it and the face in the 2D line drawing

plane.

Proof. Since both a cut and a face are planar, if the cut has

two non-collinear edges on the face, they must be coplanar.

Furthermore, when they have an overlapping region in the

2D line drawing plane, they overlap in the 3D space. Thus,

this region inside the cut is on the surface of the manifold,

which contradicts the definition of a cut.

Note that Proposition 3 implies that a face is not a cut.

3.2. Searching for Good Cuts

Through observation of common manifold objects, we

find that good cuts that separate a complex manifold into

simpler ones usually follow the following three criteria:

Criterion 1. A good cut should have as few new edges as

possible.

Criterion 2. A good cut should have as few edges as pos-

sible.

Criterion 3. A new edge added to form a good cut is usually

parallel (or near parallel) to an original edge of the face

which the new edge is on.

We have Criterion 1 because adding too many new edges

into the line drawing introduces many new faces on the sur-

face of the object, making the reconstruction more compli-

cated. It also gives priority to finding internal faces. Crite-

rion 2 comes from the observation that a cut with too many

edges may lead to an untidy partition of the line drawing.

Criterion 3 is based on the fact that a large man-made ob-

ject is often formed by regular/symmetric smaller objects.

With the criteria and the propositions, we next develop a

shortest cycle algorithm to search for good cuts on a search

graph. A search graph is constructed based on a line draw-

ing where new edges are added connecting vertices in each

face. Fig. 4 shows an example where the dashed lines are

part of the new edges. Note that a new edge connecting two

vertices on different faces is not added because it is not on

the surface of the object. Besides, we do not add new ver-

tices to make the problem too complicated since our current

method can already obtain excellent results that are in ac-

cordance with our visual perception of the object partition

(see the experiments).
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Fig. 4. A searching graph where only part of the new edges (dashed

lines) are shown for clarity.

In a search graph, each edge has a weight defined by

ω(e) =

{

1, if e is from the original line drawing,

α · (mine′∈S(e) γ(e, e′)) + β, otherwise,
(1)

where e is an original or new edge of the search graph, α and

β are two parameters used to balance the criteria, and we set

α = β = 3 in this paper. S(e) is an edge set consisting of

all the edges of the face on which the new edge e lies, and

γ(e, e′) is a function evaluating the parallelism between two

edges e and e′ defined as:

γ(e, e′) = 1 − exp(−0.05θ2
e,e′), (2)

where θe,e′ ∈ [0, 90] is the angle between e and e′. Take

three edges, e1 = (a, b), e2 = (j, k), and e3 = (k, h) in

Fig. 4, for example. We have ω(e1) = 1, ω(e2) ≈ 3, and

ω(e3) ≈ 6. Given an original edge of the search graph, the

shortest cycle passing through this edge is the one that has

the minimum sum of the weights of the edges on this cycle.

However, not every shortest cycle can be a cut. The three

propositions given in Section 3.1 help to eliminate cycles

that cannot be a cut. For example, the shortest cycle passing

through edge (c, d) in Fig. 4 is (c, d, i, c), but it cannot be a

cut according to Proposition 3 (it is a face actually).

Algorithm 1 lists the steps to find a best cut from a line

drawing. In the algorithm, ω(
) denotes the total weight of

a cut 
. In step 5, the returned shortest path p connected

with edge ei forms a cut, and 
 is always the shortest cut

found so far. The procedure ExtDijkstra is an extended

version of Dijkstra’s shortest path algorithm for finding a

shortest path on a weighted graph. The main difference be-

tween them is that Propositions 1–3 are incorporated into

the search in ExtDijkstra. Proposition 1 is used earlier

than Propositions 2 and 3 so that most of the paths that can-

not be a cut are determined as soon as possible. Since the

conditions in Propositions 2 and 3 need to be tested when

a cycle is formed, they are used later. Note that in step 8,

each path in PathSet(vi,2) connected with edge (vi,1, vi,2)
forms a cycle. Another difference between ExtDijkstra

and Dijkstra’s algorithm is that we need to keep the ge-

ometric positions of the vertices and edges of G′ so that

Propositions 1–3 are used correctly.

