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3-D Modeling from a Single View of
a Symmetric Object

Tianfan Xue, Student Member, IEEE, Jianzhuang Liu, Senior Member, IEEE, and Xiaoou Tang, Fellow, IEEE

Abstract— 3-D technologies are considered as the next genera-
tion of multimedia applications. Currently, one of the challenges
faced by 3-D applications is the shortage of 3-D resources. To
solve this problem, many 3-D modeling methods are proposed to
directly recover 3-D geometry from 2-D images. However, these
methods on single view modeling either require intensive user
interaction, or are restricted to a specific kind of object. In this
paper, we propose a novel 3-D modeling approach to recover
3-D geometry from a single image of a symmetric object with
minimal user interaction. Symmetry is one of the most common
properties of natural or manmade objects. Given a single view
of a symmetric object, the user marks some symmetric lines
and depth discontinuity regions on the image. Our algorithm
first finds a set of planes to approximately fit to the object, and
then a rough 3-D point cloud is generated by an optimization
procedure. The occluded part of the object is further recovered
using symmetry information. Experimental results on various
indoor and outdoor objects show that the proposed system can
obtain 3-D models from single images with only a little user
interaction.

Index Terms— Interactive 3-D modeling, single view, symmetry.

I. INTRODUCTION

IN THE PAST years, there has been rapid development
in 3-D applications, including 3-D TV and movie, virtual

reality, 3-D city, and 3-D object retrieval. However, compared
with the developments of 3-D applications, 3-D resources are
still limited. Traditionally, 3-D models are either captured by
3-D cameras or designed by designers using computer-aided
design tools. The former requires careful calibration and scans
objects under strict conditions, and the latter is manually
intensive.
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Recently, there have been works focusing on recovering
3-D information directly from a single 2-D image. These
methods fall into two categories. One is fully automatic
modeling methods [1]–[5]. Blanz and Vetter proposed a mor-
phable face model that models the shape and texture of a
testing face as a linear combination of a set of training
images [1]. This morphable model requires the training 3-D
objects have very similar topologies (faces in [1]) and small
texture variations. Huang and Cowan proposed to recover
3-D geometry from an indoor image, using a set of perspective
geometric cues [2]. Lee et al. also tried to obtain the 3-D
geometry from an indoor image based on some assumptions
in indoor environments [3]. Leetta and Mundy developed a
deformable vehicle model to recover the 3-D shape of a vehicle
from a single view of it [4]. They use a multiresolution model
to model the variations among different kinds of vehicles.
Sigal et al. learned a parameterized mesh model from a
database of 3-D human bodies and use this model to build
an automatic shape and pose estimation system with a single
image being the input [5]. Although these methods may have
good performance on the objects they focus on, they utilize
many object-specific assumptions and can hardly extend to
other objects.

The other category is interactive 3-D modeling methods
that build a fine 3-D model with the help of user interactions
[6]–[16]. Debevec et al. combined both geometry-based and
image-based techniques to model an architecture from a set
of images and render this architecture in a new view [10]. In
this paper, the user marks all the edges of the architecture in
the images and provides a rough 3-D model, and then the
algorithm generates a refined 3-D model from the images.
Zhang et al. proposed a modeling system to get a free-form
curved surface from a single image [12]. The modeling result
mainly depends on the user’s marks, which specify a set of
geometric constraints about the recovered surface. In [16],
the user first draws lines along the edges of the objects
and a 3-D model is recovered from these edges using some
image regularities. These interactive methods usually require
intensive user interaction.

We focus on recovering 3-D geometry from single images
of reflectionally symmetric objects in this paper.1 Sym-
metry is ubiquitous in natural and manmade objects, and
provides rich information for 3-D reconstruction. Recently,
researchers have proposed some 3-D modeling algorithms

1In the rest of this paper, we simply use “symmetry” to denote “reflectional
symmetry.”
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Fig. 1. (a) Image. (b) and (c) User interaction marking the symmetric
lines and depth discontinuity region. (d) Recovered depth map. (e) and (f)
3-D reconstruction result of our algorithm shown in two different views with
texture mapped.

based on symmetry. Hong et al. [17] used a “canoni-
cal” coordinate frame to automatically recover 3-D shape
from a single image. This method can only deal with
objects with repetitive patterns, such as a wall consisting
of repetitive tiles [17]. Yang et al. studied the homography
groups and proposed a framework to estimate the poses and
structures of 2-D symmetric patterns [18]. François et al.
[11] proposed to get the 3-D geometry of a symmetric object
from an image overlaid by straight line drawings, which
requires intensive user interaction and cannot deal with objects
with curved edges. Jiang et al. [6] recovered the 3-D geometry
of a symmetric object from faces marked by the user. Although
a detailed 3-D model can be built, this method focuses on
architectural objects only.

