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Figure 1: Photorealistic video style transfer. Given an input content video and its object segmentation mask, our method

learns to transfer different styles to different local regions while preserving the photorealism and temporal consistency (left:

original, right: stylized). The bottom of each example shows the object mask, foreground style image, and background style

image, respectively.

Abstract

We present a novel algorithm for transferring artistic

styles of semantically meaningful local regions of an im-

age onto local regions of a target video while preserving

its photorealism. Local regions may be selected either fully

automatically from an image, through using video segmen-

tation algorithms, or from casual user guidance such as

scribbles. Our method, based on a deep neural network

architecture inspired by recent work in photorealistic style

transfer, is real-time and works on arbitrary inputs without

runtime optimization once trained on a diverse dataset of

artistic styles. By augmenting our video dataset with noisy

semantic labels and jointly optimizing over style, content,

mask, and temporal losses, our method can cope with a va-

riety of imperfections in the input and produce temporally

coherent videos without visual artifacts. We demonstrate

our method on a variety of style images and target videos,

including the ability to transfer different styles onto multi-

ple objects simultaneously, and smoothly transition between

styles in time.

* Work done while interning at Google Research.

1. Introduction

Color stylization plays a critical role in modern cine-

matography and video storytelling. It has the powerful abil-

ity to grab audience attention, elicit emotions, and convey

implicit mood. For example, red usually evokes ideas of ac-

tion, adventure, and strength; orange can represent joy, cre-

ativity and stimulation; and green signifies envy and health.

In additional to applying color styles globally to the entire

video, modern filmmakers often utilize localized color tone

changes; i.e., distinct color palettes applied to certain seg-

mented objects in the scene, as a powerful tool in video

storytelling. Some well-known examples include the film

Schindler’s List [13], in which the famous scene of a girl

in a red coat becomes the most memorable symbol of the

film. Similarly, the film Sin City [14] uses high saturation

(such as in red and yellow) to colorize certain characters or

clothes, contrasting with the film’s classic black-and-white

noir theme.

While color stylization is critical to video production,

color style creation and editing today is still a labor-

intensive and time-consuming process even with the use

of professional editing software. Many operations are still

manual in the editing process, such as rotoscoping, refine-
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ment of segmentation masks, ensuring temporal consistency

from frame to frame, and carefully fine-tuning color tones.

An automatic approach would be incredibly helpful.

To automatically apply color styles to videos, a num-

ber of methods have recently been introduced based on ad-

vances in deep learning. For instance, several methods have

explored the transfer of artistic styles to images or videos

[8, 15, 22, 12, 35, 7, 40]. However, due to their nature

as artistic style transfer methods, they all introduce unde-

sirable painterly spatial distortions. Another line of work

[27, 23, 21, 45, 43] focuses on photorealistic style trans-

fer, which requires the output to maintain “photorealism”;

i.e., the output should look as if it was taken by a real cam-

era (like most stylized films). However, since they primar-

ily target still photography, existing methods often generate

visible flicker artifacts when they are applied to videos. To

reduce temporal instability, several methods have tried min-

imizing an optical flow warping loss [11, 10] or sequentially

propagating intermediate features [18]. To our knowledge,

there is no existing work that can successfully perform pho-

torealistic localized style transfer on videos with reasonably

good runtime speed.

In this paper, we present a novel approach that simulta-

neously addresses three major challenges in localized pho-

torealistic video style transfer: 1) spatial and temporal style

coherence over time, 2) robustness against imperfect seg-

mentation masks, and 3) high-speed processing. To achieve

high-speed performance, we extend our approach from the

recent work of Xia et al. [43], which learns local edge-aware

affine transforms from low-resolution content and style in-

puts, with the results sliced out from a compact transform

representation at the full resolution. To minimize spatial ar-

tifacts and improve the temporal coherence, we propose a

novel spatiotemporal feature transfer layer (ST-AdaIN) that

is able to transfer style to local regions and generate tem-

porally coherent stylized videos. To handle imperfect seg-

mentation masks, our algorithm learns an enhancement net-

work to improve the boundaries of masks. Moreover, we

compose foreground and background color transform coef-

ficients in the grid space, resulting in high quality results

even if segmentation masks are inaccurate. Experimental

results demonstrate that our model generates stylized videos

with fewer visual artifacts and better temporal coherence

than existing photorealistic style transfer methods.

