

Introduction: • Objective Develop an algorithm to automatically reconstruct complex 3D solid objects from line drawings Input Line Recovered 3D Shape Drawing A Database of

Previous method

3D reconstruction is to find a 3D object that is most consistent with some rules of our visual system. These rules includes:

- Line Parallelism: Two parallel lines in a 2D sketch plane implies that they are also parallel in 3D.
- Isometry: The ratio of the lengths of two lines in 2D sketch plane should near their ratio in 3D space.

Limitation: These rules may break in some cases and require the carefully tuning of the weights for each rule.

Our Approach

Observation: a natural or man-made complex 3D object normally consists of a set of basic 3D objects

Method: Recover the 3D shape by finding a combination of basic 3D models in a database that best fits the input line drawing.

Example-Based 3D Object Reconstruction from Line Drawings

Tianfan Xue^{1,2} Jianzhuang Liu^{1,2,3} Xiaoou Tang^{1,2} ¹Dept. of Information Engineering, The Chinese University of Hong Kong ²Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China ³Media Lab, Huawei Technologies Co. Ltd., China

Reconstruction Algorithm:

Models in 3D database

The 3D shape of each model is controlled by a set of parameters. The coordinates of each point is a linear combination of these parameters.

$$X^{2} = \begin{pmatrix} a+c \\ b+d \\ e \end{pmatrix}$$
where
$$X^{1} = b = X^{2}$$

$$= \begin{pmatrix} a+c\\b+d\\e \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \alpha,$$

where $\alpha = (a, b, c, d, e)^T$

The reconstruction is to minimize the following objective function:

 $\min_{\{q_i\}} \left(\sum E(L_i | q_i) + \right)$

1. Projection Constraint $E(L_i|q_i)$: The projection of a original line drawing:

$$E(L_{i}|q_{i}) = \lambda_{p} \sum_{i=1}^{n_{i}} c_{i}(k) \sum_{v \in V_{i}} \left\| \left| KX_{i,k}^{v} - x_{i,k}^{v} \right| \right|^{2}$$

vertices of two neighboring 3D parts should be as close as possible.

$$E(q_{i}, q_{j}) = \lambda_{c} \sum_{k=1}^{n_{i}} \sum_{l=1}^{n_{j}} \left(c_{i}(k)c_{j}(l) \sum_{v \in V_{i} \cap V_{j}} \left| \left| X_{i,k}^{v} - X_{i,k}^{v} \right| \right|^{2} \right)$$

3. Candidate Prior: We assign high prior to those 3D models with less parameters to ensure robustness.

$$E(q_i) = \sum_{k=1}^{n_i} c_I(k)\eta_{i,k}$$

This problem is solved by an alternative minimization algorithm (See our paper for more details).

3D Reconstruction

Each 3D part is determined by a set of random variables $q_i = \{c_i, R_{i,1}, t_{i,1}, \alpha_{i,1} \dots, R_{i,n_i}, t_{i,n_i}, \alpha_{i,n_i}\}$ n_i : No. of candidate 3D models for the i-th part c_i : n-dim vector indicates which candidate is selected

 $R_{i,k}, t_{i,k}$: Rotation matrix and translation vector

The relationship of L_i and q_i is modeled as the following undirected graphical model. q_i and q_j are connected if they have some common vertices.

$$\sum_{i \in Ne} E(q_i, q_j) + \sum_i E(q_i) \right)$$

3D part on the 2D plane should be consistent with the

2. Construction Constraint $E(q_i, q_j)$: The common 3D