In this paper, we propose a novel 3-D reconstruction method
from a single view of a symmetric object with a little user
interaction. Fig. 1 shows an example. Given an input image of
a symmetric object [Fig. 1(a)], the user first marks symmetric
lines [Fig. 1(b)] and depth discontinuity regions [Fig. 1(c)].
Based on these marks, our system first finds the planes that
approximate the surface of the object. Then it generates a 3-D
point cloud using a Markov random field (MRF). The invisible
part of the object is recovered with symmetry information,
and noise in the 3-D point cloud is removed by a Gaussian
filter. For the object in Fig. 1(a), the recovered depth map
and 3-D model are shown in Fig. 1(d)–(f), respectively. This
paper originates from our previous work [19]. In [19], we
develop an automatic reconstruction algorithm using symmetry
information. However, since that method is fully automatic, it
works well only for objects with simple textures [e.g., it cannot
handle the object in Fig. 1(a)]. In this paper, we propose a
different algorithm based on user interactions, which can deal
with much more complex objects than the automatic method.
The algorithm proposed in this paper is different from [19]
in the following aspects: 1) we design a more robust plane
detection algorithm with user’s marks, which works well even
for objects with complex textures; 2) we construct a more
complete MRF energy function with the information provided
by the user to avoid the ambiguity (multiple explanations)

faced by [19]; and 3) we use a more robust scheme to
estimate vanishing points and remove reconstruction errors
with Gaussian filtering. The proposed 3-D modeling system is
easy to use and can handle a large class of symmetric objects.
Experimental results show that this method works well on
various indoor and outdoor objects, and is robust to user’s
marking errors.

II. GEOMETRIC PROPERTIES IN 3-D GEOMETRY FROM A

SINGLE VIEW OF A SYMMETRIC OBJECT

A. Camera Model

We use a simplified camera model in this paper. The camera
has zero skew and does not have radial distortion, and the
aspect ratio of the pixel equals 1. In this model, the projection
matrix is

M = [K |0], K =
⎛
⎝
− f 0 u0
0 − f v0
0 0 1

⎞
⎠ (1)

where f is the focal length of the camera, and (u0, v0) is
the position of the principle point in the camera coordinate
system.

In the rest of this paper, a bold upper-case letter (say, X)
denotes the homogeneous coordinate of a 3-D point, and its
2-D projection on the image plane is denoted by the corre-
sponding bold lower-case letter x. A plane nx x+ny y+nzz+
d = 0 is represented by π = (nx , ny, nz, d)� = (n�, d)�,
where n = (nx , ny, nz)

� is the normal of the plane. If not
specified, homogeneous coordinates are used, and variables in
Euclidean coordinates are represented by letters with a tilde
above them, such as X̃.

B. Geometric Properties

In this section, we show some geometric properties used to
obtain 3-D geometry from a single view of a symmetric object.
At this moment, we suppose that the camera matrix is already
known and symmetric point pairs are already detected. The
computation of the matrix and symmetric point detection will
be discussed in Section III-A. We call a pair of points (lines),
a symmetric point pair (line pair) if they are symmetric with
respect to the symmetric plane of the object.

We first define the epipole and epipolar lines in Definition 1.
These two terms have often appeared in 3-D geometry-related
literature in computer vision [20], [21]. For completeness and
easy understanding of our work, we show their definitions
again here.

Definition 1: Let π = (n�, d)� be the symmetry plane of
a symmetric object. The epipole is the vanishing point of the
lines parallel to n. The epipolar lines are the lines passing
through the epipole.

Fig. 2 gives an example of the epipole and epipolar lines.
In perspective geometry, the 2-D projections of a set of
3-D parallel lines converge to the same point, which is the
vanishing point of these lines (or these directions). According
to [20], the vanishing point of a line l is at K nl in the image
plane, where nl is the direction of l. In our case, this vanishing
point is the epipole and nl = n. Thus, the epipole is at K n.
Next, we introduce the following property.
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Fig. 2. Illustration of an epipole and epipolar lines. O is the epipole and the
three blue lines passing through O are epipolar lines. The symmetric point
v ′ of v lies on the epipolar line passing through v . Two lines l and l′ are
symmetric lines.

Property 1: Let X and X ′ be a pair of symmetric points
with respect to the symmetry plane π . Then their 2-D projec-
tions x and x′ and the epipole lie on the same line.

Proof: Let the symmetry plane be π = (n�, d)�. Since
X and X′ are symmetric with respect to π , we have

α(X̃− X̃′) = n (2)

where α is a nonzero scalar. Since x = K X̃ and x′ = K X̃′,
multiplying K on the both sides of (2), we have

αx − αx′ − K n = 0. (3)

Since K n is the epipole, x, x′, and the epipole lie on the same
line.

The following Property 2 shows how to compute the
3-D positions of two points, if they are symmetric with
respect to π .