Only one cut is obtained by each running of Algorithm 1.

When the current best cut is found, we use the partition

Algorithm 1 Finding a best cut

Input: A Line Drawing G = (V, E)
Initialization: The best cut 
← null; ω(
)←∞

1. Create the searching graph G′ = (V, E′) from G

2. Calculate the weight of each edge of E′

3. for each edge ei = (vi,1, vi,2) ∈ E

4. Call ExtDijkstra(vi,1, vi,2)
5. if a shortest path p is found and ω(p, ei) < ω(
),

then 
← (p, ei)

Output: The best cut 

procedure ExtDijkstra(vi,1, vi,2)

1. Remove edge (vi,1, vi,2) from E′

2. d(v)←∞, PathSet(v)← φ, ∀v ∈ V ;

d(vi,1)← 0; PathSet(vi,1)← {(vi,1)}; S ← φ, Q← V

3. while vi,2 6∈ S

4. Move vertex u ∈ Q with minimum d(u) from Q to S

5. for each edge (u, v) ∈ E′ with v ∈ Q

6. Extend the paths in PathSet(u) by (u, v); add them to

PathSet(v); remove the paths from PathSet(v) that

cannot form a cut according to Proposition 1

7. if PathSet(v) = φ, then d(v)←∞;

else d(v)←minp∈PathSet(v) ω(p)

8. Remove the paths from PathSet(vi,2) that cannot form a

cut when they are connected with edge (vi,1, vi,2) according

to Propositions 2 and 3

9. Add edge (vi,1, vi,2) back to E′; if PathSet(vi,2) = φ, re-

turn null; else return the shortest path p in PathSet(vi,2)

end of ExtDijkstra(vi,1, vi,2)

method proposed in the next section to separate the line

drawing along this cut. Then Algorithm 1 is run again on

each separated line drawing. This procedure is repeated un-

til some condition is satisfied. The stopping condition we

use is

µ =
sum of the edge weights of the best cut

number of faces of the line drawing
> 1 . (3)

The ratio µ is large when the line drawing is simple (i.e.,

with fewer faces) and the cut is not good (i.e., with a large

weight).

4. Separation of a Line Drawing from Cuts

To separate a manifold into simpler ones, cuts of the

manifold are found first and then the manifold is separated

from the cuts. In Fig. 2(d), some cuts separate faces of

the original manifold into sub-faces, which generates a new

representation of the manifold. We call this representation

an extended manifold, which is defined below.

Definition 1. Let C be a set of cuts. Let F , E and V be the

face set, edge set, and vertex set of the original manifold,
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Fig. 5. (a) An extended manifold. (b) Three separated manifolds.

respectively. The extended manifold is an object with its

face set Fext(C), edge set Eext(C), and vertex set Vext(C)
defined as follows: 1) For each face f ∈ F , if C separates

f into two or more sub-faces {fi}, then {fi} ⊂ Fext(C);
otherwise, f ∈ Fext(C). Besides, Fext(C) contains no

other faces not from these two cases. 2) Eext(C) = E ∪
{edges of the cuts in C}. 3) Vext(C) = V .

Since we do not consider cuts with new vertices, Vext(C)
is the same as V . It is easy to see that an extended manifold

is still a manifold, because all the new edges are on the sur-

face of the original manifold and each edge of the extended

manifold is still passed through by exactly two faces of the

extended manifold. Some faces of the original manifold are

broken into sub-faces by the cuts. For example, Fig. 5(a) is

an extended manifold from the manifold in Fig. 2(c) with a

cut set C = {(c, g, h, d, c), (m, l, k, j, m)}. Newly gener-

ated faces (a, e, h, d, k, j, a) and (s, j, k, t, s) are the result

of cut (m, l, k, j, m). Note that cut (c, g, h, d, c) does not

generate any new faces.