In summary, our contributions in this work are threefold:

• A differentiable spatiotemporal style transfer layer

(ST-AdaIN) to match the feature statistics of local re-

gions, generating temporally coherent stylized results

(Section 3.2).

• Mask enhancement and grid-space blending algo-

rithms that can render natural style transitions between

objects given noisy selection masks (Section 3.3).

• A deep neural network for photorealistic video style

transfer that runs in real-time (26.5 Hz at 1024⇥ 1024
resolution).

2. Related Work

Image style transfer. Classical style transfer approaches

can be categorized into: 1) global methods, which match

global image statistics [31, 29], and 2) local methods [16,

36, 37, 42, 41], which find dense correspondence between

content and style. While the global methods are efficient,

the results are not always faithful to the style image. The

local methods can generate high-quality results, but they are

computationally expensive and often limited to specific sce-

narios (e.g., portraits, sky, or season changes).

Convolutional neural network (CNN)-based style trans-

fer has been widely studied in recent years. The pioneer-

ing work of Gatys et al. [8] formulates the problem as an

iterative optimization to match the statistics of feature ac-

tivations within a pre-trained classification network. Sev-

eral follow-up work either improves stylization efficiency

by learning strictly feed-forward networks [15, 20], or in-

crease generalization by adding the ability to transfer mul-

tiple styles within a single “universal” model [12, 35, 22].

Although these approaches produce impressive artistic styl-

ization results, the images often contain spatial distortions

and warped image structures that are unacceptable in a pho-

torealistic setting.

To achieve photorealistic style transfer, Luan et al. [27]

extend the optimization framework of Gatys et al. [8] by

imposing a local affine photorealism constraint. Pho-

toWCT [23] optimizes the loss functions of Luan et al. [27]

in a closed-form solution but requires a post-processing

step to further smooth the stylized results. Li et al. [21]

learn linear transformations but require a spatial propaga-

tion network [24] as an anti-distortion filter. On the other

hand, WCT2 [45] adopts the wavelet corrected transfer

based WCT to preserve the photorealism without any post-

processing. An et al. [1] adopt neural architecture search

and network pruning to learn a lightweight model, but their

model is still behind real-time performance. Recently, Xia

et al. [43] propose a model that strictly enforces Luan’s

photorealism constraint by directly learning style transfer

in a bilateral space [9], which can achieve real-time perfor-

mance at 4K resolution. The proposed model builds upon

this fast method but is able to transfer styles to local regions

and generate temporally coherent video results.

Video style transfer. As style transfer methods typically

generate new texture or change image color significantly,

applying existing algorithms to videos frame-by-frame of-

ten lead to temporally inconsistent results. To improve

the temporal stability, several methods minimize a tempo-

ral loss (i.e., optical flow warping error [2]) in an iterative

optimization framework [33], training feed-forward net-
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works [11, 10], or learning a post-processing module [18].

Chen et al. [3] propagate long-range information by blend-

ing the intermediate features with the ones from the pre-

vious frame. Our method enforces short-temporal consis-

tency by minimizing the temporal loss and imposes long-

term temporal consistency by propagating the intermediate

features of the neighboring frames through the proposed

spatiotemporal feature transfer layer.

Bilateral grid. Bilateral space is commonly used for fast

image processing. Paris and Durand [28] first introduce bi-

lateral space for fast edge-aware image filtering, showing

that it can be sampled at a low resolution bilateral grid.

Chen et al. [4] extend the bilateral grid for fast approxima-

tion of many edge-aware image transformations. Recently,

Gharbi et al. [9] learn a deep network to predict bilateral

grid for approximating several image transformations. The

grid is only estimated from a low-resolution input and then

applied to the full-resolution input image, significantly ac-

celerating the speed of complicated image transformation.

Xia et al. [43] further extend this structure to photorealis-

tic image style transfer by integrating with the Adaptive In-

stance Normalization (AdaIN) [12]. In this work, we also

propose to model the style transformation using bilateral

grids, and we will describe the technical differences and im-

provement against Xia et al [43] in Section 3.