Property 2: Let M = [K |0] be the projection matrix, π =
(n�, d)� be the symmetry plane, and x and x′ (x �= x′) be
a pair of symmetric points in the 2-D image plane. If K n =
αx − αx′, then the corresponding 3-D points of x and x′ in
Euclidean coordinates are

X̃ = αd K−1x
1
2 + αn�K−1x′

(4)

X̃′ = αd K−1x′
1
2 + αn�K−1x′

. (5)

Proof: Let X� = (X�xyz, Xr ) and X′� = (X′�xyz, X ′r ). Since
MX = x, MX′ = x′, and M = [K |0], we have

Xxyz = K−1x, X′xyz = K−1x′. (6)

As X and X′ are a pair of symmetric points with respect to
the plane π = (n�, d)�, according to [22], there is a scalar h
such that {

hXxyz = X′xyz − 2nn�X′xyz + 2d X ′r n
h Xr = X ′r .

(7)

Suppose that ||n|| = 1 without loss of generality.
Then, (6) and (7) lead to

K n = hx
2d X ′r − 2n�K−1x′

− x′

2d X ′r − 2n�K−1x′
. (8)

Since K n = αx − αx′, we have

α = h

2d X ′r − 2n�K−1x′
(9)

−α = − 1

2d X ′r − 2n�K−1x′
. (10)

Thus

X ′r = Xr = 1+ 2αn�K−1x′

2dα
. (11)

Finally, we obtain

X̃ = 1

Xr
Xxyz = αd K−1x

1
2 + αn�K−1x′

(12)

X̃′ = 1

X ′r
X′xyz =

αd K−1x′
1
2 + αn�K−1x′

. (13)

Note that when the projection matrix M = [K |0] is given
and the normal n of the symmetry plane is fixed, given a set of
pairs of symmetric points, the 3-D positions of these points can
be calculated with (4) and (5). Furthermore, from (4) and (5)
we can see that, if the symmetry plane moves along its normal
direction n (only d changes in this case), the 3-D coordinates
of these points will only proportionally increase/decrease (i.e.,
the shape of the object changes only up to a scale).

III. SYMMETRY BASED 3-D MODELING

Direct recovery of a fine 3-D model from a single image of
an object is a challenging problem. Our strategy is first to find
some planes to approximate the 3-D object (these planes are
called underlying planes). Then the pixels of the object in the
image are projected to the underlying planes, resulting in a
3-D point cloud. The occluded part of the object is also added
using symmetry information. Finally, a 3-D mesh is generated
from these 3-D points. The steps of our algorithm are shown
in Fig. 3.

A. Segmentation and Calibration

Same as previous works, we assume that the object of
interest has been segmented from the background, which
can easily be done through GrabCut [23]. There are also
plenty of images of symmetric objects without background
in commercial image sharing web sites, such as Flickr and
Google.

The calibration matrix is estimated from the vanishing
points of three mutually orthogonal directions in a single
image. Most previous vanishing point estimation methods [24]
find vanishing points by voting edge directions. However,
these methods may fail to detect some vanishing points, if
there are no dominant edges corresponding to these vanishing
points.

In this paper, we use a novel vanishing point estimation
method with the help of user interaction. Suppose the three
dominant orthogonal directions of the world coordinate frame
are x , y, and z, and the vanishing points corresponding to them
are vx, vy, and vz. The user draws two corners (O, �x , �y, �z) and
(O ′, �x ′, �y ′, �z′) at two positions of the object on the 2-D image.
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Fig. 3. Reconstruction procedure. (a) Input image. (b) Pairs of symmetric lines. (c) Discontinuity regions marked in green. (d) Underlying planes found to
approximate the object. (e) Recovered depth map. (f) and (g) Coarse 3-D model shown in two views. (h) and (i) Refined 3-D model shown in two views.
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Fig. 4. Vanishing point detection. (a) Input image with corners (O, �x, �y, �z)
and (O ′, �x ′, �y′, �z′) marked by the user. (b) Perspective effect graph with
initial vanishing points (rays corresponding to vz are not shown for clarity).
(c) Perspective effect graph with vanishing points after the adjustment (note
that vx and vy are not in the proper location due to space limitations).

A corner consists of a center point O with three rays �x , �y, and
�z pointing to the vanishing points vx, vy, and vz, as shown in
Fig. 4(a). Then the intersection of �x and �x ′ is vx, vy, and vz
are obtained similarly.

Since there may be some errors on the corners drawn by
the user, these initial estimations of vx, vy, and vz may not
be accurate. The estimations are improved as follows: First, a
perspective effect graph is drawn automatically on the image
plane [see Fig. 4(b)], where each vanish point emits a set
of rays. With the help of this perspective effect graph, the
user then adjusts the position of each vanishing point to make
these rays coincident with object edges in the image. Fig. 4(c)
shows the vanishing points after the adjustment. Finally, the
calibration matrix is estimated from them using the method
in [20].

The position of the symmetry plane π = (n�, d)� is
calculated as follows. Since the 2-D epipole vx = K n (or
vy = K n), we have n = K−1vx (or n = K−1vy). d is set to
an arbitrary value, because as discussed in Section II-B, the
choice of d does not affect the shape of the recovered 3-D
object.

