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My research focuses on visual correspondence between images. First, visual correspondence between images
reveals various physical properties of our visual world. For example, correspondences between two temporal
adjacent frames reveal how objects move over time, and many motion estimation algorithms [1, 2] are based on
temporal correspondence. Correspondences between images captured from different viewpoints reveal the 3D lo-
cations and geometries of objects, as well the camera motion between different viewpoints. Most of 3D estimation
algorithms, like structure from motion [4] and dense stereo matching are based on spatial correspondence [3].

Second, inferred properties from the visual correspondence can be used to manipulate captured images or
videos. For example, to rotate an object, like a chair or a cup, in a captured image or a video, we need to know
the 3D geometry of that object. To edit or synthesize a realistic movement of objects in a video, we need to first
extract motion field of similar objects in a reference video.

My research goal is, through the correspondence between images, to understand underlying structures of our visual
world, and to assist the editing of captured images and videos.
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Figure 1: Edge-based stereo matching. We
match intensity edges in a multi-frame se-
quence (a) to obtain a sparse depth map (b),
from which we infer the dense depth map (c).

Improved Visual Correspondence Estimation Traditional mo-
tion estimation [1, 2] and 3D reconstruction algorithms [4] are
based on visual correspondence between images, and there are still
two main challenges in finding correspondence between images.
First, the state-of-the-art flow and stereo algorithms can sometimes
introduce errors in less textured regions. Second, most of match-
ing algorithms are based on the brightness constancy assumption,
that it the intensity of two matched pixels should have the same or
similar intensity. However, such assumption only holds for solid
objects, and it cannot be applied to semi-translucent objects, like
fluid flow.

First, to improve the quality of stereo matching, we proposed an
edge-based stereo matching algorithm [6] to deal with less tex-
tured regions and the “foreground-fattening effect” (Figure 1). The
basic idea is that in the first round of the algorithm, we only con-
sider pixels on edges, either on texture edges or occlusion edges.
It allows us to focus the computation on the important features, to identify object boundaries early, and to defer rea-
soning in untextured areas. Once we find robust matches of those pixels on edges, and we then fit overlapping local
planes to these coarse matches. The final depth map is recovered by assigning each pixel to one of detected planes.
Results show this edge-based approach can create a clean depth map with sharp boundaries between objects.
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Figure 2: Measuring the velocity of imperceptible candle
plumes from standard videos. The heat rising from two
burning candles (a) cause small distortions of the back-
ground due to refraction. We proposed an algorithm can
both visualize the air flow and measure its 2D motion (c).

Second, to find robust matches for refractive fluid ob-
jects, we design a new flow algorithm that extends the
traditional brightness constancy assumption. Although
the fluid objects themselves can be hardly tracked vi-
sually, its motion causes small intensity variations of
the background. One main observation is that such in-
tensity variations are consistent over small space-time
volumes (Figure 2). We call these intensity variations
refraction wiggles, and use them as features for track-
ing and stereo fusion to recover the fluid motion and
depth from video sequences. We designed algorithms
both for 1) measuring the (2D, projected) motion of
refractive fluids in monocular videos, and 2) recover-
ing the 3D position of fluid objects from stereo cam-
eras [8].

Novel Visual Correspondence Applications Once
we infer the correct correspondence between images, many image and video editing problems become much easier
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and approachable. For example, from just a single view, it is hard to get a clean segmentation of foreground objects
from background, and possibly change or remove foreground objects. However, if we take a short video sequence
by moving the camera, objects at different layers will match pixels in different locations in other frames, and it is
much easier to separate them.
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Figure 3: Remove visual obstructions from videos
captured by a moving camera.

One application is to remove the visual obstruction from cap-
tured videos [7]. For example, when taking pictures through
glass windows, reflections from indoor objects can obstruct
the outdoor scene we wish to capture, as shown in Figure 3.
To remove these visual obstructions, we instruct the user to
take a short image sequence while slightly moving the cam-
era. Our key observation is that the reflecting or obstruct-
ing planes usually have different depth from that of the main
scene, and thus different motion pattern in the captured se-
quence. Thus, we can separate the main scene from the ob-
struction based on motion parallax, and fill the holes left by
the obstruction layers by aggregating information from cor-
responded pixels in other frames. In this way, we can deal
with obstruction appeared at various scenarios, including
shooting through reflections, fences, and raindrop-covered
windows.

Figure 4: Predicting the movement of an
object from a single snapshot (a) is of-
ten ambiguous. Therefore, we proposed a
probabilistic, content-aware motion predic-
tion model that learns the conditional distri-
bution of future frames

Furthermore, given visual correspondences extracted from a large
number of videos, we can learn how to synthesize new videos from
a single input image. In contrast to traditional methods that are ei-
ther deterministic or non-parametric, we propose to model future
frames in a probabilistic manner [9], so shat we can synthesize
many possible future movement of an object. We propose a novel
image synthesis network, which first chops the input image into
different segments and synthesize a new image by moving seg-
ments and combining them together. Our algorithm can automati-
cally learn the correspondence between two temporally neighbor-
ing frames in the training videos. At testing time, given an input
image, it can also sample the correct movement of each segment,
based on learned correlation between images and motion fields in
the training set.

Future Research Plan

Holistic visual world understanding through correspondence So far, most work separately infer motion or 3D
geometry of objects from either temporal or spatial correspondence between images. Actually, these two problems
are intertwined. For example, when we capture a video of a static scene, the observed motion on the image plane
depends on the depth of the scene, so that we can infer the 3D geometry from camera motion. Reversely, when we
stereo-match a set of images from a dynamic scene taken at different timestamps, we also need to infer how much
objects move between frames. Therefore, a principle way to solve the problem is to infer both 3D geometry and
movement of objects simultaneously, and researchers also start to push this direction [5].

Furthermore, besides motion and 3D, we can also infer other properties of our visual world through correspon-
dence. For example, from a set of images under different lighting conditions, we can also infer the light sources,
as well as the bidirectional reflectance distribution function (BRDF) of each object in the scene. Also, from videos
of moving fluid, we can also infer some physical properties of the fluid, like viscosity or transmittance.

Clip-based image and video editing and synthesis All these examples shown above illustrate that the infor-
mation we can get from a short video clip is much richer than that from a single image, including rough 3D
geometry of the scene, dynamics of objects, lighting conditions, etc. These rich information about our visual
world can greatly improve the performance of existing image and video editting algorithms, and make many other
applications possible. For example, we can easily manipulate objects in captured sequences, once we know their
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3D geometry. With estimated 3D geometry and motion from a short video clip, we can also synthesize a stereo
sequence, or a full light-field sequence, that can be viewed interactively either on mobile devices, or VR headsets.
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