3. Method

We aim to transfer the style from a set of images to dif-

ferent local regions in a target video, producing a smooth,

temporally-consistent, and photorealistic result. We take

as input a video (the content), object selection masks (one

video per object), and a set of style images (each style cor-

responds to one object), and output a video sequence. Since

manual rotoscoping to produce selection masks is tedious,

and automatic object detection is rarely pixel-perfect, one

critical design goal in localized video style transfer is the

ability to handle imperfect and noisy masks. Without loss

of generality, we discuss the case of having two regions

that we call foreground (i.e., where the mask value is 1)

and background (i.e., the complement). Extending the algo-

rithm to three or more regions is straightforward with linear

complexity.

3.1. Overview

Our method builds upon the style transfer algorithm of

Xia et al. [43], which we summarize here. The algorithm

consists of two “paths” (Figure 2), a full-resolution frame

processing path (in purple) and a low-resolution grid predic-

tion path (in green). The grid prediction path takes as input

a low-resolution content/style pair (e.g., 256⇥256), extracts

features using a pre-trained VGG-19 network [38], and uses

a series of Adaptive Instance Normalization (AdaIN) lay-

ers [12] to predict a photorealistic style transformation oper-

ator. The transformation operator is encoded as a very low-

resolution affine bilateral grid Γ (e.g., 16⇥16⇥8). To render

a full-resolution frame in real-time, the full-resolution path

uses a per-pixel learned lookup table to first predict a guide

map. The guide map serve as a learned proxy for image

luminance that better separates edges. To render a given in-

put pixel at position (x, y) and color (r, g, b), the algorithm

computes its guide value z = LUT (r, g, b), slices the affine

bilateral grid Γ at (x, y, z) (sampling with trilinear interpo-

lation and scaling each axis) to retrieve a 3⇥ 4 affine trans-

form A, and computes the product A·(r, g, b, 1)T . Our work

is motivated by the fact that while Xia et al.’s algorithm is

fast and works well on still photos, our early experiments

showed that it is nontrivial to extend the method to local-

ized video style transfer. A naive localized extension would

be to simply run the algorithm twice on each frame: once

per region, and then blend using object masks. However,

this does not work well due to the following reasons:

• Content statistics upon which stylization operates need

to be localized and temporally coherent to produce a

satisfactory output. This requires a new feature trans-

fer operator (Section 3.2).

• Pixel-space blending using object masks depends crit-

ically on mask quality, which is rarely satisfactory.

We address this by learning to enhance masks (Sec-

tion 3.3), which are then incorporated into the render-

ing process (Section 3.4).

• Although Xia et al. [43] show a few smooth video re-

sults despite being trained on only still imagery, we

find that without additional temporal regularization,

there is noticeable flicker. We address this with the

proposed spatiotemporal feature transfer layer and a

warping loss (Section 3.2 and 3.5).

3.2. Spatiotemporal Feature Transfer

Recall that AdaIN [12] transfers the mean µ(·) and vari-

ance σ(·) feature statistics from y (e.g., style) onto x (e.g.,

content) as:

AdaIN(x, y) = σ(y)

✓

x� µ(x)

σ(x)

◆

+ µ(y). (1)

Mean and variance are computed independently for each

feature channel. Note that the original AdaIN operator com-

putes mean and variance over an entire frame. This is inap-

propriate for localized style transfer as it mixes the features

of foreground and background regions, leading to visible

halo artifacts near object boundaries (see Figure 5(d) for an

example). We address this with a spatially-aware AdaIN

(SA-AdaIN), which extends the operator to account for the
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Figure 2: Model architecture. Our model consists of two paths. The grid prediction path consumes low-resolution content,

style, and masks and infers a bilateral grid that encodes how to transform each layer. At full resolution, we predict a guide

map that tells us how to best blend the style transforms, as well as how to index into it for rendering. See Section 3 for details.

content mask mx:

SA-AdaIN(x, y,mx)=σ(y)

✓

x� µ(x ·mx)

σ(x ·mx)