B. User’s Marks

Two kinds of information are provided by the user: sym-
metric line pairs and depth discontinuity regions. The user
marks some pairs of symmetric lines in the image, as shown in
Fig. 3(b), where two lines of the same color form a symmetric
line pair. The user marks at least two lines on each underlying
plane, so that the plane can be detected later. For example, for
the green plane in Fig. 3(d), the user marks two green lines
shown in Fig. 3(b).

A depth discontinuity region is a place where the depth
map is discontinuous. For example, there is depth discontinuity

l3

l1
l4
l2

l5 l6

(a) (b) (c) (d)

ll

l5

sym sym sym

l4
l2

l6

Fig. 5. Plane detection. (a) Input image. (b) Underlying planes.
(c) Planes perpendicular to π marked by purple, green, and blue. (d) Plane
not perpendicular to π marked by brown.

on two the legs of the chair [indicated by the red circles in
Fig. 3(e)]. The user marks these discontinuity regions as shown
in green in Fig. 3(c).

C. Underlying Plane Detection

First, we can compute the 3-D position of the symmetry
plane π , and the 3-D positions of symmetric lines, with the
known calibration matrix [20]. To recover the 3-D geometry
of an object, we approximate it by a set of planes (underlying
planes), as shown in Fig. 5(b). For an object with a symmetry
plane, it has two kinds of underlying planes. One is the planes
perpendicular to π , such as the purple, green, and blue planes
in Fig. 5(c). Each plane of this kind passes through the two
lines of a symmetric line pair. For example, in Fig. 5(c), the
green plane passes through lines l3 and l4. The other is the
planes not perpendicular to π , such as the brown plane shown
in Fig. 5(d). Each plane of this kind passes through at least
two lines marked by the user. For example, in Fig. 5(d), the
brown plane passes through lines l2, l4, and l6.

Based on the above analysis, a plane detection algorithm
is designed in Algorithm 1. Planes perpendicular to πsym are
detected in steps 1–5. For each symmetric line pair (li,1, li,2)
marked by the user, we first calculate their 3-D positions
using the method described in [11]. Then we find the plane
that passes through li,1 and li,2. In steps 7–10, planes not
perpendicular to πsym are added. To find the 3-D plane passing
through lines in L, for each line l in L, we first equally sample
some points on L and add them to a point set P . Then we
find the best fitting plane to these points using RANSAC in
step 8, and once a fitting plane is found, those points near
this plane are removed from P in step 9. Steps 8 and 9 are
repeated until there are no more than four points in P .
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Algorithm 1 Underlying plane detection
Input: A set of symmetric line pairs L = {(li,1, li,2)} marked by the
user.
Initialization: The set of underlying planes � ← φ; a point set
P ← φ.

1) for (li,1, li,2) ∈ L
2) Calculate the 3-D positions of li,1 and li,2.
3) Add the plane passing through li,1 and li,2 to �.
4) Equally sample 3-D points on lines li,1 and li,2, and add

them to P.
5) endfor
6) Group planes in � and points in P using mean-shift.
7) while there are more than four points in P
8) Find the plane π that best fits the points in P using

RANSAC [25].
9) Add π and its symmetric plane π ′ with respect to πsym to

�. Remove the points near π and π ′ from P.
10) endwhile

Return: The set of underlying planes �.

Fig. 6. Geometry to define the data term.

D. 3-D Point Cloud Generation

In the last section, we state how to obtain the underlying
3-D plane set � and the 3-D positions of a few lines marked
by the user. To derive the depth of each object pixel in the
image, we need to find the symmetric pixel of each object
pixel, which is not a trival problem. In this paper, we do it
in reverse. We assign each foreground (object) pixel a label
indicating which plane the pixel belongs to (the background
is ignored). Then we use symmetry to validate whether this
assignment is correct.

Finding the best labels for the pixels is formulated as a
minimization problem with an MRF. The energy function to
be minimized is defined as

E =
∑

p

Ed(π p)+
∑

(p,q)∈N4

Els(π
p,πq)+

∑
(p,q)∈Ns

Es(π
p,πq)

(14)
where π p ∈ � is the plane pixel p is assigned to, N4
is the four-neighborhood system, Ns is another pixel set
defined later, and the three terms, Ed (data term), Els (local
smoothness term), and Es (symmetry term), will be described
as follows.

1) Data Term: The data term is to determine which plane a
pixel belongs to. Suppose p is assigned to plane π p . We first
back-project p to the 3-D plane π p and get its 3-D symmetric
point P ′ with respect to π . Then P ′ is projected to the image
plane, resulting in p′ (see Fig. 6). If p is on a line li,1 marked
by the user (case 1), then p′ must lie on the symmetric line
li,2 of li,1. The following data term is used to ensure this

)a(

C
D

A

E

B

F

)b(

Fig. 7. Illustration of the depth discontinuity. (a) Input image with user’s
marks. (b) Recovered depth map.

