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1 Refractive Stereo: Quantitative Evaluation

We evaluate our refractive stereo results quantitatively in two ways. First, for natural
stereo sequences, we compare the recovered depths of the refractive fluid layers with
that of the heat sources generating them, as computed using a standard stereo algorithm
(since the depth of the actual heat sources, being solid objects, can be estimated well
using existing stereo techniques). More specifically, we pick a region on the heat source
and pick another region of hot air right above the heat source, and compare the average
disparities in these two regions. Our experiments show that the recovered depth map of
the (refractive) hot air matches well the recovered depth map of the (solid) heat source,
with an average error of less than a few pixels.

Second, we evaluate the refractive stereo algorithm on simulated sequences with
ground truth disparity. The simulation setup is similar to one we used for the refractive
flow algorithm in the paper, except that we manually specify the ground truth disparity
map as shown in Figure 1.

To evaluate the performance of the algorithm, we generated four different back-
ground patterns shown in Figure 1: 1) weakly textured in both x and y directions, 2)
strongly textured in x direction, 3) strongly textured in y direction, 4) strongly textured
in both directions. We generated all combinations of these backgrounds in the left and
right views and get 4×4 = 16 stereo sequences. For comparison, we also implemented
a refractive stereo algorithm that does not consider the uncertainty in the optical flow.
Figure 1(a) and (b) show the disparities recovered by both refractive stereo (without
uncertainty; the baseline) and probabilistic refractive stereo (with uncertainty), together
with their corresponding root-mean-square error (RMSE). The simple refractive stereo
only works well when the backgrounds of both the left and right views are strongly
textured in both the x and y directions. When the background is weakly textured in one
direction, the optical flow in that direction is noisy and thus the recovered disparity will
be significantly less accurate.

The probabilistic refractive stereo algorithm is able to handle weaker textures. As
long as one direction of the background is textured in both views, the algorithm is able
to accurately recover the disparity map. For example, in the second row and second
column in Figure 1(b), the optical flow in the x direction is noisy, while the optical
flow in the y direction is clean, because the background is very smooth in x direction.
In the probabilistic refractive stereo, the algorithm weights optical flow results by how
accurately they are estimated when calculating the disparity. Therefore, the optical flow
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(b) Disparity by probabilistic refractive stereo 
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Fig. 1. Quantitative evaluation of refractive stereo using synthetic sequences.

in the x direction will have a smaller effect on the final result than the optical flow in the
y direction, and the algorithm will infer the disparity map correctly. This demonstrates
the robustness of our algorithm to partially textured backgrounds.
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2 Calculating Fluid Flow Efficiently (Section 4)

Recall that in section 4 of the paper, the probabilistic refractive flow algorithm consists
of two steps. First, we solve for the mean ṽ and the variance Σv of the wiggle features
v from the following Gaussian distribution:

P (v|I) = exp

(
−
∑
x

α1

∥∥∥∥∂I∂xvx + ∂I

∂y
vy +

∂I

∂t

∥∥∥∥2 + α2
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(1)

To solve for the mean and variance of flow from (1), let the V be the vector formed by
concatenating all the optical flow vectors in one frame. That is, V = (· · · ,v(x), · · · ).
Also, let us represent (1) in information form P (v|I) = exp(− 1

2V
ᵀJV +hᵀV ), where

h and J can be calculated from (1). Then the mean of V is Ṽ = J−1h and covariance
of V is Σ = J−1.

In the second step, the fluid flow is calculated by minimizing the following opti-
mization problem based on the mean and variance of the wiggle features computed in
the first step.
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u
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+ β3‖u‖2.

(2)

Calculating the covariance of each wiggle feature from (1) requires inverting the
information matrix J . This step will be slow if the matrix is large. To avoid this time-
consuming inversion, we make a slight change to the fluid flow objective function.
Let Ṽx, Ṽy , and Ṽt be the vectors formed by concatenating all the partial deriva-
tives of mean wiggle features in a frame, that is Ṽx = (· · · , ∂v∂x (x), · · · ), Ṽy =

(· · · , ∂v∂y (x), · · · ), and Ṽt = (· · · , ∂v∂t (x), · · · ). Similarly, let Ux, Uy be the vectors
formed by concatenating all the x-components and y-components of u in a frame re-
spectively. Then we can calculate the refractive flow as follows:

min
U
β1

(
Ṽx ·Ux + Ṽy ·Uy + Ṽt

)ᵀ
J
(
Ṽx ·Ux + Ṽy ·Uy + Ṽt

)
+ β2

(
‖DxUx‖2 + ‖DyUx‖2 + ‖DxUy‖2 + ‖DyUy‖2

)
+ β3‖U‖2 (3)

where Dx and Dy are the partial derivative matrices to x and y respectively. The
smoothness term of (3) is exactly the same as that in (2), and the data term of (2)
is

(Vx ·Ux +Vy ·Uy +Vt)
ᵀ
J (Vx ·Ux +Vy ·Uy +Vt)