◆

+µ(y),

(2)

Next, we tackle motion. Although using AdaIN on VGG-19

features has shown to be effective for still photo style trans-

fer [12, 43], it has been shown that these features are sensi-

tive to small changes in the input. Subtle motions can lead

to large differences in the features [10] which are amplified

by downstream stylization that appears as flicker artifacts

when viewed at framerate [18]. To address this, we pro-

pose a temporally coherent AdaIN (TC-AdaIN) layer that

computes the mean and variance from both the previous and

current frames:

TC-AdaIN(xt, xt−1, y,α) = σ(y)

✓

x� µt

σt

◆

+µ(y), (3)

where µ(t) = (1 � α)µ(x(t)) + αµ(x(t−1)), σ(t) = (1 �
α)σ(x(t))+ασ(x(t−1)), and α is a weight that balances the

contribution of the previous (t� 1) and current (t) frame.

Combining (2) and (3), we obtain a spatiotemporal

AdaIN (ST-AdaIN) operator:

ST-AdaIN(xt, xt−1, y,mt
x,m

t−1
x ) = σ(y)

✓

x� µ̂t

σ̂t

◆

+ µ(y),

(4)

where

µ̂t = (1� α)µ(xt ·mt
x) + αµ(xt−1 ·mt−1

x ), (5)

σ̂
t = (1� α)σ(xt ·mt

x) + ασ(xt−1 ·mt−1
x ). (6)

After the feature transferring, we apply a few convolutional

layers to predict the bilateral grids for both the foreground

and background. The detailed architectures of our spa-

tiotemporal feature transfer and grid prediction are provided

in the supplementary material.

3.3. Mask Enhancement

In practice, input selection masks are rarely pixel-

perfect, either due to errors made by object segmentation

algorithms (e.g., [25, 5, 6]) or inaccuracies in users’ anno-

tations. To ensure that masking errors are not propagated to

our stylized output, we introduce a mask enhancement net-

work that smooths and aligns masks to object boundaries.

Our mask enhancement network is a lightweight module,

consisting of three convolutional layers, where the last layer

adopts a sigmoid activation to produce a soft boundary.

3.4. Stylized Rendering

After learning bilateral grids that encode foreground and

background styles, we need to smoothly blend between

them to produce a photorealistic output. A naive solution

would be to apply the grids independently to the input frame

to produce two stylized outputs, and alpha blend them us-

ing the enhanced mask calculated in Section 3.3. However,
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Figure 3: Guide map for grid blending and slicing. While Xia et al.[43] learns the guidance from the input image alone, our

model takes the object mask as an extra input, which allows it to better separate foreground and background at boundaries.

applying the transformation twice at full-resolution is not

only inefficient, but if the two styles (and thus transforma-

tions) are dramatically different, it will also lead to undesir-

able halo artifacts (see Figure 3(d)) despite blending using a

soft mask. We devise a better solution that interchanges the

steps: first blend the transforms taking masks into account,

then apply the blended transform once at full resolution.

Recall that HDRnet [9] and bilateral photo style trans-

fer [43] learn a global lookup table based on pixel color

alone to produce its guide map. The guide map, which

is directly used as the z index when slicing the bilateral

grid, serves to separate object edges. This is insufficient

in our application since object edges are delineated not only

by color gradients of large magnitude, but also by explicit

masks. Therefore, we replace the learned lookup table with

a 2-layer convolutional neural network that also incorpo-

rates the object mask to learn an adaptive guide map that

better separates foreground and background, as shown in

Figure 3(a).

We use the adaptive guide map to build a soft grid-space

mask (see the supplementary material for details) and com-

bine the two stylization transforms into a single compact

representation as:

Γ = Mgrid · Γf + (1�Mgrid) · Γb, (7)

where Γf and Γg are the foreground and background grids,

respectively. Finally, we render the output at each pixel by

slicing out an affine transform from blended grid Γ using the

adaptive guide map and performing a matrix multiply. Fig-

ure 3(c) and (d) shows how grid-space blending eliminates

artifacts from the naive approach.