Fig. 8. Geometry to define the smoothness term.
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Image 
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Pnew’

P

Fig. 9. Illustration of the point smoothing.

constraint:
Ed(π p) = g(D(p′, li,2)) (15)

where D(p′, li,2) is the distance between point p′ and line li,2,
and g is a kernel function defined as g(x) = min{x2/θ2, 1}
with θ being a parameter. If p is not on any lines marked by
the user (case 2), the similarity between p and p′ reflects the
correctness of p assigned to π p (here, we assume that a pair
of symmetric points have similar colors). Thus in case 2, the
data term is defined as

Ed(π p)=
{

g(||Ip − Ip′ ||), if p′ ∈ IF

5, otherwise
(16)

where IF is the set of all object pixels, Ip is the 3-D vector
of the RGB values of p, and g is the same kernel function
as in (15) with a different parameter. A larger penalty five is
assigned to the data term if p′ is not on the object.

Here, we simply use the pixel intensity instead of patch-
based features to build the data term. This is because that
although two symmetric points have similar local topologies
in 3-D space, the 2-D local regions around them may be
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Fig. 10. Some experimental results. (a) Input images. (b) User’s marks of symmetric line pairs. (c) User’s marks of depth discontinuity regions in green.
(d) Labeling results. (e) Recovered depth maps obtained by the algorithm in this paper. (f) and (g) Recovered 3-D models shown in two views with texture
mapped. (h) Recovered depth maps obtained by the algorithm in [19].

(a)

(b)

(c)

(d)

Fig. 11. Another set of experimental results. (a) Input images. (b) User’s marks of symmetric line pairs and depth discontinuity regions. (c) Labeling results
and recovered depth maps obtained by the new algorithm. (d) Depth maps by [19] where the circles indicate the depth errors.

very different when they are projected to the 2-D plane.
For example, in Fig. 7(a), the local region around point E
is dissimilar to the local region around its symmetric point
F . Therefore, we do not use the distance of local region
descriptors or the cross correlation-based distance to build the
data term.

2) Local Smoothness Term: The local smoothness constraint
enforces neighboring 2-D pixels of the object are also close in
the 3-D space. For example, in Fig. 7(a), point A and point B
are close in the image. Since the plane π1 and plane π2 are
connected in the 3-D space at the line marked by red, A and
B are also close in the 3-D space. However, this constraint
is not always satisfied. For example, in Fig. 7(a), point C
and point D are close in the image but not in the 3-D space,
because the plane π3 (which D belongs to) and the plane

π4 (which C belongs to) are not connected in the 3-D space.
There is a depth discontinuity at the region marked by green
[see the depth map in Fig. 7(b)]. To obtain a good result, depth
discontinuity regions are marked necessarily by the user.

With the user’s marks, the local smoothness term is defined
as follows: if two neighboring pixels2 p and q have the same
label, then Els(π

p,πq ) = 0. Otherwise, Els(π
p,πq) is set to

be the following value to punish the spacial difference between
neighboring pixels:

Els(π
p,πq) =

{
0, if p ∈ ID or q ∈ ID

αls g(�(π p,πq)), otherwise
(17)

where αls = 300 is a weight for the local smoothness term, ID

is the set of pixels in the depth discontinuity regions, g is the

2Four-neighborhood system is used.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12. (a) Input images. (b) User’s marks of symmetric line pairs and depth discontinuity regions. (c) Labeling results and recovered depth maps obtained
by the algorithm in this paper. (d) Coarse 3-D models (before refinement) shown in two views. (e) Refined 3-D models shown in two views. (f) Recovered
depth maps obtained by the algorithm in [19].
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Algorithm in [19]

Fig. 13. Labeling accuracy comparison. Each two neighboring bars show the
accuracy of the labeling results obtained by our algorithm and the algorithm
in [19]. Numbers 1–6 denote the six objects in Fig. 10, numbers 7–9 denote
the three objects in Fig. 11, and numbers 10–14 denote the five objects in
Fig. 12.

same kernel function as in (15), and �(π p,πq) measures the
spacial difference between π p and πq along the viewing ray
passing through the middle point between p and q , as shown
in Fig. 8. This local smoothness term ensures that the labels of
neighboring pixels change only at the place where two planes
are intersected, or at the depth discontinuity regions marked
by the user.

3) Symmetry Term: If the symmetric pixel of a pixel p is
q , then the symmetric pixel of q is also p. To enforce this
constraint, the symmetry term is used to punish inconsistent
pairs, defined as

Es(π
p,πq) =

⎧⎪⎨
⎪⎩

αs , if p′ = q and q ′ �= p

αs , if p′ �= q and q ′ = p

0, otherwise

(18)

where αs = 10 is a punishment constant, p′ and q ′ are
found by the method described in Section III-D1 (also see
Fig. 6). Ns in (14) contains all the pixel pairs that have the
potential to be symmetric, i.e., Ns = {(p, q) | p′ = q or q ′ =
p for at least one plane}.