=‖Vx ·Ux +Vy ·Uy +Vt‖J−1 = ‖Vx ·Ux +Vy ·Uy +Vt‖Σ , (4)

which is also similar to the data term in (2) except that it jointly considers all the wiggle
vectors in a frame. Therefore, this change will not affect the result too much, but the
algorithm is more computationally efficient as we never need to compute J−1. The term
never appears in (3).
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3 Probabilistic Interpretation in the Refractive Stereo (Section 5)

In this section, we will show that the data term defined in Section 5 for refractive
stereo is equal to the negative log of the conditional marginal distribution. Let vR(x) ∼
N(vR(x), ΣR(x)) and vL(x+d(x)) ∼ N(vL(x+d(x)), ΣL(x+d(x))) be the optical
flow from the left and right views, where vL and vR are the means of the optical flow
and ΣL and ΣR are the variances of optical flow. Then the data term of the refractive
stereo is

f(vR,vL)

=− log cov(vL,vR)

=− log

∫
v

PL(v)PR(v)dv

=− log

∫
v

N(v;vL, ΣL)N(v;vR, ΣR)dv

=
1

2
log |ΣL +ΣR|+

1

2
‖vR − vL‖2ΣL+ΣR

+ const (5)

where N(v;vL, ΣL) is shorthand notation for the Gaussian distribution probability
density function

N(v;v, Σ) =
1

2π
√
|Σ|

exp

(
−1

2
vᵀΣ−1v

)
(6)

Recall that the optical flow calculated by the algorithm is degraded by noise. Specif-
ically, let v(x) be the ground truth optical flow from the right view at x. The mean
optical flow from the right view (or left view) calculated by the algorithm equals the
ground truth optical flow plus Gaussian noise with zero-mean and variance equal toΣR
(or ΣL), that is:

P (vR(x)|v(x)) = N(vR(x);v(x), ΣR(x)), (7)
P (vL(x+ d(x))|v(x), d(x)) = N(vL(x+ d(x));v(x), ΣL(x+ d(x))) (8)

To evaluate the probability of d, let us consider the marginal distribution

P (vR(x),vL(x+ d(x))|d(x))

=

∫
v

P (vR(x),vL(x+ d(x)),v(x)|d(x))dv(x)

=

∫
v

P (vR(x)|v(x))P (vL(x+ d(x))|v(x), d(x))P (v)dv(x)

=

∫
v

N(vR(x);v(x), ΣR(x))N(vL(x+ d(x));v(x), ΣL(x+ d(x)))P (v)dv(x)

(9)
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Assuming that P (v) has an uniform prior, we have:

logP (vR(x),vL(x+ d(x))|d(x)) (10)

= log

∫
v

N(vR(x);v, ΣR(x))N(vL(x+ d(x));v, ΣL(x+ d(x)))P (v)dv (11)

= log

∫
v

N(vR(x);v, ΣR(x))N(vL(x+ d(x));v, ΣL(x+ d(x)))dv + const (12)

= log

∫
v

N(v;vR(x), ΣR(x))N(v;vL(x+ d(x)), ΣL(x+ d(x)))dv + const (13)

=− f(vR,vL) + const (14)

Therefore, the data term is equal to the negative log of conditional marginal distribution
(plus a constant).

4 Proofs for the Theorems in Section 3

Recall that in the paper, we define the refractive wiggle as:

Definition 1 (Refraction wiggle) Let xt be a point on the refractive fluid layer, xt+∆t
be the intersection between the background and the light ray passing through xt and
the center of projection at time t, and ∆t be a short time interval. Then the wiggle of xt
from time t to t +∆t is the shift of the projection of xt+∆t on the image plane during
this time.

Then, let us prove the following lemma:

Lemma 1 (Refractive wiggle) Let z, z′, and z′′ be the focal length of the camera, the
depth of fluid, and the depth of background. Assuming that the fluid object is moving
parallel to the camera plane, then the wiggle feature equals to:

v = − (z′′ − z′)z sec2 βt
z′′

(αt+∆t − αt) (15)

Proof. Because wiggles are defined by shifts in the image plane, we first trace rays to
determine which points in the image plane correspond to x′t and x′t+∆t on the fluid
object. At time t, an undistorted ray is emitted from the center of the projection o to
point x′t with angle βt, with respect to vertical (solid lines in Fig. 2). This ray is bent by
αt due to the refraction when it passes through the fluid and finally hits the image plane
at x′′t .