3.5. Training Losses

Given a collection of input content videos {Ic} with ob-

ject masks, foreground and background style images Fs and

Bs, our model can be trained to generate a stylized output

video {O} on given an arbitrary input by optimizing the

following multi-objective loss function:

L = λcLc + λsLs + λrLr + λmLm + λzLz + λtLt. (8)

We empirically set λc = 0.2, λs = 1, λr = 0.02, λm = 5.0,

λz = 1.5, and λt = 1000 in all experiments. We discuss

each component below.

We adopt the now standard content loss that minimizes

the difference between the intermediate features from a pre-

trained VGG-19 network [8]:

Lc =

NC
X

i=1

kΦi[O]� Φi[Ic]k
2
F , (9)

where Φi[·] is a feature map, NC denotes the number of

layers selected from VGG-19 to build content loss, and k ·
kF is the Frobenius norm. Our style loss uses the simpler

formulation from recent work [12, 43] that uses only the

mean and variance of of VGG-19 features:

Ls =

NS
X

i=1

kµ(Φi[O])� µ(Φi[Is])k
2
2

+

NS
X

i=1

kσ(Φi[O])� σ(Φi[Is])k
2
2 , (10)

where Ns denotes the number of layers selected from VGG-

19 to build style loss.

To penalize abrupt local changes in the predicted trans-

forms but allow changes across strong object edges (known

as bilateral smoothness), we adopt the Laplacian regular-

izer of [43] on both the foreground grid Γf and background

grids Γb:

Lr =
X

s

X

t∈N(s)

||Γf [s]� Γf [t]||
2
F

+
X

s

X

t∈N(s)

||Γb[s]� Γb[t]||
2
F . (11)
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where N(s) denotes the neighbors of cell s.

Mask loss. To ensure that the network does not predict an

affine transformation that applies the foreground style to a

background pixel and vice versa, we add a mask loss that

says: if we sliced out a full-resolution pixel-space mask

from the predicted grid mask using our learned guide map,

it should align with object boundaries. Mathematically:

Lm = kslice(z,Mgrid)�Mgtk
2
2 , (12)

where z is the learned guide map, Mgrid is the predicted

soft grid mask, and Mgt is the ground-truth object mask.

Guide loss. We penalize guide maps that are substantially

different from input luminance Igray since luminance edges

are a strong segmentation signal:

Lz = kz � Igrayk
2
2 . (13)

Temporal loss. To improve temporal coherence, we mini-

mize the flow warping error between the output frames [18]:

Lt =

T
X

t=1

N
X

i=1

V i
t→t−1||O

i
t � Ôi

t−1||1, (14)

where Ôt−1 is frame Ot−1 warped by optical flow ft→t−1

and Vt→t−1 is the visibility mask calculated from the input

frames It and It−1. We use the PWC-Net [39] to compute

optical flow on the content video. More implementation

details are provided in the supplementary material.

4. Experimental Results

In this section, we first provide qualitative comparisons

with state-of-the-art photorealistic style transfer methods.

We then present quantitative results from our performance

benchmark and user study. Finally, we analyze the contri-

bution of different components in our model.

4.1. Setup

We use the DAVIS 2017 validation set [30] for evalua-

tion, which contains 30 videos with ground-truth segmen-

tation masks and the video resolution is 480 ⇥ 584. In our

experiments, we adopt an instance segmentation method,

COSNet [26], to select a single instance as foreground. Our

system can also take multiple instances as foreground with

additional user input (e.g., “control click”).

We compare our method to state-of-the-art photorealis-

tic style transfer algorithms: PhotoWCT [23]1, LST [21],

WCT2 [45], and Xia et al. [43]. Note that we apply

the full pipeline of PhotoWCT and LST, including their

1We use NVIDIA’s latest FastPhotoStyle library, which is much faster

than the speed claimed in their paper.

own smoothing steps. Since these approaches are in-

tended for still image style transfer, to make the compari-

son more fair, we apply the temporal consistency algorithm

of Lai et al. [18] to as a post-process to improve their re-

sults. As the method of Xia et al. [43] cannot stylize local

regions, we extend it by first generating two stylized out-

puts for foreground and background, then blending them in

pixel-space using the input mask.