The minimization of E in (14) is solved through expansion
graph cuts Algorithm [26]. Although, it cannot be rigorously
proved that the energy function satisfies the triangular formu-
lation required by the algorithm, our experiments show that
it obtains a better result than the swap graph cuts algorithm.
After labeling all the pixels of the object, the depth map is
computed by projecting each pixel to its assigned 3-D plane.

E. 3-D Model Refinement

After pixel assignments, a 3-D point cloud C is generated.
Since the image is taken from a single view, some parts of
the object are occluded and missing from C . Those missing
parts are filled as follows. Let the set of 3-D points on one
side of π be C1, and the set of 3-D points on the other side be
C2, where C1 ∪ C2 = C . For each point P in C1, we find its
symmetric point P ′ with respect to π . If no point in C2 falls
into the 3-D ball centered at P ′ with radius r , then add P ′ to
C2. The missing points in C1 are recovered in the same way.

The 3-D point cloud C contains discontinuity parts on the
boundary of each plane. This is because in the previous steps,
we use piecewise planar faces to approximate the curved faces
of the object. To smooth the surface, the following Gaussian
filter is applied to the 3-D point set:

P ′new =
∑

P ′∈N(P)

exp

(
−||P − P ′||2

σ 2

)
P ′ (19)

Pnew =
−−−−→
O P ′new ·

−→
O P

||O P||2 P (20)

where P and P ′ are 3-D Euclidean coordinates of two points
in the set, Pnew is the 3-D position of P after filtering, N(P) is

a 3-D neighborhood of P , and
−→
O P and

−−−−→
O P ′new are two vectors

from the camera center to P and P ′new, respectively, as show
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Fig. 14. Depth map accuracy evaluation. (a) Testing images. (b) Ground truth depth maps from the 3-D model. (c) Recovered depth maps obtained by our
algorithm. The root mean squared error (RMSE) for each depth map is also shown.
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Fig. 15. Labeling accuracy of our algorithm when the vanishing points are
incorrectly marked.

in Fig. 9. For each point P , we first calculate a weighted
average position P ′new with the points around P . To ensure
that the new position Pnew has the same projection as P on
the image plane, we use the projection of P ′new on the line−→
O P as the new position.

After missing part recovery and surface smoothing, the final
3-D mesh model is generated from the 3-D point cloud using
a simple scheme in [27].

IV. EXPERIMENTS

In this section, we show extensive experiments to verify
the performance of our algorithm. All the testing images are
reflectional-symmetric objects, and are collected from Google
Images.

The first experiment is carried out on six objects from [19].
These objects have less texture and simpler topology, and
both the algorithms in this paper and in [19] perform well
on these objects, as shown in Fig. 10. For each input object
in Fig. 10(a), the user first marks the symmetric line pairs
and depth discontinuity regions on the images. Each sym-
metric line pair is marked by two lines of the same color
[see Fig. 10(b)]. Depth discontinuity regions are marked by
green strokes [see Fig. 10(c)]. The second and third objects do
not have depth discontinuity regions. The labeling results are
shown in Fig. 10(d), and the reconstruction results are given
in Fig. 10(e)–(g). Fig. 10(e) shows the depth of each pixel
after pixel labeling, and Fig. 10(f) and (g) shows two views
of each recovered 3-D model. For comparison, we also show

the recovered depth maps obtained by the algorithm in [19]
in Fig. 10(h).

The second experiment is conducted on another three
objects from [19]. These objects have the most complex
topology in [19]. The recovered depth maps of the algorithm
in this paper and the algorithm in [19] are shown in Fig. 11(c)
and (d), respectively. Note that there are errors in the depth
maps obtained by the algorithm in [19] (see the red circles),
which are caused by the ambiguity discussed in [19]. These
errors disappear in the depth maps recovered by the new
algorithm because the user interaction helps to avoid this
ambiguity.

Fig. 12 shows the third experiment on five more complex
objects. The recovered depth maps are given in Fig. 12(c)
and two views of each recovered 3-D model in Fig. 12(d).
These objects have more complex textures than those in
Figs. 10 and 11. The algorithm in [19] cannot generate a
reasonable result, which can be seen by comparing Fig. 12(c)
and (f). However, with the user interaction, the new algorithm
can deal with them very well. To demonstrate the performance
of the refinement, we also show two views of the 3-D models
before the refinement in Fig. 12(d), in which some parts
of the objects are missing, as indicated by the red ellipses.
These missing parts are recovered after the refinement [see
Fig. 12(e)].

To objectively evaluate the performance of our algorithm,
we test it using two quantitative criteria. The first one is
labeling accuracy. For each testing image, we manually label
the plane each pixel belongs to and use these labeling results
as the ground truth to evaluate labeling accuracy. The labeling
accuracy is estimated by the percentage of incorrectly labeled
pixels in all object pixels, which is shown in Fig. 13, where the
accuracy of the algorithm in [19] is also given for comparison.
This quantitative evaluation is consistent with the visual result.
For objects with simple topology and texture (objects 1–6),
both our algorithm and the algorithm in [19] have low labeling
errors. For more complex objects (objects 7–14), there are
significant errors obtained by the algorithm in [19], while ours
still performs well.