Separating an extended manifold along a cut in a 2D line

drawing is not trivial. The difficulties include the lack of

3D geometry in a line drawing and the fact that the faces

and edges connected to a cut can appear in any directions

with respect to the cut. Besides, when the line drawing is

separated into two sides along a cut, it is not obvious which

side an edge connected to the cut should be put in.

Even though there exist these difficulties, humans are

quite easy to obtain a unique separation along a cut. For

example, given the extended manifold shown in Fig. 5(a)

with the two cuts (c, g, h, d, c) and (m, l, k, j, m), humans

always generate the separations in Fig. 5(b). We can see

that the faces connected to a cut are separated into two non-

empty sets, each of which contains the faces on one side.

Besides, for each edge connected to the cut, its two neigh-

boring faces always appear on one side only. This is because

if the two neighboring faces appear on different sides, the

line drawing cannot be separated into two sides along the

cut. Next, a formal definition of the separation is given,

which is called a partition along a cut.

Definition 2. Given a cut 
, let the set of all the faces con-

nected to 
 be F (
), and let the set of all the edges con-

nected to 
 be E(
). A partition of the extended man-

ifold along 
 is to find a face set partition P (F (
)) =

i,1
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Fig. 6. Part of a line drawing where a cut with n vertices is shown

in bold lines, and all the neighborhoods Ni, i = 1, 2, . . . , n, are

stretched into 2D open disks.

(F0(
), F1(
)) and an edge set partition P (E(
)) =
(E0(
), E1(
)) simultaneously such that for any edge e ∈
Em(
), it holds that e 6∈ Edge(f), ∀f ∈ F1−m(
),
m = 0, 1, where Edge(f) denotes the set of all the edges

of face f .

For example, given the cut 
 = (m, l, k, j, m) in

Fig. 5(a), the face set partition along 
 is: F0(
) =
{(a, e, h, d, k, j, a), (a, b, c, d, k, l, m, j, a)} and F1(
) =
{(s, j, m, n, s), (s, j, k, t, s), (t, k, l, o, t), (n, m, l, o, n)},

and the edge set partition along 
 is: E0(
) =
{(a, j), (k, d)}, E1(
) = {(s, j), (n, m), (o, l), (t, k)}.

Next we give a theorem showing that the partition along a

cut exists and is unique1.

Theorem 1. The partition of an extended manifold along a

cut exists and is unique.

Proof. Recall the rotation direction of a face. We can assign

a rotation direction to every face of the manifold2 such that

any two neighboring faces have opposite rotation directions

on their sharing edge(s). Let 
 = (v1, v2, v3, . . . , vn, v1)
be a cut with n vertices, and Ni be a neighborhood around

vi on the surface of the manifold such that Ni is topologi-

cally equivalent to a 2D open disk and small enough with

only the edges connected to vi contained in Ni. According

to the definition of a manifold, every Ni can be stretched

into a 2D open disk where the faces passing through vi are

located side by side around vi without overlap. Besides, we

arbitrarily assign a rotation direction to the cut, as shown in

Fig. 6, which is helpful to create the face set partition and

the edge set partition. Next we state and verify five proper-

ties when all the Ni’s are stretched into 2D disks.

1) In Ni, two edges (vi−1, vi) and (vi, vi+1) of

the cut separate the faces passing through vi into two

non-empty sets: {fi,1, fi,2, . . . , fi,mi
} on one side and

{f ′

i,1, f
′

i,2, . . . , f
′

i,m′

i

} on the other side (see Fig. 6). Neither

1In [12], a theorem is given to show that the partition along an internal

face exists and is unique. Theorem 1 in this paper is an extension of it.
2In this proof, the term manifold is used to denote the extended mani-

fold for conciseness.
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Algorithm 2 Partition of a line drawing along a cut 

1. Create the extended manifold with 

2. E0(
)← φ; E1(
)← φ; F0(
)← φ;

F1(
)← {faces connected to 
 in the extended manifold}
3. Pick a face f ∈ F1(
) and move it to F0(
)
4. for each face f ∈ F1(
)
5. if f shares an edge connected to 
 with a face in F0(
),

then move f to F0(
)
6. for each edge e connected to 

7. if e is on a face in Fm(
), m = 0 or 1, then Em(
)← e

set can be empty because otherwise, Ni is not topologically

equivalent to a 2D open disk.