4.2. Qualitative Comparisons

Figure 4 provides visual comparisons on two examples.

As both PhotoWCT and LST transfer style features on

the intermediate layers of a deep neural network with an

encoder-decoder architecture, foreground and background

styles are mixed together. Hence, the final output syn-

thesized by the decoder contains halo artifacts at object

boundaries (e.g., the swan’s neck for PhotoWCT) or spa-

tially inconsistent color (e.g., the uneven grass). Those

visual artifacts cannot be easily removed by their post-

processing steps. Therefore, the results of PhotoWCT and

LST still look non-photorealistic with noticeable artifacts.

While WCT2 and Xia et al. [43] do not require any post-

processing, their stylized results contain visual artifacts

around the object boundaries due to inaccuracies in the in-

put object masks. In contrast, our method produces visu-

ally pleasing results given imperfect segmentation masks.

By using our mask-enhancement and grid-space blending,

we can spatially blend between substantially different styles

without explicitly separating foreground and background

with pixel precision. We provide video comparisons in the

supplementary material, which shows that our model gen-

erates results that are more temporally stable.

4.3. Quantitative Results

Performance. We measure execution time on a single

NVIDIA Tesla V100 GPU with 16 GB of RAM at var-

ious resolutions. For existing methods [21, 23, 45, 43],

we include time spent on post-processing using Lai’s

method [18] (also listed independently). As shown in Ta-

ble 1, our method is much faster than all but the method

of Xia et al. [43] upon which it is based. This is due to

our model’s additional steps of computing a soft grid-space

mask. Still, our model can run at 21.5 Hz on 12 megapixel

inputs, while other approaches run out of memory. We note

that Xia et al. [43] alone can run on 3000⇥ 4000 input, but

the post-processing by Lai et al. [18] runs out of memory at

this resolution.

User study. As style transfer fidelity is inherently a sub-

jective matter of taste, we conduct a user study to evaluate

user’s preferences. We adopt paired comparisons [32, 17],

where users are asked to choose the better result in a pair

shown side-by-side. In each test, we also provide the input

content video, object segmentation mask, foreground, and
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Inputs PhotoWCT [23] LST [21]

WCT2 [45] Xia et al. [43] Ours

Inputs PhotoWCT [23] LST [21]

WCT2 [45] Xia et al. [43] Ours

Figure 4: Visual comparisons. The proposed method generates more visually pleasing stylized results than state-of-the-art

photorealistic style transfer algorithms.

Image Size 512 ⇥ 512 1024 ⇥ 1024 2000 ⇥ 2000 3000 ⇥ 4000

Lai et al. [18] 0.002±0.001s 0.003±0.001s 0.008±0.003 s OOM

LST* [21] 0.260±0.125s 0.793±0.334s OOM OOM

PhotoWCT* [23] 0.624±0.298s 1.548±0.359s OOM OOM

WCT2* [45] 3.904±0.280s 6.203±0.453s OOM OOM

Xia et al.* [43] 0.005±0.001s 0.007±0.002s 0.013±0.004s OOM

Ours 0.039±0.001s 0.040±0.012s 0.043±0.013s 0.046±0.014s

Table 1: Execution time. An asterisk (⇤) denotes that the

technique of Lai et al. [18] is applied. OOM indicates out

of memory at the inference time.

background style images as reference. The participant is

asked to answer the following questions:

1. Which video has a more faithful stylization?

2. Which video has fewer visual artifacts?

3. Which video is more temporally stable?

In total, we recruit 30 participants, where each participant

evaluates 20 sets of videos. While the results are shuffled

randomly, we ensure that all the methods are compared the

Better Fewer visual Better temporal

stylization artifacts stability

Ours vs. LST* [21] 60.6±7.5% 68.5±7.2% 66.1±7.3%
Ours vs. PhotoWCT* [23] 53.9±7.7% 80.6±6.1% 73.9±6.8%
Ours vs. WCT2* [45] 57.6±7.6% 79.4±6.2% 73.9±6.8%
Ours vs. Xia et al.* [43] 69.1±7.1% 60.6±7.5% 57.6±7.6%

Average 60.3±3.7% 72.3±3.4% 67.9±3.6%

Table 2: Results of user study. An asterisk (⇤) denotes

that the technique of Lai et al. [18] is applied. Overall, our

results are preferred by more than 60% of users.

same number of times.