At successive time ti + ∆t, the fluid object moves to a new location (dashed gray
blob in Fig. 2. The background point x′′t now correspond to a different point x′t+∆t
on the fluid object and a different point xt+∆t on the image point. The ray from the
background to the fluid object is now bent by αt+∆t when passing through the fluid,
and finally hits the image plane with angle of βt+∆t with respect to the vertical. The
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wiggle at time t is the distance between xt and xt+∆t, denoted as −−−−−→xtxt+∆t (blue or red
arrows in Fig. 2. A simple geometric calculation shows:

xt+∆t − xt =z(tanβt+∆t − tanβt) (16)
x′′t − o =z′ tanβt+∆t + (z′′ − z′) tan(αt+∆t + βt+∆t)

=z′ tanβt + (z′′ − z′) tan(αt + βt) (17)

From Eq. 17, we have:

0 = z′(tanβt+∆t − tanβt) + (z′′ − z′)
(
tan(αt+∆t + βt+∆t)− tan(αt + βt)

)
≈ sec2 βt(βt+∆t − βt)z′ + (z′′ − z′) sec2(βt + αt)(βt+∆t − βt + αt+∆t − αt)
= sec2 βt(βt+∆t − βt)z′ + (z′′ − z′) sec2 βt(βt+∆t − βt + αt+∆t − αt), (18)

where the first line to the second line is based on the Taylor expansion, and second
line to the third line is based on the assumption that α is small, because the index of
refraction is close to 1. Then from Eq. 18, we have:

βt+∆t − βt = −
z′′ − z′

z′′
(αt+∆t − αt). (19)

Finally, combining Eq. 16 and Eq. 19, we have:

xt+∆t − xt =z(tanβt+∆t − tanβt)

≈z(βt+∆t − βt) sec2 βt

=− (z′′ − z′)z sec2 βt
z′′

(αt+∆t − αt) (20)

This completes the proof.

Lemma 2

Based on this lemma, we can prove the refractive flow constancy and the refractive
stereo constancy.

Theorem 1 (Refractive flow constancy). Suppose the fluid object does not change its
shape and index of refraction during a short time interval [t1, t2]. Then for any point on
the fluid object, its wiggle v(t1) at t1 equals its wiggle v(t2) at t2.

Proof. As shown in Fig. 2, let o, xti , x
′
ti , x

′′
ti be the light ray that hits the background x′′ti

at time t, and o, xti+∆t, x
′
ti+∆t

, x′′ti+∆t be the light ray that hits the same background
point x′′ti at time ti +∆t, i = 1, 2. According the definition of the refractive wiggle:

v(t1) =
−−−−−−→xt1xt1+∆t,v(t2) =

−−−−−−→xt2xt2+∆t (21)

To prove the refractive flow constancy, first we will show that x′t1+∆t and x′t2+∆t are

the same point on the fluid object, or equivalently, the shifts
−−−−−−→
x′t1x

′
t1+∆t

and
−−−−−−→
x′t2x

′
t2+∆t
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Fig. 2. Proof of refractive stereo constancy

are equal. By the definition of wiggle, we only know that x′t1 and x′t2 refers to the same
point on the refractive object. We need to prove that x′t1+∆t and x′t2+∆t are equal.

Based on Lemma 1, we know that:

−−−−−−→xt1xt1+∆t = −
(z′′ − z′)z sec2 βt1

z′′
(αt1+∆t − αt1)

−−−−−−→xt2xt2+∆t = −
(z′′ − z′)z sec2 βt2

z′′
(αt2+∆t − αt2) (22)

By the similar triangle formula, we have:

−−−−−−→
x′t1x

′
t1+∆t =

z′

z
−−−−−−→xt1xt1+∆t = −

(z′′ − z′)z′ sec2 βt1
z′′

(αt1+∆t − αt1), (23)

−−−−−−→
x′t2x

′
t2+∆t =

z′

z
−−−−−−→xt2xt2+∆t = −

(z′′ − z′)z′ sec2 βt2
z′′

(αt2+∆t − αt2). (24)

As discussed in the paper, for a short duration, the refractive angle of a same point on
the fluid object will remain constant, so αt1 = αt2 . Subtracting Eq. 23 by Eq. 24, we
have:

−−−−−−→
x′t1x

′
t1+∆t −

−−−−−−→
x′t2x

′
t2+∆t = −

(z′′ − z′)z′ sec2 βt1
z′′

(αt1+∆t − αt2+∆t) (25)

Then we can solve xt2+∆t from Eq. 25. If x′t1+∆t and x′t2+∆t are also the same point
on the fluid object, then LHS of Eq. 25 is zero as x′t1+∆t − x

′
t1 = x′t2+∆t − x

′
t2 , and
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the RHS of Eq. 25 is also zero because the refractive angle of the same point on the
fluid object are the same, that is αt1+∆t = αt2+∆t. This shows x′t2+∆t = x′t1+∆t is
one solution to Eq. 25. Assuming that there is only one light ray that emits from x′′t2
and hits at the center of projection, then x′t2+∆t = x′t1+∆t is also the only solution to
Eq. 25. This proves x′t2+∆t = x′t1+∆t and consequently αt1+∆t = αt2+∆t.

Finally, we prove that wiggles at t1 and t2 are equal. Plugging

αt1+∆t − αt1 = αt2+∆t − αt2 (26)

to Eq. 22, we have:

−−−−−−→xt1xt1+∆t = −
(z′′ − z′)z sec2 βt1

z′′
(αt1+∆t − αt1)

= − (z′′ − z′)z sec2 βt2
z′′

(αt2+∆t − αt2) = −−−−−−→xt2xt2+∆t (27)