2) All the rotation directions of the faces in Ni are ei-

ther clockwise or counter-clockwise. Without loss of gen-

erality, suppose that the rotation direction of fi,1 is clock-

wise (Fig. 6). Since two faces have opposite rotation di-

rections on their sharing edge(s), the rotation direction of

fi,2 is also clockwise, and so are the rotation directions of

fi,3, fi,4, . . . , fi,mi
. Similarly, all the rotation directions of

f ′

i,1, f
′

i,2, . . . , f
′

i,m′

i

are also clockwise.

3) Among the four faces, fi,1, fi,mi
, f ′

i,1, f ′

i,m′

i

, which

pass through the cut and vi, two of them lying on one side

of the cut are consistent with the cut, while the other two

lying on the other side are inconsistent with the cut3. In

Fig. 6, fi,1 and fi,mi
lying on the upper side of the cut are

consistent with the cut, while f ′

i,1, f ′

i,m′

i

lying on the lower

side are inconsistent with the cut. This property is a direct

result of property 2).

4) Suppose that fi,1 and fi,mi
are consistent with the

cut, and f ′

i,1 and f ′

i,m′

i

are inconsistent with the cut,

for i ∈ {1, 2, . . . , n}. To create a face set partition,

let F0(
) =
⋃n

i=1{fi,1, fi,2, . . . , fi,mi
} and F1(
) =

⋃n

i=1{f
′

i,1, f
′

i,2, . . . , f
′

i,m′

i

}. That is, F0(
) contains the

faces consistent with the cut and the faces lying on the same

side as these consistent faces, and F1(
) contains all other

faces passing through v1, v2, ..., or vn. To create an edge

partition, let E0(
) be the set of edges whose neighboring

faces belong to F0(
), and E1(
) be the set of edges whose

neighboring faces belong to F1(
). Since for any e ∈ E(
),
the two neighboring faces of e lie on the same side of the

cut, they must belong to the same face partition set, i.e., ei-

ther F0(
) or F1(
). Therefore P (F (
)) = (F0(
), F1(
))
and P (E(
)) = (E0(
), E1(
)) form a partition along 

that satisfies Definition 2. This property and the property 1)

show the existence of a partition along 
.

5) The above partition along 
 is unique. To verify

this property, suppose that there is another face set parti-

tion (F ′

0(
), F ′

1(
)) along 
 with F ′

0(
) 6= F0(
) (and thus

F ′

1(
) 6= F1(
)). Since none of F ′

0(
) and F ′

1(
) is empty,

there must exist an edge e ∈ E(
), the two neighboring

3It is possible that there is only one face on one side. In this case, the

two faces merge into one.

Algorithm 3 3D reconstruction

1. Detect and delete all artificial lines

2. For each separated line drawing, find its best cut and partition

it along the cut; repeat this step until µ > 1
3. Reconstruct 3D manifolds from the separated line drawings

4. Combine the 3D manifolds to obtain a complete object

faces of which belong to different face partition sets. In

this case, the line drawing cannot be separated into two

sides because e appears in both sides, which shows that

(F ′

0(
), F ′

1(
)) is not a valid face set partition.

Theorem 1 and Definition 2 already provide a method

to partition a line drawing along a cut, which is given in

Algorithm 2. After the partition along 
, 
 becomes two

new faces on the two sides of the partition. In Fig. 5(b),

three objects are generated from the partitions along the two

cuts (m, l, k, j, m) and (c, g, h, d, c) in Fig. 5(a). Note that

the newly face (m′, l′, k′, j′, m′) is merged with the orig-

inal face (a, j′, m′, l′, k′, d, c, b, a) in the biggest object in

Fig. 5(b) by deleting the edges connected to the vertices

(m′ and l′) of degree 2. The following theorem shows that

separated line drawings still represent manifolds.