Table 2 shows the percentage that our result is preferred

over the other. Overall, our method is selected on more than

60% of comparisons for all three questions, demonstrating

that our results have a more faithful stylization, fewer visual

artifacts, and better temporal stability.
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(a) Content (b) Styles and masks (c) Pixel-space blending (d) Grid-space blending (e) Grid-space blending

w/o SA-AdaIN w/ SA-AdaIN

Figure 5: Effect of grid-space blending and SA-AdaIN. Blending in the pixel-space results in unnatural object boundaries

due to the hard edge in the mask. Our grid-space blending can render smoother boundaries, but the foreground style bleeds

to the background (the yellow arrows in (d)). With the proposed SA-AdaIN, our model can separate the foreground and

background styles well and render high-quality object boundaries.

styles 0              t = 0                                                                                    t = 1   styles 1

Input

Output

Figure 6: Style transition. Our model can smoothly transit

between styles in time by interpolating the bilateral grids.

4.4. Style Transition

The style and color tone in a film can change over time,

connoting a gradual shift in mood. Our method can eas-

ily transition between different styles in time by interpo-

lating between predicted grids using an appropriate time-

dependent weighting function (e.g., a user-selected spline).

Figure 6 samples a few frames from a result where we trans-

fer different styles onto foreground and background while

smoothly transitioning in time. The full video result is

shown in the supplementary file.

4.5. Ablation Studies

Grid-space blending and SA-AdaIN. As input object

masks are often noisy, blending in pixel space often results

in visible artifacts around object boundaries (Figure 5(c)).

To render natural object boundaries, one may apply image

matting [44, 19, 34] to feather the mask. But matting is both

computationally expensive and may introduce its own arti-

facts. In contrast, our method learns to blend the foreground

and background style transfer transforms, sidestepping the

need for an accurate full-resolution mask (Figure 5(e)). Fur-

thermore, by adopting the SA-AdaIN, we improve the sepa-

ration of foreground and background styles better and avoid

the classic halo artifacts as shown in Figure 5(d).

Temporal consistency. To quantitatively evaluate the tem-

poral consistency of the stylized videos, we measure the

warping error and temporal change consistency (TCC) [46].

We compare the per-frame results of baseline models [23,

Model Warping error (↓) TCC (↑)

PhotoWCT [23] 0.00124 0.632

LST [21] 0.00129 0.534

WCT2 [45] 0.00118 0.566

Xia et al. [43] 0.00098 0.607

PhotoWCT [23] + Lai et al. [18] 0.00099 0.643

LST [21] + Lai et al. [18] 0.00104 0.538

WCT2 [45] + Lai et al. [18] 0.00110 0.576

Xia et al. [43] + Lai et al. [18] 0.00093 0.660

Ours w/o Lt 0.00091 0.673

Ours w/o TC-AdaIN 0.00094 0.659

Ours 0.00090 0.688

Table 3: Temporal consistency evaluation. Our full model

achieves the lowest warping error and the highest TCC

against the existing algorithms and our own variations.

21, 45, 43], with and without applying the temporal smooth-

ing technique [18]. We also train two modified versions of

our model: one without the temporal loss and one without

TC-AdaIN. As shown in Table 3, our full model achieves

the lowest warping error and the highest TCC, demonstrat-

ing that our method achieves the most stable results.

5. Conclusion

In this work, we propose a novel algorithm for photo-

realistic video style transfer. Our algorithm is able to 1)

generate spatially and temporally coherent stylized results

throught the proposed spatiotemporal feature transfer layer,

2) account for imperfect input masks by learning a mask

enhancement network and blending the color transform co-

efficients in a low-resolution grid space, and 3) achieve real-

time performance by adopting an efficient bilateral learning

framework. We demonstrate the performance on a wide va-

riety of videos and styles. Finally, a human subject study

shows that our method achieves faithful stylization, higher

visual quality, and better temporal coherence against exist-

ing photorealistic style transfer approaches.
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