The second criterion is the depth map accuracy. Since there
are no depth maps for common photos, we instead use a
3-D model generated by some designer (from Google 3-D
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Warehouse). Five testing images are generated by projecting
the 3-D model onto the 2-D plane in different views, as shown
in Fig. 14(a). Then for each testing image, the user marks the
symmetric lines and depth discontinuity regions. The ground
truth depth maps and the recovered depth maps are shown in
Fig. 14(b) and (c), respectively. The RMSE for each depth
map is shown in the lowest row in Fig. 14. It can be seen that
the estimated depth maps are very similar to the ground truth,
which demonstrate the good performance of our algorithm.

To find out how robust our algorithm is to incorrect user
marks, we test it when the vanishing points are incorrectly
marked. For each input testing image, the user first draws two
corners (see Section III-A) and carefully adjusts the vx, vy,
and vz directions using the perspective graph. The vanishing
points obtained from this method are considered as the ground
truth. Then we simulate the marking errors by adding Gaussian
noise with zero mean and different variances to the directions,
from which incorrect vanishing points are calculated. Finally,
the 3-D geometry is recovered using these vanishing points.
The reconstruction accuracy with different marking errors is
shown in Fig. 15. From it, we can see that our algorithm is
not significantly affected, even with large marking errors.

Our algorithm is implemented in MATLAB combined with
C++. On average, it takes 13 seconds to recover the 3-D
geometry of one object on a PC with 2.4 GHz Intel Core 2
CPU. The user only needs less than 1 min to do the interaction
on each image. This paper focuses on piece-wise planar or
near piece-wise planar objects. Part of our future work is to
deal with objects with curved surfaces, such as footballs and
wheels.

V. CONCLUSION

In this paper, we proposed a novel 3-D modeling approach
to recover 3-D geometry from a single image of a symmetric
object. In our system, the user first marks symmetric lines
and depth discontinuity regions on the image. Our algorithm
then finds a set of 3-D planes to approximate the surface of the
object. After that, the planes each pixel belongs to are detected
by an optimization procedure with an MRF, and a rough 3-D
model was generated based on these planes. Finally, the 3-D
model was refined using symmetry information and Gaussian
filtering. Experimental results on various objects showed that,
with only little user interaction, our algorithm can successfully
recover the 3-D model of a symmetric object from a single
image. In the future, we plan to extend the current framework
to curved object [28] and objects of other kinds of symmetry,
such as rotational symmetry and translational symmetry.

REFERENCES

[1] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3D
faces,” in Proc. ACM SIGGRAPH Conf. Comput. Graph., 1999, pp.
1–8.

[2] J. Huang and B. Cowan, “Simple 3D reconstruction of single indoor
image with perspective cues,” in Proc. Comput. Robot Vis., 2009, pp.
1–8.

[3] D. C. Lee, M. Hebert, and T. Kanade, “Geometric reasoning for single
image structure recovery,” in Proc. IEEE Int. Conf. Comput. Vis., Jun.
2009, pp. 2136–2143.

[4] J. M. Leotta and L. J. Mundy, “Predicting high resolution image edges
with a generic, adaptive, 3-D vehicle model,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1311–1318.

[5] L. Sigal, A. Balan, and M. J. Black, “Combined discriminative and
generative articulated pose and non-rigid shape estimation,” in Proc.
Adv. Neural Inf. Process. Syst., 2007, pp. 1–8.

[6] N. Jiang, P. Tan, and L. Cheong, “Symmetric architecture modeling
with a single image,” in Proc. ACM SIGGRAPH Conf. Exhibit. Asia,
2009, pp. 1–8.

[7] F. A. van den Heuvel, “Line-photogrammetric mathematical model
for the reconstruction of polyhedral objects,” in Proc. Int. Soc. Opt.
Photon., 1999, pp. 1–12.

[8] A. Grün, “Semi-automated approaches to site recording and modeling,”
Int. Arch. Photogrammetry Remote Sensing, vol. 33, no. 5, pp. 309–318,
2000.

[9] S. El-Hakim, J. Beraldin, and F. Blais, “Critical factors and config-
urations for practical 3D image-based modeling,” in Proc. 3D Meas.
Tech., 2003, pp. 1–9.

[10] P. E. Debevec, C. J. Taylor, and J. Malik, “Modeling and rendering
architecture from photographs: A hybrid geometry-and image-based
approach,” in Proc. ACM SIGGRAPH Conf. Comput. Graph., 1996,
pp. 1–9.

[11] A. François, G. Medioni, and R. Waupotitsch, “Mirror symmetry ⇒
2-view stereo geometry,” Image Vis. Comput., vol. 21, no. 2, pp. 137–
143, 2003.

[12] L. Zhang, G. Dugas-Phocion, J. Samson, and S. Seitzt, “Single view
modeling of free-form scenes,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Apr. 2001, pp. 990–997.