Theorem 2. After the partition along a cut, the line draw-

ing (line drawings) still represents (represent) a manifold

(manifolds).

Proof. After the partition4, the new line drawing (line draw-

ings) is (are) formed by the faces of the extended manifold

and the two new faces from the cut. We only need to ver-

ify that every point on the new faces and their edges has a

neighborhood topologically equivalent to a 2D open disk.

Obviously, every point inside each new face satisfies this

requirement. Let p be a point on an edge of a new face (the

cut), say, at the middle of edge (vi, vi−1) in Fig. 6 without

loss of generality. It is easy to find such a neighborhood

around p, which is formed by points in fi,1 or f ′

i,1, edge

(vi, vi−1), and the new face.

5. 3D Reconstruction from a Line Drawing

After partitioning a line drawing along its cuts, we re-

construct 3D manifolds from these separated line drawings

and then obtain the complete large 3D object through the

combination of these smaller 3D manifolds.

It is not difficult to deal with 3D reconstruction from a

separated line drawing because it is simple enough (see the

experiments). We use the method in [9] to carry out this

work. The basic idea of this method is to derive the z-

coordinates of all the vertices by minimizing an objective

function. Since a line drawing is considered as a parallel

4Note that one partition may or may not separate a line drawing into

two disjoint line drawings.
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projection of a manifold and its face topology is known,

the 3D object is obtained when all the z-coordinates are

derived. More details can be found from [9]. After con-

structing the smaller 3D objects from all the separated line

drawings, we merge them together to have a complex large

object using the method in [12].

Algorithm 3 lists our complete algorithm to do 3D re-

construction from a complex line drawing.

6. Experiments

A set of examples is given in this section to demonstrate

the performance of our algorithm. The problem in [12] is

that it may fail when a complex line drawing has too few

internal faces. For example, it can only separate the line

drawing in Fig. 1(a) into the two line drawings in Fig. 1(c).

The larger line drawing in Fig. 1(c) is still too complex.

Fig. 7 presents a number of complex line drawings to-

gether with their partition and reconstruction results by our

algorithm. From the second column of Fig. 7, we can see

that our algorithm successfully finds good cuts to separate

the line drawings, which are in accordance with our visual

partitions. For the two objects in Figs. 7(a) and (b), our

algorithm and the one in [12] obtain the same partition re-

sults. Note that besides the separations from the artificial

lines, there is only one internal face in line drawing (d) or

(e), and no internal face in line drawing (f), (g), or (h).

Because our algorithm can separate the complex line

drawings into very simple line drawings based on the found

cuts, the 3D reconstruction from these line drawings be-

comes much easier. From the third and forth columns in

Fig. 7, we can see that the 3D objects are reconstructed very

well. Besides, all the line drawings given in [12] can be

dealt with by our algorithm because internal faces are spe-

cial cases of cuts.

The computational time of Algorithm 3 depends on the

complexity of a line drawing. It ranges from 10 to 112 sec-

onds for the line drawings in Fig. 7. The algorithm is im-

plemented using C++ and runs on a PC with 2.4GHz Intel

Core2 CPU. Steps 3 and 4 consume the majority of the time,

while steps 1 and 2 take about 1 second only for each of the

line drawings.

7. Conclusions

In this paper, we propose to separate a complex line

drawing from cuts, which include internal faces as a spe-

cial case. We develop several propositions and criteria for

cut finding. We also present a theorem that guarantees the

existence and uniqueness of the partition of a line drawing

along a cut. Our algorithm can tackle 3D reconstruction of

more complex solid objects than previous algorithms. Fu-

ture work includes the extension of this approach to 3D re-

construction of more general objects such as non-manifolds

and objects with curved surfaces.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 7. Experimental results on a set of complex line drawings (a)–(h) by our algorithm. The second column shows the partitions of the

line drawings. Each reconstructed 3D object is displayed in two views with its faces illustrated by different colors.
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