[13] M. Prasad, A. Zisserman, and A. Fitzgibbon, “Fast and controllable 3D
modelling from silhouettes,” in Proc. Annu. Conf. Eur. Assoc. Graph.,
2005, pp. 1–4.

[14] D. Liebowitz, A. Criminisi, and A. Zisserman, “Creating architectural
models from images,” Comput. Graph. Forum, vol. 18, no. 3, pp. 39–
50, 1999.

[15] D. Jelinek and C. Taylor, “Reconstruction of linearly parameterized
models from single images with a camera of unknown focal length,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 7, pp. 767–773,
Jul. 2001.

[16] Z. Li, J. Liu, and X. Tang, “A closed-form solution to 3D reconstruction
of piecewise planar objects from single images,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2007, pp. 1–6.

[17] W. Hong, A. Yang, K. Huang, and Y. Ma, “On symmetry and multiple-
view geometry: Structure, pose, and calibration from a single image,”
Int. J. Comput. Vis., vol. 60, no. 3, pp. 241–265, 2004.

[18] A. Y. Yang, K. Huang, S. Rao, W. Hong, and Y. Ma, “Symmetry-
based 3-D reconstruction from perspective images,” Comput. Vis. Image
Understand., vol. 99, no. 2, pp. 210–240, 2005.

[19] T. Xue, J. Liu, and X. Tang, “Symmetric piecewise planar object
reconstruction from a single image,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2011, pp. 2577–2584.

[20] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[21] C. A. Rothwell, D. A. Forsyth, A. Zisserman, and J. L. Mundy,
“Extracting projective structure from single perspective views of 3D
point sets,” in Proc. IEEE Int. Conf. Comput. Vis., May 1993, pp.
573–582.

[22] P. J. Schneider and D. H. Eberly, Geometric Tools for Computer
Graphics. San Mateo, CA: Morgan Kaufmann, 2002.

[23] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive fore-
ground extraction using iterated graph cuts,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 309–314, 2004.

[24] H. Kong, J. Audibert, and J. Ponce, “Vanishing point detection for road
detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
2009, pp. 93–103.

[25] M. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[26] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[27] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch, “Visual modeling with a hand-held camera,” Int.
J. Comput. Vis., vol. 59, no. 3, pp. 207–232, 2004.

[28] Y. Wang, Y. Chen, J. Liu, and X. Tang, “3D reconstruc-
tion of curved objects from single 2D line drawings,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009,
pp. 1834–1841.



XUE et al.: 3-D MODELING FROM A SINGLE VIEW OF A SYMMETRIC OBJECT 4189

Tianfan Xue (S’11) received the B.E. degree in
computer science and technology from Tsinghua
Universtiy, Beijing, China, in 2009, and M.Phil.
degree in computer vision from The Chinese Uni-
versity of Hong Kong, Hong Kong, in 2011.

He is currently a Research Assistant with the
Department of Information Engineering, Chinese
University of Hong Kong. His current research inter-
ests include computer vision and machine learning.

Jianzhuang Liu (M’02–SM’02) received the B.E.
degree in telecommunications from the Nanjing Uni-
versity of Posts and Telecommunications, Nanjing,
China, in 1983, the M.E. degree in image processing
from the Beijng University of Posts and Telecom-
munications, Beijing, China, in 1987, and the Ph.D.
degree in computer vision from The Chinese Uni-
versity of Hong Kong, Hong Kong, in 1997.

He was a Faculty Member with Xidian University,
Xi’an, China, from 1987 to 1994. From 1998 to
2000, he was a Research Fellow with Nanyang Tech-

nological University, Singapore. From 2000 to 2012, he was a Post-Doctoral
Fellow, an Assistant Professor, and an Adjunct Associate Professor with The
Chinese University of Hong Kong. He joined the Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, as a

Professor in 2011. He is currently a Chief Scientist with Huawei Technologies
Co. Ltd., Shenzhen. He has published more than 100 papers, most of
which are in prestigious journals and conferences in computer science. His
current research interests include computer vision, image processing, machine
learning, multimedia, and graphics.

Xiaoou Tang (S’03–M’06–SM’02–F’09) received
the B.S. degree from the University of Science
and Technology of China, Hefei, China, in 1990,
the M.S. degree from the University of Rochester,
Rochester, NY, in 1991, and the Ph.D. degree from
the Massachusetts Institute of Technology, Cam-
bridge, in 1996.

He is a Professor with the Department of Informa-
tion Engineering and an Associate Dean (Research)
with the Faculty of Engineering, The Chinese Uni-
versity of Hong Kong, Hong Kong. He was the

Group Manager with the Visual Computing Group, Microsoft Research Asia,
Beijing, China, from 2005 to 2008. His current research interests include
computer vision, pattern recognition, and video processing.

Dr. Tang was a Program Chair of the IEEE International Conference
on Computer Vision in 2009. He is an Associate Editor of the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

and the International Journal of Computer Vision. He was a recipient of the
Best Paper Award from the IEEE Conference on Computer Vision and Pattern
Recognition in 2009.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


